JPH08178011A - Flywheel device - Google Patents

Flywheel device

Info

Publication number
JPH08178011A
JPH08178011A JP6327554A JP32755494A JPH08178011A JP H08178011 A JPH08178011 A JP H08178011A JP 6327554 A JP6327554 A JP 6327554A JP 32755494 A JP32755494 A JP 32755494A JP H08178011 A JPH08178011 A JP H08178011A
Authority
JP
Japan
Prior art keywords
flywheel
magnetic
rotary
permanent magnet
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6327554A
Other languages
Japanese (ja)
Other versions
JP3577558B2 (en
Inventor
Ryoichi Takahata
良一 高畑
Hirotomo Kamiyama
拓知 上山
Kazuo Rokkaku
和夫 六角
Shoji Eguchi
正二 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP32755494A priority Critical patent/JP3577558B2/en
Publication of JPH08178011A publication Critical patent/JPH08178011A/en
Application granted granted Critical
Publication of JP3577558B2 publication Critical patent/JP3577558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0487Active magnetic bearings for rotary movement with active support of four degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0427Passive magnetic bearings with permanent magnets on both parts repelling each other for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE: To provide a flywheel device having a large load capacity in the axial direction and a small rotation loss. CONSTITUTION: This flywheel device is provided with a vertical rotary shaft 1, a flywheel 2 fixed to it, four-axis control type radial magnetic bearings 3, 4 supporting the rotary shaft 1 in the radial direction in no contact, multiple circular rotary permanent magnets 10 concentrically laminated on the lower end face 2a of the flywheel 2 and having magnetic poles at both ends in the axial direction, and multiple circular fixed permanent magnets 11 concentrically laminated on a housing 7 below the permanent magnets 10 and having magnetic poles at both ends in the axial direction. The magnetic poles at the same end of two adjacent rotary permanent magnets 10 have opposite polarities to each other, and the magnetic pole at the lower end of the rotary permanent magnets 10 and the magnetic pole at the upper end of the fixed permanent magnets 11 facing it have the same polarity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、余剰電力をフライホ
イールの回転運動エネルギに変換して貯蔵する電力貯蔵
装置などに使用されるフライホイール装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flywheel device used for an electric power storage device for converting surplus electric power into rotational kinetic energy of a flywheel and storing it.

【0002】[0002]

【従来の技術】この種のフライホイール装置として、従
来、垂直軸を中心に回転する回転軸、回転軸に固定状に
設けられたフライホイール、回転軸をラジアル方向に非
接触支持する上下2組の4軸制御型ラジアル磁気軸受、
ならびに回転軸をラジアル方向およびアキシアル方向に
非接触支持する1組あるいは複数組の超伝導軸受を備え
たものが知られている。超伝導軸受は、たとえば、フラ
イホイールの上向きあるいは下向きの端面に、複数の環
状の永久磁石が、磁束分布が回転軸心に対して対称にな
り、かつ回転軸心のまわりの磁束分布が回転によって変
化しないように、同心状に配置され、固定部分に、超伝
導体が、永久磁石の磁束が所定量侵入する離隔位置であ
ってかつ回転体の回転によって侵入磁束の分布が変化し
ない位置に、永久磁石と回転軸心方向に対向するように
配置されているものである。そして、永久磁石から発生
する磁束を超伝導体の内部に侵入させて拘束し、その結
果、いわゆるピン止め力により、固定部分に対して回転
体をラジアル方向およびアキシアル方向に非接触状態で
支持するようになっている。
2. Description of the Related Art Conventionally, as a flywheel device of this type, a rotary shaft that rotates about a vertical axis, a flywheel that is fixedly mounted on the rotary shaft, and two upper and lower sets that support the rotary shaft in a radial direction without contact. 4 axis control type radial magnetic bearing,
Further, there is known one provided with one set or a plurality of sets of superconducting bearings for supporting the rotary shaft in a radial direction and an axial direction in a non-contact manner. A superconducting bearing has, for example, a plurality of annular permanent magnets on the upward or downward end face of the flywheel, the magnetic flux distribution being symmetrical with respect to the rotation axis, and the magnetic flux distribution around the rotation axis being rotated. It is arranged concentrically so that it does not change, and in the fixed portion, the superconductor is a separated position where the magnetic flux of the permanent magnet enters a predetermined amount, and the position where the distribution of the invading magnetic flux does not change due to the rotation of the rotating body, It is arranged so as to face the permanent magnet in the direction of the axis of rotation. Then, the magnetic flux generated from the permanent magnet is allowed to enter the inside of the superconductor to be restrained, and as a result, the so-called pinning force supports the rotating body in a non-contact state in the radial direction and the axial direction with respect to the fixed portion. It is like this.

【0003】[0003]

【発明が解決しようとする課題】上記のフライホイール
装置において、回転軸をアキシアル方向に支持するのは
超伝導軸受だけである。超伝導軸受は、上記のように、
超伝導体に拘束された磁束のピン止め力によって回転体
をラジアル方向にもアキシアル方向にも支持できるが、
とくにアキシアル方向(重力方向)の支持力(負荷容
量)には限界があり、また、回転損失が問題になる。
In the above flywheel device, only the superconducting bearing supports the rotary shaft in the axial direction. Superconducting bearings, as mentioned above,
Although the rotating body can be supported in the radial and axial directions by the pinning force of the magnetic flux bound by the superconductor,
Especially, there is a limit to the supporting force (load capacity) in the axial direction (gravitational direction), and rotation loss becomes a problem.

【0004】この発明の目的は、上記の問題を解決し、
アキシアル方向の負荷容量が大きく、回転損失が小さい
フライホイール装置を提供することにある。
The object of the present invention is to solve the above problems,
An object of the present invention is to provide a flywheel device having a large axial load capacity and a small rotation loss.

【0005】[0005]

【課題を解決するための手段】この発明によるフライホ
イール装置は、垂直軸を中心に回転する回転軸、上記回
転軸に固定状に設けられたフライホイール、上記回転軸
をラジアル方向に非接触支持する上下2組の4軸制御型
ラジアル磁気軸受、上記フライホイールまたは上記回転
軸に固定された円板状の非磁性体製回転部材の下面に同
心状に積層され軸方向両端に磁極を有する複数の環状の
回転永久磁石、および上記フライホイールまたは上記回
転部材の下方の固定部分に上記回転永久磁石とそれぞれ
対向するように同心状に積層され軸方向両端に磁極を有
する複数の環状の固定永久磁石を備えており、ラジアル
方向に隣接する2つの上記回転永久磁石の同一端の磁極
が互いに逆の極性を有し、上記回転永久磁石の下端の磁
極とこれに対向する上記固定永久磁石の上端の磁極が互
いに同じ極性を有するようになされていることを特徴と
するものである。
A flywheel device according to the present invention comprises a rotary shaft which rotates about a vertical axis, a flywheel fixedly mounted on the rotary shaft, and a non-contact support for the rotary shaft in a radial direction. Upper and lower two sets of four-axis control type radial magnetic bearings, a plurality of disc-shaped non-magnetic rotary members fixed to the flywheel or the rotary shaft, concentrically laminated on the lower surface, and having magnetic poles at both axial ends. Ring-shaped rotary permanent magnets, and a plurality of ring-shaped fixed permanent magnets concentrically laminated on the fixed portion below the flywheel or the rotating member so as to face the rotary permanent magnets, and have magnetic poles at both axial ends. And the magnetic poles at the same end of the two rotary permanent magnets that are adjacent in the radial direction have opposite polarities, and are opposed to the magnetic pole at the lower end of the rotary permanent magnet. It is characterized in that the magnetic poles of the upper end of the fixed permanent magnets are made to have the same polarity.

【0006】たとえば、上記フライホイールまたは上記
回転部材の外周に環状の複合繊維強化プラスチック製補
強部材が一体状に固定されている。
For example, an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the flywheel or the rotating member.

【0007】[0007]

【作用】フライホイール側の回転永久磁石の下端の磁極
とこれに対向する固定部分側の固定永久磁石の上端の磁
極が互いに同じ極性を有するので、これらの磁気反発力
によって回転永久磁石が上向きに付勢され、これにより
回転軸の重量が支持されるため、アキシアル方向の負荷
容量が増大する。そして、超伝導軸受を使用せずに、永
久磁石の磁気反発力だけで回転軸をアキシアル方向に支
持するので、回転損失が小さく、また、高価な超伝導体
やその冷却装置を必要としない。したがって、省エネル
ギ化が図られ、コストも安くなる。
Since the magnetic pole at the lower end of the rotary permanent magnet on the flywheel side and the magnetic pole at the upper end of the fixed permanent magnet on the fixed portion side facing the flywheel side have the same polarity as each other, the magnetic repulsive force causes the rotary permanent magnet to move upward. Since the load is biased to support the weight of the rotating shaft, the load capacity in the axial direction increases. Further, since the rotating shaft is supported in the axial direction only by the magnetic repulsive force of the permanent magnet without using the superconducting bearing, the rotation loss is small, and an expensive superconductor or its cooling device is not required. Therefore, energy saving is achieved and the cost is reduced.

【0008】フライホイールまたは回転部材の外周に環
状の複合繊維強化プラスチック製補強部材が一体状に固
定されている場合、補強部材により、フライホイールま
たは回転部材の遠心膨張が小さく抑えられて、フライホ
イールまたは回転部材の遠心破壊が防止される。
When the annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the flywheel or the rotating member, the reinforcing member suppresses the centrifugal expansion of the flywheel or the rotating member to a small level, and the flywheel is rotated. Alternatively, centrifugal breakdown of the rotating member is prevented.

【0009】[0009]

【実施例】以下、図面を参照して、この発明を電力貯蔵
装置におけるフライホイール装置に適用した実施例につ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a flywheel device in a power storage device will be described below with reference to the drawings.

【0010】図1はフライホイール装置の全体構成を概
略的に示し、図2はその一部を拡大して詳細に示してい
る。
FIG. 1 schematically shows the overall structure of the flywheel device, and FIG. 2 shows a part of the flywheel device in detail.

【0011】フライホイール装置は、垂直な回転軸(1)
、回転軸(1) に固定されたフライホイール(2) 、回転
軸(1) をラジアル方向に非接触支持する上下2組の4軸
制御型ラジアル磁気軸受(3)(4)、回転軸(1) をアキシア
ル方向(上下方向)に非接触支持する永久磁石軸受(5)
、および発電電動機(6) を備えており、これらが複数
の部材よりなるハウジング(固定部分)(7) で囲まれた
真空チャンバ(8) 内に配置されている。
The flywheel device has a vertical rotation axis (1).
, A flywheel (2) fixed to the rotating shaft (1), two sets of upper and lower 4-axis control radial magnetic bearings (3) (4) that support the rotating shaft (1) in the radial direction in a non-contact manner, the rotating shaft ( Permanent magnet bearing that supports 1) in the axial direction (vertical direction) without contact (5)
, And a generator motor (6), which are arranged in a vacuum chamber (8) surrounded by a housing (fixed part) (7) made of a plurality of members.

【0012】フライホイール(2) はたとえばアルミニウ
ム合金などの非磁性体により円板状に形成されており、
その外周にCFRP(複合繊維強化プラスチック)製の
環状の補強部材(9) が一体状に固定されている。フライ
ホイール(2) は回転軸(1) の下端寄りの部分に同心状に
固定されており、回転軸(1) はハウジング(7) 内の中心
に若干の上下動(アキシアル方向の移動)およびラジア
ル方向の移動ができるように配置されている。
The flywheel (2) is made of a non-magnetic material such as an aluminum alloy and has a disk shape.
An annular reinforcing member (9) made of CFRP (composite fiber reinforced plastic) is integrally fixed to the outer periphery thereof. The flywheel (2) is concentrically fixed to the lower end of the rotating shaft (1), and the rotating shaft (1) moves slightly up and down (moves in the axial direction) in the center of the housing (7). It is arranged so that it can be moved in the radial direction.

【0013】永久磁石軸受(5) はフライホイール(2) の
下端面(2a)とこれに対向するハウジング(7) の底壁上面
(7a)の間に設けられており、その詳細が図2に示されて
いる。
The permanent magnet bearing (5) is composed of the lower end surface (2a) of the flywheel (2) and the upper surface of the bottom wall of the housing (7) facing the lower end surface (2a).
It is provided between (7a) and the details are shown in FIG.

【0014】永久磁石軸受(5) は、フライホイール(2)
の下端面(2a)に同心状に配置された複数の環状の回転永
久磁石(10)、およびこれに対向するようにハウジング
(7) の底壁上面(7a)に同心状に配置された同数の環状の
固定永久磁石(11)を備えている。
The permanent magnet bearing (5) is a flywheel (2).
A plurality of annular rotating permanent magnets (10) concentrically arranged on the lower end surface (2a) of the
The bottom wall upper surface (7a) of (7) is provided with the same number of annular fixed permanent magnets (11) arranged concentrically.

【0015】フライホイール(2) の下端面(2a)に円形の
仕切り壁(12)で仕切られた複数の環状凹みぞ(13)が同心
状に形成され、各凹みぞ(13)内に回転永久磁石(10)が1
つずつはめられて固定されている。回転永久磁石(10)の
外周部分は、凹みぞ(13)の外周側の壁あるいは仕切り壁
(12)の内周部分に圧入されている。回転永久磁石(10)の
内周部分は仕切り壁(12)あるいは凹みぞ(13)の内周側の
壁の外周部分にゆるくはめ合わされ、これらの間にはほ
とんど隙間がないかあるいはわずかな隙間があけられて
いる。回転永久磁石(10)は軸方向の両端に磁極を有し、
ラジアル方向に隣接する2つの回転永久磁石(10)の同一
端の磁極が互いに逆の極性を有するように配置されてい
る。すなわち、この実施例では、内側と外側の回転永久
磁石(10)については下端側がN極で上端側がS極とな
り、中間の回転永久磁石(10)については上端側がN極
で、下端側がS極となっている。このような永久磁石磁
気回路は、回転体の浮上力が得られれば、別の磁気回路
でも差支えない。たとえば、永久磁石のラジアル方向に
磁極を配置してもよい。
On the lower end surface (2a) of the flywheel (2), a plurality of annular grooves (13) partitioned by a circular partition wall (12) are concentrically formed, and rotate in each groove (13). 1 permanent magnet (10)
They are fitted and fixed one by one. The outer peripheral part of the rotating permanent magnet (10) is a wall or partition wall on the outer peripheral side of the groove (13).
It is press-fitted into the inner peripheral part of (12). The inner peripheral part of the rotating permanent magnet (10) is loosely fitted to the outer peripheral part of the partition wall (12) or the inner wall of the groove (13), with little or no gap between them. Has been opened. The rotating permanent magnet (10) has magnetic poles at both ends in the axial direction,
The magnetic poles at the same end of two rotating permanent magnets (10) that are adjacent in the radial direction are arranged so as to have opposite polarities. That is, in this embodiment, the lower end side of the inner and outer rotating permanent magnets (10) is the N pole and the upper end side is the S pole, and the middle rotating permanent magnet (10) is the N pole on the upper end side and the lower end side is the S pole. Has become. Such a permanent magnet magnetic circuit may be another magnetic circuit as long as the floating force of the rotating body can be obtained. For example, the magnetic poles may be arranged in the radial direction of the permanent magnet.

【0016】ハウジング(7) の底壁上面(7a)に、ラジア
ル方向の幅が比較的広い環状凹所(14)が形成され、この
凹所(14)内に、複数の固定永久磁石(11)と、これらの間
に挟まれた複数の非磁性体リング(15)とがはめられて固
定されている。なお、ハウジング(7) の底壁は、たとえ
ば非磁性ステンレス鋼などの非磁性体で構成されてい
る。固定永久磁石(11)も軸方向の両端に磁極を有し、ラ
ジアル方向に隣接する2つの固定永久磁石(11)の同一端
の磁極が互いに逆の極性を有し、かつ回転永久磁石(10)
の下端の磁極とこれに対向する固定永久磁石(11)の上端
の磁極が互いに同じ極性を有するように配置されてい
る。すなわち、この実施例では、内側と外側の固定永久
磁石(11)については上端側がN極で下端側がS極とな
り、中間の固定永久磁石(11)については下端側がN極
で、上端側がS極となっている。そして、回転永久磁石
(10)と固定永久磁石(11)の磁気反発力によって回転永久
磁石(10)が上向きに付勢され、これにより回転軸(1) の
重量が支持されて、回転軸(1) がアキシアル方向に浮上
した状態で非接触支持されるようになっている。
An annular recess (14) having a relatively large radial width is formed in the upper surface (7a) of the bottom wall of the housing (7), and a plurality of fixed permanent magnets (11) are formed in the recess (14). ) And a plurality of non-magnetic rings (15) sandwiched between them are fitted and fixed. The bottom wall of the housing (7) is made of a non-magnetic material such as non-magnetic stainless steel. The fixed permanent magnet (11) also has magnetic poles at both ends in the axial direction, and the magnetic poles at the same end of two adjacent fixed permanent magnets (11) in the radial direction have polarities opposite to each other, and the rotating permanent magnet (10). )
The magnetic pole at the lower end and the magnetic pole at the upper end of the fixed permanent magnet (11) facing the magnetic pole are arranged so as to have the same polarity. That is, in this embodiment, the inner and outer fixed permanent magnets (11) have the N pole at the upper end and the S pole at the lower end, and the middle fixed permanent magnet (11) has the N pole at the lower end and the S pole at the upper end. Has become. And a rotating permanent magnet
The rotating permanent magnet (10) is urged upward by the magnetic repulsive force of the fixed permanent magnet (11) and the fixed permanent magnet (11), which supports the weight of the rotating shaft (1) and causes the rotating shaft (1) to move in the axial direction. It is designed to be supported in a non-contact state by being floated on.

【0017】各ラジアル磁気軸受(3)(4)は、詳細な図示
は省略したが、回転軸(1) を互いに直交する2つのラジ
アル方向(X軸およびY軸方向)に両側から吸引して同
方向の回転軸(1) の位置を制御するための電磁石、なら
びに回転軸(1) のX軸およびY軸方向の変位を検出する
ための変位センサを備えており、これらが図示しない磁
気軸受制御装置に接続されている。そして、磁気軸受制
御装置により、変位センサの出力に基づいて電磁石の電
流値すなわち吸引力が制御され、その結果、回転軸(1)
のラジアル方向の位置が制御されるようになっている。
なお、ラジアル磁気軸受およびその制御装置自体は公知
のものであるから、詳細な説明は省略する。
Although not shown in detail in the radial magnetic bearings (3) and (4), the rotary shaft (1) is attracted from both sides in two radial directions (X-axis and Y-axis directions) orthogonal to each other. It has an electromagnet for controlling the position of the rotating shaft (1) in the same direction, and a displacement sensor for detecting the displacement of the rotating shaft (1) in the X-axis and Y-axis directions. It is connected to the control device. Then, the magnetic bearing control device controls the current value of the electromagnet, that is, the attraction force, based on the output of the displacement sensor, and as a result, the rotating shaft (1)
The radial position of is controlled.
Since the radial magnetic bearing and its control device are well known, detailed description is omitted.

【0018】発電電動機(6) は、詳細な説明は省略した
が、回転軸(1) に取り付けられたロータと、その周囲の
ハウジング(7) に固定状に設けられたステータとからな
る。この電動機(6) は、電力貯蔵時には電動機として作
動して回転軸(1) を高速回転させ、電力取出し時には発
電機として作動するようになっている。
Although not described in detail, the generator-motor (6) comprises a rotor mounted on the rotating shaft (1) and a stator fixedly provided on the housing (7) around the rotor. The electric motor (6) operates as an electric motor during storage of electric power to rotate the rotary shaft (1) at a high speed, and operates as a generator during electric power extraction.

【0019】ハウジング(7) の上部および下部に、非常
時に回転軸(1) の上下両端寄りの部分を支持する転がり
軸受からなるタッチダウン軸受(16)(17)が設けられてい
る。
Touchdown bearings (16) and (17), which are rolling bearings, are provided on the upper and lower parts of the housing (7) to support the upper and lower ends of the rotary shaft (1) in an emergency.

【0020】上記のフライホイール装置において、回転
軸(1) は、通常、永久磁石軸受(5)によりアキシアル方
向に非接触支持されるとともに、磁気軸受(3)(4)により
ラジアル方向に非接触支持され、このような状態で、発
電電動機(6) により高速回転させられる。そして、回転
軸(1) が高速回転している間に、電気エネルギが回転運
動エネルギに変換されてフライホイール(2) に貯蔵され
る。
In the above flywheel device, the rotary shaft (1) is normally supported in a non-contact manner in the axial direction by a permanent magnet bearing (5) and also in a non-contact manner in the radial direction by magnetic bearings (3), (4). It is supported and is rotated at high speed by the generator motor (6) in such a state. Then, while the rotating shaft (1) is rotating at high speed, electric energy is converted into rotational kinetic energy and stored in the flywheel (2).

【0021】回転軸(1) が高速回転しているときに停電
が発生した場合、発電電動機(6) は停止するが、フライ
ホイール(2) により、回転軸(1) はわずかに減速するも
のの継続して回転させられる。その結果、発電電動機
(6) が発電機として作動し、フライホイール(2) に貯蔵
されていた回転運動エネルギが電気エネルギとして取出
され、図示しない蓄電池に蓄えられる。蓄電池に蓄えら
れた電力は、図示しない外部の電力消費財に送られ、電
力消費財が作動を継続する。蓄電池に蓄えられた電力の
一部は磁気軸受制御装置に送られ、これにより磁気軸受
(3)(4)が駆動されて回転軸(1) のラジアル方向の位置制
御が継続される。そして、フライホイール(2) に蓄えら
れていた回転運動エネルギが減少して回転軸(1) が停止
するまでの間、回転軸(1) は磁気軸受(3)(4)および永久
磁石軸受(5) によって非接触状態に支持される。
When a power failure occurs while the rotating shaft (1) is rotating at high speed, the generator motor (6) stops, but the flywheel (2) causes the rotating shaft (1) to decelerate slightly. It is continuously rotated. As a result, generator motor
(6) operates as a generator, and the rotational kinetic energy stored in the flywheel (2) is extracted as electric energy and stored in a storage battery (not shown). The electric power stored in the storage battery is sent to an external electric power consumer product (not shown), and the electric power consumer product continues to operate. Part of the electric power stored in the storage battery is sent to the magnetic bearing control device, which causes the magnetic bearing to
(3) (4) is driven and the radial position control of the rotary shaft (1) is continued. Then, until the rotary kinetic energy stored in the flywheel (2) decreases and the rotary shaft (1) stops, the rotary shaft (1) keeps the magnetic bearings (3) (4) and permanent magnet bearings ( 5) supported by non-contact state.

【0022】停電時以外でも、発電電動機(6) を停止さ
せると、停電の場合と同様に、フライホイール(2) に貯
蔵されていた回転運動エネルギを電気エネルギとして取
出すことができる。
When the generator motor (6) is stopped even during a power failure, the rotational kinetic energy stored in the flywheel (2) can be taken out as electrical energy, as in the case of a power failure.

【0023】上記のフライホイール装置において、フラ
イホイール(2) の外周に固定されている補強部材(9) を
構成するCFRPは、軽量でヤング率が大きい。そし
て、軽量であることより、高速回転時に補強部材(9) に
作用する遠心力が小さく、しかもヤング率が大きいこと
より、遠心力による補強部材(9) の変形(遠心膨張)も
小さい。このため、補強部材(9) の内側にはめられてい
るフライホイール(2) の遠心膨張も小さく抑えられ、フ
ライホイール(2) の遠心破壊が防止される。また、フラ
イホイール(2) の環状凹みぞ(13)に回転永久磁石(10)が
1つずつ組込まれて、各回転永久磁石(10)が遠心膨張の
小さいフライホイール(2) の壁あるいは仕切り壁(12)の
内周部分にそれぞれ圧入されているので、しめ代を小さ
くすることができて、回転永久磁石(10)の寸法管理およ
び組立が容易であり、しかも回転永久磁石(10)の遠心膨
張が小さく抑えられて、回転永久磁石(10)の遠心破壊が
防止される。
In the above flywheel device, the CFRP constituting the reinforcing member (9) fixed to the outer periphery of the flywheel (2) is lightweight and has a large Young's modulus. Since it is lightweight, centrifugal force acting on the reinforcing member (9) at high speed is small, and since Young's modulus is large, deformation (centrifugal expansion) of the reinforcing member (9) due to centrifugal force is small. Therefore, the centrifugal expansion of the flywheel (2) fitted inside the reinforcing member (9) is suppressed to a small level, and the centrifugal destruction of the flywheel (2) is prevented. In addition, one rotary permanent magnet (10) is installed in the annular groove (13) of the flywheel (2) so that each rotary permanent magnet (10) has a wall or partition of the flywheel (2) with small centrifugal expansion. Since they are press-fitted into the inner peripheral portion of the wall (12), the tightening allowance can be reduced, the dimensional control and assembly of the rotary permanent magnet (10) are easy, and moreover, the rotary permanent magnet (10) Centrifugal expansion is suppressed to a low level, and centrifugal breakdown of the rotating permanent magnet (10) is prevented.

【0024】また、上記実施例では、フライホイール
(2) の下端面(2a)に環状凹みぞ(13)を形成して、そこに
回転永久磁石(10)を配置したが、図3に示すように、フ
ライホイール(2) とは別体に、円板状の非磁性体製回転
部材(20)を回転軸(1) に固定し、回転部材(20)の下端面
(20a) に複数の環状凹みぞ(13)を同心状に形成し、そこ
に複数の環状の回転永久磁石(10)を配置してもよい。回
転部材(20)は、たとえばアルミニウム合金、非磁性ステ
ンレス鋼などの非磁性体で円板状に形成されている。こ
の場合、回転部材(20)を別体とすることで、フライホイ
ール(2) の外径を極力大きくできる一方、回転部材(20)
の外径を小さくでき、回転永久磁石(10)の遠心破壊を効
果的に防止できる。さらに、フライホイール(2) と回転
部材(20)とを軸方向に離して配置することも可能であ
る。
In the above embodiment, the flywheel is used.
An annular groove (13) was formed on the lower end surface (2a) of (2) and a rotating permanent magnet (10) was placed there, but as shown in FIG. 3, it is separate from the flywheel (2). Then, fix the disc-shaped non-magnetic rotating member (20) on the rotating shaft (1), and attach the lower end surface of the rotating member (20).
A plurality of annular recessed grooves (13) may be concentrically formed in (20a), and a plurality of annular rotating permanent magnets (10) may be arranged therein. The rotating member (20) is made of a non-magnetic material such as an aluminum alloy or non-magnetic stainless steel and has a disk shape. In this case, by making the rotating member (20) a separate body, the outer diameter of the flywheel (2) can be maximized, while the rotating member (20)
The outer diameter of can be made small, and centrifugal destruction of the rotating permanent magnet (10) can be effectively prevented. Further, it is possible to dispose the flywheel (2) and the rotating member (20) axially separated from each other.

【0025】[0025]

【発明の効果】この発明のフライホイール装置によれ
ば、上述のように、フライホイール側の回転永久磁石と
固定部分側の固定永久磁石との磁気反発力によって回転
軸の重量が支持されるため、アキシアル方向の負荷容量
を増大させることができ、超伝導軸受では支持できない
ような重量の大きい回転軸を支持することもできる。ま
た、超伝導軸受を使用せずに、永久磁石の磁気反発力だ
けで回転軸をアキシアル方向に支持できるので、回転損
失を小さくでき、省エネルギ化を図ることができ、コス
トも安くすることができる。
As described above, according to the flywheel device of the present invention, the weight of the rotary shaft is supported by the magnetic repulsive force of the rotary permanent magnet on the flywheel side and the fixed permanent magnet on the fixed portion side. The load capacity in the axial direction can be increased, and a heavy rotating shaft that cannot be supported by a superconducting bearing can also be supported. In addition, since the rotating shaft can be supported in the axial direction only by the magnetic repulsive force of the permanent magnet without using a superconducting bearing, the rotation loss can be reduced, energy can be saved, and cost can be reduced. it can.

【0026】フライホイールまたは回転部材の外周に環
状の複合繊維強化プラスチック製補強部材が一体状に固
定されていることにより、フライホイールまたは回転部
材の遠心膨張が小さく抑えて、フライホイールまたは回
転部材の遠心破壊を防止することができる。
Since the annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the flywheel or the rotating member, centrifugal expansion of the flywheel or the rotating member is suppressed to a small level, and the flywheel or the rotating member is prevented from expanding. Centrifugal destruction can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の1実施例を示すフライホイール装置
の概略縦断面図である。
FIG. 1 is a schematic vertical sectional view of a flywheel device showing an embodiment of the present invention.

【図2】図1の永久磁石軸受の部分の拡大縦断面図であ
る。
FIG. 2 is an enlarged vertical sectional view of a portion of the permanent magnet bearing of FIG.

【図3】この発明の他の実施例を示すフライホイール装
置の永久磁石軸受の部分の拡大縦断面図である。
FIG. 3 is an enlarged vertical sectional view of a portion of a permanent magnet bearing of a flywheel device showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) 回転軸 (2) フライホイール (2a) 下端面 (3)(4) 4軸制御型ラジアル方向磁気軸受 (5) 永久磁石軸受 (7) ハウジング(固定部分) (9) 補強部材 (10) 回転永久磁石 (11) 固定永久磁石 (20) 回転部材 (20a) 下端面 (1) Rotating shaft (2) Flywheel (2a) Lower end face (3) (4) 4-axis control radial magnetic bearing (5) Permanent magnet bearing (7) Housing (fixed part) (9) Reinforcing member (10 ) Rotating permanent magnet (11) Fixed permanent magnet (20) Rotating member (20a) Bottom surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江口 正二 大阪市中央区南船場三丁目5番8号 光洋 精工株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Shoji Eguchi, 3-5-8 Minamisenba, Chuo-ku, Osaka City Koyo Seiko Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】垂直軸を中心に回転する回転軸、上記回転
軸に固定状に設けられたフライホイール、上記回転軸を
ラジアル方向に非接触支持する上下2組の4軸制御型ラ
ジアル磁気軸受、上記フライホイールまたは上記回転軸
に固定された円板状の非磁性体製回転部材の下面に同心
状に積層され軸方向両端に磁極を有する複数の環状の回
転永久磁石、および上記フライホイールまたは上記回転
部材の下方の固定部分に上記回転永久磁石とそれぞれ対
向するように同心状に積層され軸方向両端に磁極を有す
る複数の環状の固定永久磁石を備えており、ラジアル方
向に隣接する2つの上記回転永久磁石の同一端の磁極が
互いに逆の極性を有し、上記回転永久磁石の下端の磁極
とこれに対向する上記固定永久磁石の上端の磁極が互い
に同じ極性を有するようになされていることを特徴とす
るフライホイール装置。
1. A rotary shaft that rotates about a vertical shaft, a flywheel fixedly mounted on the rotary shaft, and two sets of upper and lower four-axis control radial magnetic bearings that support the rotary shaft in a non-contact manner in the radial direction. A plurality of annular rotating permanent magnets concentrically laminated on the lower surface of the flywheel or a disc-shaped non-magnetic rotating member fixed to the rotating shaft and having magnetic poles at both axial ends, and the flywheel or A plurality of annular fixed permanent magnets, which are concentrically laminated so as to respectively face the rotary permanent magnets and have magnetic poles at both axial ends, are provided in a fixed portion below the rotary member. The magnetic poles at the same end of the rotary permanent magnet have polarities opposite to each other, and the magnetic pole at the lower end of the rotary permanent magnet and the magnetic pole at the upper end of the fixed permanent magnet opposite thereto have the same polarity. Flywheel apparatus characterized by being adapted to.
【請求項2】上記フライホイールまたは上記回転部材の
外周に環状の複合繊維強化プラスチック製補強部材が一
体状に固定されていることを特徴とする請求項1のフラ
イホイール装置。
2. The flywheel device according to claim 1, wherein an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the flywheel or the rotating member.
JP32755494A 1994-12-28 1994-12-28 Flywheel equipment Expired - Fee Related JP3577558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32755494A JP3577558B2 (en) 1994-12-28 1994-12-28 Flywheel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32755494A JP3577558B2 (en) 1994-12-28 1994-12-28 Flywheel equipment

Publications (2)

Publication Number Publication Date
JPH08178011A true JPH08178011A (en) 1996-07-12
JP3577558B2 JP3577558B2 (en) 2004-10-13

Family

ID=18200368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32755494A Expired - Fee Related JP3577558B2 (en) 1994-12-28 1994-12-28 Flywheel equipment

Country Status (1)

Country Link
JP (1) JP3577558B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084656A (en) * 1996-09-09 1998-03-31 Ebara Corp Rotating machine for magnetic levitation
CN102052404A (en) * 2011-01-21 2011-05-11 北京前沿科学研究所 Totally-enclosed magnetic circuit structure for magnetic suspension bearing
WO2011154623A1 (en) * 2010-06-09 2011-12-15 Eric Vangraefschepe Rotating machine comprising a device for supporting and centring the rotor thereof
WO2012098571A1 (en) * 2011-01-17 2012-07-26 Kishishita Ryuutarou Power generation mechanism comprising flywheel supported by magnetic-levitation bearing, and method of controlling power generation mechanism
JP2013013216A (en) * 2011-06-29 2013-01-17 Prospine:Kk Magnetic coupling and agitator
US20130293050A1 (en) * 2012-05-04 2013-11-07 Chung Yuan Christian University Hybrid type magnet bearing system
JP2015502130A (en) * 2011-11-13 2015-01-19 ロートエナジー ホールディングス, リミテッドRotenergy Holdings, Ltd. Electromechanical flywheel
CN104505975A (en) * 2014-11-19 2015-04-08 哈尔滨工程大学 Vehicle-mounted flywheel energy storage device
CN105811646A (en) * 2016-05-25 2016-07-27 北京泓慧国际能源技术发展有限公司 Magnetically supported and mechanical bearing supported hybrid energy-storage flywheel device
JP2016524448A (en) * 2013-07-02 2016-08-12 ロジャー, デイビッドRODGER, David Reduction of bearing force in electric machines
EP3142227A4 (en) * 2014-05-06 2018-01-24 Lin, Sheng-Lian Motor
CN110718990A (en) * 2018-07-12 2020-01-21 列维坦尼克斯有限责任公司 Electromagnetic rotary drive and rotary device
WO2020084345A1 (en) * 2018-10-22 2020-04-30 Wattsup Power A/S Magnetic bearings for flywheel rotor levitation with radial stabilization
JP6858317B1 (en) * 2019-07-09 2021-04-14 雫石 誠 Computed tomography equipment and examination vehicle
CN113300532A (en) * 2021-05-26 2021-08-24 华中科技大学 Stator electro-magnetic flywheel energy storage motor
CN114696529A (en) * 2022-05-11 2022-07-01 华驰动能(北京)科技有限公司 Reverse double flywheel energy storage device
US11923737B2 (en) 2018-10-22 2024-03-05 Wattsup Power A/S Flywheel system with stationary shaft

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084656A (en) * 1996-09-09 1998-03-31 Ebara Corp Rotating machine for magnetic levitation
WO2011154623A1 (en) * 2010-06-09 2011-12-15 Eric Vangraefschepe Rotating machine comprising a device for supporting and centring the rotor thereof
FR2961278A1 (en) * 2010-06-09 2011-12-16 Eric Vangraefschepe ROTATING MACHINE COMPRISING A DEVICE FOR SUSTAINING AND CENTERING ITS ROTOR
WO2012098571A1 (en) * 2011-01-17 2012-07-26 Kishishita Ryuutarou Power generation mechanism comprising flywheel supported by magnetic-levitation bearing, and method of controlling power generation mechanism
CN102052404A (en) * 2011-01-21 2011-05-11 北京前沿科学研究所 Totally-enclosed magnetic circuit structure for magnetic suspension bearing
JP2013013216A (en) * 2011-06-29 2013-01-17 Prospine:Kk Magnetic coupling and agitator
JP2015502130A (en) * 2011-11-13 2015-01-19 ロートエナジー ホールディングス, リミテッドRotenergy Holdings, Ltd. Electromechanical flywheel
US9673680B2 (en) 2011-11-13 2017-06-06 Rotonix Hong Kong Limited Electromechanical flywheels
US20130293050A1 (en) * 2012-05-04 2013-11-07 Chung Yuan Christian University Hybrid type magnet bearing system
US9181979B2 (en) * 2012-05-04 2015-11-10 Chung Yuan Christian University Hybrid type magnet bearing system
JP2016524448A (en) * 2013-07-02 2016-08-12 ロジャー, デイビッドRODGER, David Reduction of bearing force in electric machines
EP3142227A4 (en) * 2014-05-06 2018-01-24 Lin, Sheng-Lian Motor
CN104505975B (en) * 2014-11-19 2017-01-04 哈尔滨工程大学 Vehicle-mounted flywheel energy storage device
CN104505975A (en) * 2014-11-19 2015-04-08 哈尔滨工程大学 Vehicle-mounted flywheel energy storage device
CN105811646A (en) * 2016-05-25 2016-07-27 北京泓慧国际能源技术发展有限公司 Magnetically supported and mechanical bearing supported hybrid energy-storage flywheel device
CN105811646B (en) * 2016-05-25 2019-03-01 北京泓慧国际能源技术发展有限公司 A kind of accumulated energy flywheel device of magnetic force and mechanical bearing mixing support
CN110718990A (en) * 2018-07-12 2020-01-21 列维坦尼克斯有限责任公司 Electromagnetic rotary drive and rotary device
JP2020014373A (en) * 2018-07-12 2020-01-23 レヴィトロニクス ゲーエムベーハー Electromagnetic rotary drive and rotational device
CN110718990B (en) * 2018-07-12 2023-12-29 列维坦尼克斯有限责任公司 Electromagnetic rotary actuator and rotary device
WO2020084345A1 (en) * 2018-10-22 2020-04-30 Wattsup Power A/S Magnetic bearings for flywheel rotor levitation with radial stabilization
US11923737B2 (en) 2018-10-22 2024-03-05 Wattsup Power A/S Flywheel system with stationary shaft
JP6858317B1 (en) * 2019-07-09 2021-04-14 雫石 誠 Computed tomography equipment and examination vehicle
CN113300532A (en) * 2021-05-26 2021-08-24 华中科技大学 Stator electro-magnetic flywheel energy storage motor
CN113300532B (en) * 2021-05-26 2022-07-12 华中科技大学 Stator electro-magnetic flywheel energy storage motor
CN114696529A (en) * 2022-05-11 2022-07-01 华驰动能(北京)科技有限公司 Reverse double flywheel energy storage device

Also Published As

Publication number Publication date
JP3577558B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
US6570286B1 (en) Full magnetic bearings with increased load capacity
JPH08178011A (en) Flywheel device
JP5588863B2 (en) Lift magnet mechanism for flywheel power storage system
US5747907A (en) Backup bearings for positive re-centering of magnetic bearings
JP2006513687A (en) Energy storage flywheel with minimum power magnetic bearing and motor / generator
US5588754A (en) Backup bearings for extreme speed touch down applications
JP3665878B2 (en) Bearing device and starting method thereof
JPWO2017158710A1 (en) Flywheel device and rotating electric machine
JPH04282050A (en) Electric power storage device
JP3551537B2 (en) Flywheel equipment
JP2002130278A (en) Flywheel type power-storing device and magnetic bearing device
JPH08296645A (en) Magnetic bearing device
JP2016039733A (en) Flywheel device, and power generation and drive motor device
KR20030076769A (en) A Superconductor Flywheel Energy Storage System using a Hybrid Bearings
JP3215881U (en) Flywheel device and rotating electric machine
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JPH10299772A (en) Bearing device
JPH08200368A (en) Superconducting magnetic bearing device
JP3577559B2 (en) Flywheel equipment
JP3385771B2 (en) Superconducting magnetic bearing device
JP3632101B2 (en) Power storage device
WO1997024536A1 (en) Radial constrained backup bushings for re-centering of magnetic bearings
JP2852157B2 (en) Flywheel generator
JPH09233803A (en) Braking device for high-speed rotating equipment
JPH08219158A (en) Magnetic bearing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees