JPH04282050A - Electric power storage device - Google Patents

Electric power storage device

Info

Publication number
JPH04282050A
JPH04282050A JP3031060A JP3106091A JPH04282050A JP H04282050 A JPH04282050 A JP H04282050A JP 3031060 A JP3031060 A JP 3031060A JP 3106091 A JP3106091 A JP 3106091A JP H04282050 A JPH04282050 A JP H04282050A
Authority
JP
Japan
Prior art keywords
storage device
power storage
rotor
inertial mass
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3031060A
Other languages
Japanese (ja)
Inventor
Muneaki Shibayama
芝山宗昭
Hiroshi Takaichi
高市浩
Susumu Okada
岡田進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc filed Critical Shikoku Research Institute Inc
Priority to JP3031060A priority Critical patent/JPH04282050A/en
Publication of JPH04282050A publication Critical patent/JPH04282050A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • F16C2380/28Motor, generator coupled with a flywheel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent the energy loss by supporting plural flywheels forming the inertial mass part of a rotor, by superconductors, and disposing concentric circle like permanent magnets at the lower face of the flywheels, thus supporting the rotor floatingly by magnetic resiliency. CONSTITUTION:A rotor 12 is formed of an armature 13, an inertial mass part 15 provided with flywheels 26, and a rotary shaft 12a. Flywheels 26 are supported by superconductor pellets 23 provided at annular flanges 22 protrusively provided on the inner wall surface of a storage room 16, and each flywheel is provided at its lower face with ring like permanent magnets 27 in such a way as to be spaced opposedly from the pellets 23. Or disc like magnets 28 are also disposed at the vertical end parts of the rotary shaft 12a. The rotor 12 is thereby supported in the state of floating in a casing 11 by magnetic resiliency.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は深夜電力などの余剰の
電気エネルギーをフライホイールの回転による運動エネ
ルギーに変換して貯蔵する電力貯蔵装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device that converts surplus electrical energy such as late-night electricity into kinetic energy generated by rotation of a flywheel and stores the kinetic energy.

【0002】0002

【従来の技術】近時、電気エネルギーをフライホイール
の回転による運動エネルギーに変換して貯蔵する電力貯
蔵装置が研究されている。
2. Description of the Related Art Recently, research has been conducted on power storage devices that convert electrical energy into kinetic energy generated by rotation of a flywheel and store the kinetic energy.

【0003】図9は、この電力貯蔵装置の概念を図示し
たものであり、電力貯蔵装置1のケーシング2の内部に
ロータ3が内蔵されている。ロータ3の回転軸3aには
電機子4とフライホイール5が設けられている。回転軸
3aの上下の端部はケーシング2の上下の壁面に設けら
れたベアリング5a,5bによって保持されている。電
機子4の側面近傍には電機子4に対向するコイル装置6
が設けられており、夜間等の余剰電力が生じた場合に、
このコイル装置6から電機子4に磁力を加えることによ
りロータ3を回転させ、余剰電力がなくなった場合に、
コイル装置6を停止させる。コイル装置6からの磁力付
与を停止させると、フライホイール5の慣性力によりロ
ータ3の回転が維持される。電気エネルギーを取出す場
合には、電機子4の回転により誘導電流がコイル装置に
発生するのでコイル装置6の電力取出端子に負荷を接続
して電力を取出す。
FIG. 9 illustrates the concept of this power storage device, in which a rotor 3 is housed inside a casing 2 of the power storage device 1. As shown in FIG. An armature 4 and a flywheel 5 are provided on the rotating shaft 3a of the rotor 3. The upper and lower ends of the rotating shaft 3a are held by bearings 5a and 5b provided on the upper and lower walls of the casing 2. A coil device 6 facing the armature 4 is located near the side surface of the armature 4.
is installed, and when there is surplus electricity such as at night,
By applying magnetic force to the armature 4 from this coil device 6, the rotor 3 is rotated, and when surplus power is exhausted,
The coil device 6 is stopped. When the application of magnetic force from the coil device 6 is stopped, the rotation of the rotor 3 is maintained by the inertial force of the flywheel 5. When extracting electrical energy, an induced current is generated in the coil device due to the rotation of the armature 4, so a load is connected to the power extraction terminal of the coil device 6 to extract electric power.

【0004】0004

【発明が解決しようとする課題】ところで、このような
フライホイールを用いた電力貯蔵装置の場合、電力貯蔵
容量を実用規模に増大させるためには回転するフライホ
イール5の半径を大きくし、回転数を増加させる必要が
ある。しかし、従来の電力貯蔵装置1のような形状で、
フライホイール5を大型として高速回転させると強大な
遠心力が発生し、フライホイール5の強度が遠心力に負
けて破損してしまう。
By the way, in the case of a power storage device using such a flywheel, in order to increase the power storage capacity to a practical scale, it is necessary to increase the radius of the rotating flywheel 5 and increase the rotation speed. need to be increased. However, with a shape like the conventional power storage device 1,
When the flywheel 5 is made large and rotated at high speed, a strong centrifugal force is generated, and the strength of the flywheel 5 is lost to the centrifugal force, resulting in damage.

【0005】又、従来のベアリング5a,5bによる軸
受では、摩擦による一日当りのエネルギーの損失が大き
く、貯蔵エネルギーの約30パーセントが損失するため
、効率よく電力を貯蔵することが出来ないという課題が
残されている。
[0005] Furthermore, with the conventional bearings 5a and 5b, there is a large loss of energy per day due to friction, and about 30% of the stored energy is lost, so there is a problem that electric power cannot be stored efficiently. left behind.

【0006】[0006]

【発明の目的】本発明は、このような課題に着目したも
のであり、エネルギー損失が極めて少なく、大容量蓄電
が可能な電力貯蔵装置を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention has focused on these problems, and an object of the present invention is to provide a power storage device that has extremely low energy loss and is capable of storing a large amount of power.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1乃至6にかかる電力貯蔵装置は、
遠心力によるフライホイールの破損を防ぎ、なおかつ大
容量の電力貯蔵装置を実現するために、小径のフライホ
イールを多段に連結して慣性質量部を形成し、ケーシン
グ内に、各々のフライホイールを支持する複数のフラン
ジを形成したことを特徴とする。
[Means for Solving the Problem] In order to achieve the above object, the power storage device according to claims 1 to 6 of the present invention comprises:
In order to prevent damage to the flywheel due to centrifugal force and to realize a large-capacity power storage device, small-diameter flywheels are connected in multiple stages to form an inertial mass section, and each flywheel is supported within the casing. It is characterized by forming a plurality of flanges.

【0008】請求項2では、軸受の剛性を高めると共に
、リング状永久磁石の周方向の磁力の不均一を原因とす
るブレを防止するために、慣性2次モーメントの等価半
径を越えない領域を広く活用して反発力の総和を増大さ
せたことを特徴とする。
[0008] In claim 2, in order to increase the rigidity of the bearing and to prevent vibration caused by non-uniform magnetic force in the circumferential direction of the ring-shaped permanent magnet, an area that does not exceed the equivalent radius of the second moment of inertia is provided. It is characterized by being widely used to increase the total repulsive force.

【0009】また、本発明の請求項3乃至6にかかる電
力貯蔵装置では、軸受による摩擦損失を低減するために
、軸受そのものを超電導体を用いた軸受とし、ロータの
風損を低減させるために、ロータの少なくとも慣性質量
部を真空空間に配設する。
Furthermore, in the power storage device according to claims 3 to 6 of the present invention, in order to reduce friction loss due to the bearing, the bearing itself is a bearing using a superconductor, and in order to reduce windage loss of the rotor, , at least an inertial mass portion of the rotor is disposed in a vacuum space.

【0010】また、本発明の請求項4乃至6にかかる電
力貯蔵装置では、電機子分の鉄損を減ずるために、慣性
質量部と電機子部分をクラッチで連結、遮断可能に接続
することを特徴とする。
[0010] Furthermore, in the power storage device according to claims 4 to 6 of the present invention, in order to reduce the iron loss of the armature, the inertial mass part and the armature part are connected by a clutch so that they can be connected and disconnected. Features.

【0011】[0011]

【作用】本発明の請求項1乃至6にかかる電力貯蔵装置
によれば、フライホイールの各々の下面をフランジの軸
受により支持するので、軸受の単位面積当りの荷重が低
減でき、全体では大重量のフライホイールを浮上させる
ことができる。また、小口径のフライホイールを多段に
形成したため、フライホイールの強度に対して高速回転
時の遠心力による応力を減少でき、高速回転時のフライ
ホイールの破損を防止できる。また、フランジとフライ
ホイールとを超電導の反発力で離間させるので、摩擦に
よるエネルギー損失をほぼゼロに低減できる。
[Operation] According to the power storage device according to claims 1 to 6 of the present invention, since the lower surface of each flywheel is supported by the bearing of the flange, the load per unit area of the bearing can be reduced, and the overall weight is large. flywheel can be levitated. Furthermore, since the small-diameter flywheel is formed in multiple stages, stress due to centrifugal force during high-speed rotation can be reduced relative to the strength of the flywheel, and breakage of the flywheel during high-speed rotation can be prevented. Furthermore, since the flange and flywheel are separated by the repulsive force of the superconductor, energy loss due to friction can be reduced to almost zero.

【0012】0012

【実施例】以下、本発明の実施例にかかる電力貯蔵装置
を図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A power storage device according to an embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は本実施例の電力貯蔵装置10を示し
たものである。この電力貯蔵装置10はその蓄電容量が
2Mwhとなるように設計され、ケーシング11は、地
盤のコンクリートピットCに空気バネなどの緩衝装置S
を介して配設される。ケーシング11は、ロータ12の
電機子13を格納する第1の格納室14と、ロータ12
の慣性質量部15を内蔵する第2の格納室16とを備え
ている。
FIG. 1 shows a power storage device 10 of this embodiment. This power storage device 10 is designed so that its power storage capacity is 2Mwh, and the casing 11 is installed in a concrete pit C in the ground with a shock absorber S such as an air spring.
It is arranged through. The casing 11 includes a first storage chamber 14 that stores the armature 13 of the rotor 12, and a first storage chamber 14 that stores the armature 13 of the rotor 12.
A second storage chamber 16 containing an inertial mass section 15 is provided.

【0014】第1の格納室14及び第2の格納室15は
ともに円筒形状に形成されており、第2の格納室16の
側壁内には液体窒素17を収納する冷却室18が円筒形
状に形成されている。第1の格納室14にはステータコ
イル及びステータステムからなるコイル部19が設けら
れている。コイル部19は、ステータコイルに通電して
ステータステムから磁力を発生させ、電機子13を回転
させることが出きると共に、ステータコイルが非通電状
態で電機子13が回転しているときに、電機子13によ
り誘導電流が流れ、この誘導電流を電力として取出すこ
とが出来るようになっている。本実施例では、格納室1
4と格納室16とは連通しており、格納室16には真空
ポンプ20に接続されるパイプ21が接続されており、
格納室14、16の空気が吸引されて真空となるように
なっている。これは、ロータ12の回転時の空気抵抗を
減少させるためである。
Both the first storage chamber 14 and the second storage chamber 15 are formed in a cylindrical shape, and a cooling chamber 18 for storing liquid nitrogen 17 is formed in a cylindrical shape within the side wall of the second storage chamber 16. It is formed. The first storage chamber 14 is provided with a coil section 19 consisting of a stator coil and a stator stem. The coil unit 19 is capable of energizing the stator coil to generate magnetic force from the stator stem to rotate the armature 13, and also to rotate the armature 13 when the stator coil is de-energized and the armature 13 is rotating. An induced current flows through the coil 13, and this induced current can be extracted as electric power. In this embodiment, storage room 1
4 and a storage chamber 16 are in communication, and a pipe 21 connected to a vacuum pump 20 is connected to the storage chamber 16.
The air in the storage chambers 14 and 16 is sucked out to create a vacuum. This is to reduce air resistance when the rotor 12 rotates.

【0015】格納室16の内壁面には円環状のフランジ
22…が突設されている。各フランジ22の内部は冷却
室18に続く空間22aとなっており、液体窒素17が
この空間22aを占め得るようになっている。各フラン
ジ22の上面には超電導体のペレット23が設けられて
いる。ペレット23は、その直径が39mm、その厚さ
が20mmの円柱状のものをフライホイール26の一段
当り2000個リング状に設けられている。このペレッ
ト23の底部は空間22aに臨んでおり、液体窒素に触
れて冷却される。ペレット23には磁束線を捕らえるピ
ン止め効果を有する酸化物超電導体が用いられる。
[0015] Annular flanges 22 are provided protruding from the inner wall surface of the storage chamber 16. The inside of each flange 22 is a space 22a that continues to the cooling chamber 18, and the liquid nitrogen 17 can occupy this space 22a. A superconductor pellet 23 is provided on the upper surface of each flange 22. The pellets 23 are cylindrical with a diameter of 39 mm and a thickness of 20 mm, and 2000 pellets are provided in a ring shape per stage of the flywheel 26. The bottom of the pellet 23 faces the space 22a and is cooled by contacting the liquid nitrogen. For the pellet 23, an oxide superconductor having a pinning effect that captures magnetic flux lines is used.

【0016】このペレット23を得るには、例えば、超
電導工学研究所のMPMG法(Melt−Power 
 Melt−Growth法)等により形成されるイッ
トリウム・バリウム・銅の酸化物質の形成方法(IST
ECジャーナル  Vol.3No.3  1990年
)を参照にしても良い。
[0016] To obtain the pellets 23, for example, the MPMG method (Melt-Power
A method for forming yttrium/barium/copper oxides by methods such as the Melt-Growth method (IST
EC Journal Vol. 3 No. 3 1990) may be referred to.

【0017】尚、本実施例では、格納室16の底壁部に
ロータ12の回転軸12aの下端部に離間して対向する
ペレット24が設けられ、ペレット24は液体窒素17
によって冷却されるようになっている。更に、格納室1
4の天井部にも同様に回転軸12aの上端部に離間して
対向する高温超電導物質からなるペレット25が配設さ
れている。
In this embodiment, pellets 24 are provided on the bottom wall of the storage chamber 16 to face the lower end of the rotating shaft 12a of the rotor 12 at a distance.
It is designed to be cooled by Furthermore, storage room 1
Similarly, pellets 25 made of a high temperature superconducting material are disposed on the ceiling of No. 4, spaced apart from and facing the upper end of the rotating shaft 12a.

【0018】ロータ12は、電機子13と、慣性質量部
15と、回転軸12aとで構成されている。慣性質量部
15は、3枚のフライホイール26…を備えている。こ
のフライホイール26…の直径は4m、厚さは0.1m
、段数は、本実施例では3段構成とされている。フライ
ホイール26…の材質は非磁性高強力鋼又は80kg級
高張力鋼で、3段構成とした場合の慣性質量部15の総
重量は30t(即ち、フライホイール26一枚の重量は
10tとなる)、慣性質量部15の回転数は4500r
pmとする。
The rotor 12 is composed of an armature 13, an inertial mass section 15, and a rotating shaft 12a. The inertial mass section 15 includes three flywheels 26. This flywheel 26... has a diameter of 4 m and a thickness of 0.1 m.
In this embodiment, the number of stages is three. The material of the flywheels 26 is non-magnetic high-strength steel or 80 kg class high-tensile steel, and the total weight of the inertial mass section 15 when configured in three stages is 30 tons (that is, the weight of one flywheel 26 is 10 tons). ), the rotation speed of the inertial mass section 15 is 4500 r
Let it be pm.

【0019】各フライホイール26はフランジ22のペ
レット23に支持されるように、フランジ22の上方に
位置している。各フライホイール26の下面にはペレッ
ト23と離間して対向するリング状の永久磁石27を備
えている(図2、3参照)。リング状の永久磁石27の
外径は、回転軸12aに近い側から各々1.6m、1.
7m、1.8m、1.9m、2.0mとされ、外径の6
6パーセント以下となっている。リング状の永久磁石2
7の幅は25mm、厚さ25mmの同心円状に配置され
ている。本実施例では回転軸12aの上下の端部にもそ
れぞれ円板状の磁石28が配設されており、ロータ12
全体をケーシング11内に浮かせて支持するようになっ
ている。フライホイール26の下面の永久磁石27から
上下方向に発生する磁束線は、フライホイール26の下
方のペレット23に排除されて磁気反発力を受け、これ
によってフライホイール26はフランジ22から浮き上
がる。尚、補助手段として本実施例には示していないが
、フライホイール26の上面に同様にリング状磁石27
を設置し、各フランジ22の下面にも超電導ペレットを
配置することにより、ペレット23の吊り下げ効果によ
ってフライホイールを保持することもできる。
Each flywheel 26 is positioned above the flange 22 so as to be supported by the pellet 23 of the flange 22. A ring-shaped permanent magnet 27 is provided on the lower surface of each flywheel 26 and faces the pellet 23 at a distance (see FIGS. 2 and 3). The outer diameters of the ring-shaped permanent magnets 27 are 1.6 m and 1.6 m from the side closest to the rotating shaft 12a, respectively.
7m, 1.8m, 1.9m, 2.0m, and the outer diameter is 6.
It is less than 6%. Ring-shaped permanent magnet 2
7 are arranged concentrically with a width of 25 mm and a thickness of 25 mm. In this embodiment, disk-shaped magnets 28 are also provided at the upper and lower ends of the rotating shaft 12a, respectively, and the rotor 12
The entire structure is suspended and supported within the casing 11. The magnetic flux lines generated in the vertical direction from the permanent magnet 27 on the lower surface of the flywheel 26 are rejected by the pellet 23 below the flywheel 26 and are subjected to magnetic repulsion, thereby lifting the flywheel 26 from the flange 22. Although not shown in this embodiment as an auxiliary means, a ring-shaped magnet 27 is similarly provided on the upper surface of the flywheel 26.
By installing superconducting pellets on the lower surface of each flange 22, the flywheel can also be held by the hanging effect of the pellets 23.

【0020】尚、上記実施例では、格納室14と格納室
16とが連通するようにケーシング11を構成したが、
格納室14と格納室16とを水平な隔壁で画成し、格納
室14の上下の壁面部に超電導ペレットを設けて軸受と
し、電機子13の回転軸と慣性質量部15の回転軸とを
分離構成し、電機子13の回転軸の上下端部を格納室1
4の上下壁部の超電導体からなる軸受ペレットに離間し
て対向させると共に、慣性質量部15の回転軸の上下端
部を格納室16の上下の壁部に設けた超電導ペレットに
よって離間して対向させ、更に、電機子13の回転軸の
下端部と慣性質量部15の回転軸の上端部とをクラッチ
等の断続機(電磁クラッチでも良いし、磁気クラッチで
も良い)により連結、遮断可能に構成しても良い。
In the above embodiment, the casing 11 was constructed so that the storage chamber 14 and the storage chamber 16 communicated with each other.
The storage chamber 14 and the storage chamber 16 are defined by horizontal partition walls, and superconducting pellets are provided on the upper and lower walls of the storage chamber 14 to serve as bearings, and the rotation axis of the armature 13 and the rotation axis of the inertial mass section 15 are connected. The upper and lower ends of the rotating shaft of the armature 13 are separated into the storage chamber 1.
The upper and lower ends of the rotating shaft of the inertial mass section 15 are spaced apart and opposed to the bearing pellets made of superconducting material on the upper and lower walls of the storage chamber 16, respectively. Furthermore, the lower end of the rotating shaft of the armature 13 and the upper end of the rotating shaft of the inertial mass section 15 are configured to be able to be connected and disconnected by a disconnector such as a clutch (an electromagnetic clutch or a magnetic clutch may be used). You may do so.

【0021】図4乃至図6はこのようなクラッチを例え
ば磁気クラッチによって構成した状態を示したもので、
電機子13の回転軸13aの下端部に結合板29が設け
られ、慣性質量部15の回転軸15aの上端部に結合板
30が設けられ、結合板29の結合板30に対向する面
に円板状の電磁石31が回転中心線を中心として放射状
に配設されている。結合板30の結合板29に対向する
面には回転中心線を中心として放射状に配設される永久
磁石32が配設されている。尚、電磁石31の鉄芯材料
はアモルファス合金が用いられている。
FIGS. 4 to 6 show a state in which such a clutch is constituted by, for example, a magnetic clutch.
A coupling plate 29 is provided at the lower end of the rotating shaft 13a of the armature 13, a coupling plate 30 is provided at the upper end of the rotating shaft 15a of the inertial mass section 15, and a circular Plate-shaped electromagnets 31 are arranged radially around the rotation center line. Permanent magnets 32 are arranged radially around the rotation center line on the surface of the coupling plate 30 facing the coupling plate 29. Note that an amorphous alloy is used as the iron core material of the electromagnet 31.

【0022】図4乃至図6に示すものでは、電磁石31
を格納室14の図示しない摺接子により通電制御し、慣
性質量部15の駆動時に電磁石31を励磁させて電磁石
31と永久磁石32とを結合させると、電機子13と慣
性質量部15とが一体に回転し、電磁石31の通電を止
めると、電機子13と慣性質量部15とが分離し、慣性
質量部15は電機子13からの回転抵抗を受けることな
く回転を持続できる。そして、格納室14、16をそれ
ぞれの真空ポンプによって真空状態にすると、電機子1
3の回転も慣性質量部15の回転も空気抵抗がなくなる
ので、慣性質量部15の回転持続能力が一層向上する。
In the case shown in FIGS. 4 to 6, the electromagnet 31
When the armature 13 and the permanent magnet 32 are connected to each other by controlling the energization by a sliding contact (not shown) in the storage chamber 14 and exciting the electromagnet 31 when the inertial mass section 15 is driven to couple the electromagnet 31 and the permanent magnet 32, the armature 13 and the inertial mass section 15 are When the armature 13 and the inertial mass section 15 are rotated together and the electromagnet 31 is de-energized, the armature 13 and the inertial mass section 15 are separated, and the inertial mass section 15 can continue to rotate without receiving rotational resistance from the armature 13. Then, when the storage chambers 14 and 16 are brought into a vacuum state by their respective vacuum pumps, the armature 1
3 and the rotation of the inertial mass section 15, there is no air resistance, so the ability of the inertial mass section 15 to sustain rotation is further improved.

【0023】図7、図8は、ロータ12の回転軸12a
のラジアル方向の軸受の構成に改良を加えたものであり
、この図3に示すものでは、回転軸12aの保持される
周面にリング状の永久磁石40が設けられている。一方
、ケーシング11の内壁部から回転軸12aの永久磁石
40に向かって4本のステム41が回転軸12aとの離
間間隔を調整可能に延びている。各ステム41の先端面
には超電導体42が設けられており、超電導体42の磁
気反発力により回転軸12aが保持されるようになって
いる。
FIGS. 7 and 8 show the rotating shaft 12a of the rotor 12.
This is an improved configuration of the radial direction bearing shown in FIG. 3, and in the one shown in FIG. 3, a ring-shaped permanent magnet 40 is provided on the circumferential surface of the rotating shaft 12a. On the other hand, four stems 41 extend from the inner wall of the casing 11 toward the permanent magnet 40 of the rotating shaft 12a so that the distance from the rotating shaft 12a can be adjusted. A superconductor 42 is provided on the tip end surface of each stem 41, and the rotating shaft 12a is held by the magnetic repulsion of the superconductor 42.

【0024】[0024]

【効果】本発明にかかる請求項1乃至6にかかる電力貯
蔵装置は、以上説明したように構成したので、ロータを
無接触、無抵抗で回転させることが出来、摩擦によるエ
ネルギー損失をほぼゼロに低減することが出来る。
[Effect] Since the power storage device according to claims 1 to 6 of the present invention is configured as described above, the rotor can be rotated without contact and without resistance, and energy loss due to friction can be reduced to almost zero. can be reduced.

【0025】従って、本装置による実用規模の高効率電
力システムの完成により、深夜電力などの余剰電力を効
率的に貯蔵、利用することができるために、電力需要の
季別、時間帯別変動による電力設備の負荷率の低下傾向
を改善でき、電力の安定供給、電気料金の価格維持など
に多大の効果が得られる。
[0025] Therefore, by completing a practical-scale, high-efficiency power system using this device, surplus power such as late-night power can be efficiently stored and used, thereby reducing power demand due to seasonal and time-of-day fluctuations. It can improve the tendency of the load factor of power equipment to decline, and has great effects in stabilizing the supply of electricity and maintaining electricity rates.

【0026】又、請求項3の電力貯蔵装置の場合には、
ロータの回転軸を保持するラジアル軸受にも、超電導体
と永久磁石の磁気反発力を介在させるので、ロータの回
転により回転軸に作用する摩擦抵抗がゼロとなり、一段
とエネルギー損失を防止できる。
[0026] Furthermore, in the case of the power storage device according to claim 3,
The magnetic repulsion of the superconductor and permanent magnet is also applied to the radial bearing that holds the rotating shaft of the rotor, so the frictional resistance acting on the rotating shaft when the rotor rotates becomes zero, further preventing energy loss.

【0027】更に、請求項4にかかる電力貯蔵装置の場
合、ロータの回転後に、電機子の回転軸と慣性質量部の
回転軸とを分離してしまうと、電機子の回転エネルギー
が駆動コイルのステータステムからの拘束磁力によって
消耗しても、慣性質量部は影響を受けないので、より貯
蔵エネルギーの損失を減少させることが出来る。
Furthermore, in the case of the power storage device according to claim 4, if the rotational axis of the armature and the rotational axis of the inertial mass section are separated after the rotor has rotated, the rotational energy of the armature is transferred to the drive coil. Since the inertial mass part is not affected even if it is consumed by the restraining magnetic force from the status stem, it is possible to further reduce the loss of stored energy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の実施例にかかる電力貯蔵装置の構
成を示す説明図
FIG. 1 An explanatory diagram showing the configuration of a power storage device according to an embodiment of the present invention.

【図2】  図1のフライホイールと超電導ペレットの
配置関係を示す説明図
[Figure 2] Explanatory diagram showing the arrangement relationship between the flywheel and superconducting pellets in Figure 1

【図3】  図2のフライホイールの裏面図[Figure 3] Back view of the flywheel in Figure 2

【図4】 
 図1の電力貯蔵装置の回転軸に磁気クラッチを設けた
場合の説明図
[Figure 4]
An explanatory diagram when a magnetic clutch is provided on the rotating shaft of the power storage device in Figure 1

【図5】  図4の電機子側の回転軸に設けられた電磁
石を示す説明図
[Figure 5] Explanatory diagram showing the electromagnet installed on the rotating shaft on the armature side in Figure 4

【図6】  図4の慣性質量部側の回転軸の永久磁石の
配列状態の説明図
[Figure 6] Explanatory diagram of the arrangement of permanent magnets on the rotating shaft on the inertial mass part side in Figure 4

【図7】  図1の電力貯蔵装置のラジアル軸受の変形
例を示す説明図
[Figure 7] Explanatory diagram showing a modification of the radial bearing of the power storage device in Figure 1

【図8】  図8のラジアル軸受の部分拡大平面図[Figure 8] Partially enlarged plan view of the radial bearing in Figure 8

【図
9】  従来の回転体による電力貯蔵装置の構造概念図
[Figure 9] Structural conceptual diagram of a conventional power storage device using a rotating body

【符号の説明】[Explanation of symbols]

10…電力貯蔵装置 11…ケーシング 12…ロータ 13…電機子 14…第1の格納室 15…慣性質量部 16…第2の格納室 17…液体窒素 18…冷却室 19…コイル部 20…真空ポンプ 22…フランジ 23…ペレット 25…ペレット 26…フライホイール 27…大口径リング状永久磁石 28…小口径リング状永久磁石 29…結合板 30…結合板 31…電磁石 32…永久磁石 40…放射状磁化リング状永久磁石 41…ステム 42…超電導体 10...Power storage device 11...Casing 12...Rotor 13...armature 14...First storage room 15...Inertia mass part 16...Second storage room 17...Liquid nitrogen 18...Cooling room 19...Coil part 20...Vacuum pump 22...Flange 23...Pellets 25...Pellets 26...Flywheel 27...Large-diameter ring-shaped permanent magnet 28...Small diameter ring-shaped permanent magnet 29...Binding board 30...Binding board 31...Electromagnet 32...Permanent magnet 40...Radially magnetized ring-shaped permanent magnet 41...Stem 42...Superconductor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ケーシング内のロータを電気エネルギーに
よって回転駆動させ、必要に応じて電気エネルギーを再
変換可能な電動発電部を備え、前記ロータの電機子の回
転軸に、駆動エネルギーの供給停止後に前記ロータを慣
性により回転させることにより、エネルギーを貯蔵する
慣性質量部を備えた電力貯蔵装置であって、前記慣性質
量部は円板状のフライホイールを多段に形成してなるこ
とを特徴とする電力貯蔵装置。
Claim 1: A rotor in a casing is rotatably driven by electric energy, and includes an electric power generator capable of reconverting the electric energy as necessary, and after the supply of drive energy is stopped to the rotation shaft of the armature of the rotor. A power storage device including an inertial mass section that stores energy by rotating the rotor due to inertia, wherein the inertial mass section is formed by forming a multi-stage disc-shaped flywheel. Power storage device.
【請求項2】請求項1の電力貯蔵装置において、前記慣
性質量部の各フライホイールの下面の半径の66パーセ
ント相当の円内で、上下方向の磁束線を生ずるリング状
の永久磁石を設け、前記ケーシングに各々のフライホイ
ールの上下面に離間して対向する軸受用フランジを形成
し、これらのフランジの前記永久磁石に対向する部位に
、前記多段のフライホイールを浮上可能な磁気反発力を
有する超電導体を設けたことを特徴とする電力貯蔵装置
2. The power storage device according to claim 1, wherein a ring-shaped permanent magnet is provided within a circle corresponding to 66% of the radius of the lower surface of each flywheel of the inertial mass section to generate vertical magnetic flux lines; Bearing flanges are formed in the casing and are spaced apart and opposed to the upper and lower surfaces of each flywheel, and portions of these flanges that face the permanent magnet have magnetic repulsion that can levitate the multi-stage flywheel. A power storage device characterized by being provided with a superconductor.
【請求項3】請求項2記載の電力貯蔵装置において、前
記ケーシングに、前記慣性質量部を前記電機子から画成
して真空状態で格納する格納室を設け、この格納室の天
井部に前記電機子と前記慣性質量部の間の回転軸部分を
保持するラジアル軸受部を設け、この格納室の内壁部に
前記フランジ部を形成するとともに、この格納室を形成
する壁の内部に液体窒素充填室を形成したことを特徴と
する電力貯蔵装置。
3. The power storage device according to claim 2, wherein the casing is provided with a storage chamber in which the inertial mass is defined from the armature and stored in a vacuum state, and the ceiling of the storage chamber is provided with the A radial bearing section for holding the rotating shaft portion between the armature and the inertial mass section is provided, the flange section is formed on the inner wall of this storage chamber, and the inside of the wall forming this storage chamber is filled with liquid nitrogen. A power storage device characterized by forming a chamber.
【請求項4】請求項2若しくは請求項3の電力貯蔵装置
において、前記ロータの回転軸を、電機子側の回転軸部
分と、前記慣性質量部の回転軸部分とに分離構成して、
両者の回転軸部分を同軸上に位置させるとともに、両者
の対向する端部にクラッチを設置したことを特徴とする
電力貯蔵装置。
4. The power storage device according to claim 2 or 3, wherein the rotating shaft of the rotor is configured to be separated into a rotating shaft portion on the armature side and a rotating shaft portion of the inertial mass portion,
A power storage device characterized in that both rotating shaft portions are located on the same axis, and a clutch is installed at opposing ends of both.
【請求項5】請求項4の電力貯蔵装置において、前記慣
性質量部の回転軸に、フライホイールの半径方向に放射
状に磁化されたリング状の磁石を取り付け、前記ケーシ
ング内にこのリング状の磁石に向かって延びるステムを
設け、このステムの前記リング状の磁石に対向する面に
超電導体を冷却して配設して前記ロータのラジアル軸受
としたことを特徴とする電力貯蔵装置。
5. The power storage device according to claim 4, wherein a ring-shaped magnet magnetized radially in the radial direction of the flywheel is attached to the rotating shaft of the inertial mass part, and the ring-shaped magnet is placed inside the casing. A power storage device comprising a stem extending toward the rotor, and a superconductor cooled and disposed on a surface of the stem facing the ring-shaped magnet to serve as a radial bearing for the rotor.
【請求項6】請求項4の電力貯蔵装置において、前記ク
ラッチは磁気クラッチにより構成され、この磁気クラッ
チは、互いに対面する一対の平行平面板で構成され、一
方の平面板は回転質量部側の回転軸に設けられ、他方の
平面板は電機子側の回転軸の端部に設けられ、一方の平
面板の上面に放射状の永久磁石を配置し、他方の平面板
の下面に放射状の電磁石を配置したことを特徴とする電
力貯蔵装置。
6. The power storage device according to claim 4, wherein the clutch is constituted by a magnetic clutch, and the magnetic clutch is constituted by a pair of parallel plane plates facing each other, one of the plane plates facing the rotating mass part. The other flat plate is installed at the end of the rotating shaft on the armature side, and a radial permanent magnet is placed on the top surface of one flat plate, and a radial electromagnet is placed on the bottom surface of the other flat plate. A power storage device characterized in that:
JP3031060A 1991-02-26 1991-02-26 Electric power storage device Pending JPH04282050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3031060A JPH04282050A (en) 1991-02-26 1991-02-26 Electric power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031060A JPH04282050A (en) 1991-02-26 1991-02-26 Electric power storage device

Publications (1)

Publication Number Publication Date
JPH04282050A true JPH04282050A (en) 1992-10-07

Family

ID=12320935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031060A Pending JPH04282050A (en) 1991-02-26 1991-02-26 Electric power storage device

Country Status (1)

Country Link
JP (1) JPH04282050A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170644A (en) * 1994-12-20 1996-07-02 Koyo Seiko Co Ltd Bearing device using permanent magnet and permanent magnet rotating device
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors
JP2009257859A (en) * 2008-04-15 2009-11-05 Tokyo Keiki Inc Electrostatic leviation gyroscope apparatus
JP2010209963A (en) * 2009-03-09 2010-09-24 Railway Technical Res Inst Flywheel device with magnetic coupling clutch
JP2013113294A (en) * 2011-11-28 2013-06-10 Seiyu Shima Multi-stage three-dimensional installation ac power generation facility
FR3017664A1 (en) * 2014-02-19 2015-08-21 Franck Andre Marie Guigan INERTIAL ENERGY STORAGE SYSTEM
US9136741B2 (en) 2013-07-08 2015-09-15 Quantum Energy Storage Corporation Method for producing a kinetic energy storage system
JP2019520783A (en) * 2016-07-01 2019-07-18 大連天億軟件有限公司 Magnetic levitation power system
FR3104804A1 (en) * 2019-12-13 2021-06-18 Safran Superconducting pellet comprising a cavity and associated electrical machine
RU2771214C1 (en) * 2021-02-24 2022-04-28 Фёдор Денисович Нагорный Method for combined accumulation of power

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112836A (en) * 1980-02-06 1981-09-05 Mitsubishi Electric Corp Flywheel energy accumulator
JPS57196842A (en) * 1981-05-29 1982-12-02 Hokusan Kk Electric performance testing device for generator facility by solar battery
JPS58214036A (en) * 1982-06-08 1983-12-13 Mitsubishi Electric Corp Flywheel device
JPS61218332A (en) * 1985-03-20 1986-09-27 川崎重工業株式会社 Energy storage apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112836A (en) * 1980-02-06 1981-09-05 Mitsubishi Electric Corp Flywheel energy accumulator
JPS57196842A (en) * 1981-05-29 1982-12-02 Hokusan Kk Electric performance testing device for generator facility by solar battery
JPS58214036A (en) * 1982-06-08 1983-12-13 Mitsubishi Electric Corp Flywheel device
JPS61218332A (en) * 1985-03-20 1986-09-27 川崎重工業株式会社 Energy storage apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170644A (en) * 1994-12-20 1996-07-02 Koyo Seiko Co Ltd Bearing device using permanent magnet and permanent magnet rotating device
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors
JP2009257859A (en) * 2008-04-15 2009-11-05 Tokyo Keiki Inc Electrostatic leviation gyroscope apparatus
JP2010209963A (en) * 2009-03-09 2010-09-24 Railway Technical Res Inst Flywheel device with magnetic coupling clutch
JP2013113294A (en) * 2011-11-28 2013-06-10 Seiyu Shima Multi-stage three-dimensional installation ac power generation facility
US9136741B2 (en) 2013-07-08 2015-09-15 Quantum Energy Storage Corporation Method for producing a kinetic energy storage system
US9735645B2 (en) 2013-07-08 2017-08-15 Saint Augustin Canada Electric Inc. Energy storage flywheel device and system for producing kinetic energy within the storage system
US9899895B2 (en) 2013-07-08 2018-02-20 Saint Augustin Canada Electric Inc. Method for producing a kinetic energy storage system
US10587165B2 (en) 2013-07-08 2020-03-10 Saint-Augustin Canada Electric Inc. Method for pre-conditioning a kinetic energy storage system
US11283328B2 (en) 2013-07-08 2022-03-22 Saint-Augustin Canada Electric Inc. Flywheel device used for energy storage including a hermetically sealed cylinder section and disc-shaped rotor arranged within cylinder section
FR3017664A1 (en) * 2014-02-19 2015-08-21 Franck Andre Marie Guigan INERTIAL ENERGY STORAGE SYSTEM
JP2019520783A (en) * 2016-07-01 2019-07-18 大連天億軟件有限公司 Magnetic levitation power system
FR3104804A1 (en) * 2019-12-13 2021-06-18 Safran Superconducting pellet comprising a cavity and associated electrical machine
RU2771214C1 (en) * 2021-02-24 2022-04-28 Фёдор Денисович Нагорный Method for combined accumulation of power

Similar Documents

Publication Publication Date Title
US6570286B1 (en) Full magnetic bearings with increased load capacity
US5831362A (en) Magnet-superconductor flywheel and levitation systems
US6043577A (en) Flywheel energy accumulator
US5747907A (en) Backup bearings for positive re-centering of magnetic bearings
US6703735B1 (en) Active magnetic thrust bearing
JPH04178127A (en) Energy storage apparatus
US5540116A (en) Low-loss, high-speed, high-TC superconducting bearings
US5588754A (en) Backup bearings for extreme speed touch down applications
JP3577558B2 (en) Flywheel equipment
JPH04282050A (en) Electric power storage device
JPH06323334A (en) Superconductive bearing device
CN108869543A (en) A kind of hybrid superconducting magnetic bearing system of flywheel energy storage
CN212297270U (en) Flywheel device supported by repulsion type magnetic suspension bearing
JPH11315836A (en) High-temperature superconductive bearing with high floating force and flywheel energy storage device of horizontal axis using it
JP3665878B2 (en) Bearing device and starting method thereof
JPWO2017158710A1 (en) Flywheel device and rotating electric machine
JP3887102B2 (en) Flywheel power storage device
JPH08296645A (en) Magnetic bearing device
JP3215881U (en) Flywheel device and rotating electric machine
KR20030076769A (en) A Superconductor Flywheel Energy Storage System using a Hybrid Bearings
Suzuki et al. Fundamental characteristics of prototype ring-shaped flywheel generator with superconducting levitated magnetic bearing
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same
WO1997024536A1 (en) Radial constrained backup bushings for re-centering of magnetic bearings
JP3324319B2 (en) Magnetic bearing device