JPH08170644A - Bearing device using permanent magnet and permanent magnet rotating device - Google Patents

Bearing device using permanent magnet and permanent magnet rotating device

Info

Publication number
JPH08170644A
JPH08170644A JP6316253A JP31625394A JPH08170644A JP H08170644 A JPH08170644 A JP H08170644A JP 6316253 A JP6316253 A JP 6316253A JP 31625394 A JP31625394 A JP 31625394A JP H08170644 A JPH08170644 A JP H08170644A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotating
magnetic
rotary
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6316253A
Other languages
Japanese (ja)
Other versions
JP3663472B2 (en
Inventor
Ryoichi Takahata
良一 高畑
Hirotomo Kamiyama
拓知 上山
Kazuo Rokkaku
和夫 六角
Shoji Eguchi
正二 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP31625394A priority Critical patent/JP3663472B2/en
Publication of JPH08170644A publication Critical patent/JPH08170644A/en
Application granted granted Critical
Publication of JP3663472B2 publication Critical patent/JP3663472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE: To provide a bearing device using a permanent magnet which facilitates dimensional control and assembly of a rotary permanent magnet with small centrifugal expansion of the permanent magnet to eliminate apprehension of causing centrifugal destruction of the permanent magnet. CONSTITUTION: By a rotary permanent magnet 15 provided in a permanent magnet rotary device 11 of a rotary unit 1 rotated with a vertical shaft serving as the center and a magnetic supporter device 13 provided in a fixed housing, the rotary unit 1 is contactlessly supported by magnetic force. A plurality of the annular rotary permanent magnets 15 are concentrically arranged in an axial direction end face of a disk-shaped non-magnetic material-made rotary member 14 of the permanent magnet rotary device 11, and the magnetic supporter device 13 is arranged so as to be opposed to the rotary permanent magnet 15 in a direction of a rotary shaft center A of the rotary unit 1. A plurality of annular recessed grooves 18 are concentrically formed in an axial direction end face of the non-magnetic material-made rotary member 14, to mount the rotary permanent magnet 15 by press fitting one by one in each recessed groove 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば高速回転を
必要とする流体機械や工作機械、余剰電力をフライホイ
ールの回転運動エネルギに変換して貯蔵する電力貯蔵装
置、あるいはジャイロスコープなどに使用される永久磁
石使用軸受装置および永久磁石回転装置に関し、とくに
垂直軸を中心に回転する回転体を支持する永久磁石使用
軸受装置および永久磁石回転装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used, for example, in fluid machines and machine tools that require high-speed rotation, electric power storage devices that convert surplus electric power into rotational kinetic energy of flywheels, and store it, or gyroscopes. The present invention relates to a bearing device using a permanent magnet and a permanent magnet rotating device, and more particularly to a bearing device using a permanent magnet and a permanent magnet rotating device that support a rotating body that rotates about a vertical axis.

【0002】この明細書において、永久磁石使用軸受装
置という用語は、永久磁石と超伝導体とで回転体を非接
触支持する超伝導軸受、永久磁石同志の磁気反発力また
は磁気吸引力で回転体を非接触支持する非制御型磁気軸
受など、永久磁石を使用して回転体を非接触支持する軸
受装置の総称として用いられる。また、永久磁石回転装
置という用語は、永久磁石使用軸受装置において回転体
とともに永久磁石を回転させる装置の名称として用いら
れる。
In this specification, the term "bearing device using permanent magnets" refers to a superconducting bearing in which a permanent magnet and a superconductor support a rotating body in a non-contact manner, and a permanent magnet uses a magnetic repulsive force or a magnetic attractive force to rotate the rotating body. It is used as a general term for bearing devices that use a permanent magnet to support a rotating body in a non-contact manner, such as a non-control type magnetic bearing that supports in a non-contact manner. The term permanent magnet rotating device is used as a name of a device that rotates a permanent magnet together with a rotating body in a bearing device using a permanent magnet.

【0003】[0003]

【従来の技術】近年、回転体の高速回転と高剛性を可能
にした軸受装置として、非接触状態で回転体を支持しう
る永久磁石使用軸受装置が開発されている。
2. Description of the Related Art In recent years, a bearing device using a permanent magnet capable of supporting a rotating body in a non-contact state has been developed as a bearing device capable of high-speed rotation and high rigidity of the rotating body.

【0004】垂直軸を中心に回転する回転体を非接触支
持する永久磁石使用軸受装置として、回転体に設けられ
た永久磁石回転装置の非磁性体よりなる部分の上向きま
たは下向きの端面に複数の環状の回転永久磁石が同心状
に配置され、回転体の軸心方向に回転永久磁石と対向す
るように磁気支持装置が固定部分に配置されているもの
が考えられている。
As a bearing device using a permanent magnet for supporting a rotating body which rotates about a vertical axis in a non-contact manner, a plurality of permanent magnet rotating devices provided on the rotating body are provided with a plurality of non-magnetic parts on their upward or downward end faces. It is considered that the annular rotating permanent magnets are concentrically arranged, and the magnetic support device is arranged at the fixed portion so as to face the rotating permanent magnets in the axial direction of the rotating body.

【0005】超伝導軸受装置の場合、磁気支持装置は超
伝導体を備えており、永久磁石回転装置の複数の環状の
回転永久磁石が、磁束分布が回転軸心に対して対称にな
り、かつ回転軸心のまわりの磁束分布が回転によって変
化しないように、同心状に配置され、磁気支持装置の超
伝導体が、回転永久磁石の磁束が所定量侵入する離隔位
置であってかつ回転体の回転によって侵入磁束の分布が
変化しない位置に、回転永久磁石と回転軸心方向に対向
するように配置されている。この超伝導軸受装置では、
回転永久磁石から発生する磁束を超伝導体の内部に侵入
させて拘束し、その結果、いわゆるピン止め力により、
固定部分に対して回転体をアキシアル方向およびラジア
ル方向に非接触状態で支持するようになっている。この
超伝導軸受装置は回転体をアキシアル方向にもラジアル
方向にも支持することができるが、とくに回転体の回転
開始時および回転停止時のラジアル方向の安定性を高め
るために、制御型ラジアル磁気軸受装置などの非接触型
軸受装置が併用されることがある。
In the case of a superconducting bearing device, the magnetic support device is provided with a superconductor, and the plurality of annular rotating permanent magnets of the permanent magnet rotating device have a magnetic flux distribution symmetrical with respect to the rotation axis and The magnetic conductors are arranged concentrically so that the magnetic flux distribution around the axis of rotation does not change due to rotation, and the superconductor of the magnetic support device is at a separated position where the magnetic flux of the rotating permanent magnets penetrates a predetermined amount and It is arranged at a position where the distribution of the magnetic flux penetrating does not change due to rotation so as to face the rotating permanent magnet in the direction of the rotation axis. In this superconducting bearing device,
The magnetic flux generated from the rotating permanent magnet is allowed to enter the inside of the superconductor to be restrained, and as a result, by the so-called pinning force,
The rotating body is supported in a non-contact state with respect to the fixed portion in the axial direction and the radial direction. This superconducting bearing device can support the rotating body in both axial and radial directions.However, in order to enhance the radial stability especially when the rotating body starts and stops rotating, the controlled radial magnetic A non-contact bearing device such as a bearing device may be used together.

【0006】非制御型磁気軸受装置の場合、磁気支持装
置は、回転永久磁石の下方に配置されて磁気反発力によ
り回転永久磁石を上向きに付勢する固定永久磁石、ある
いは回転永久磁石の上方に配置されて磁気吸引力により
回転永久磁石を上向きに付勢する固定永久磁石を備えて
おり、この磁気反発力あるいは磁気吸引力により固定部
分に対して回転体をアキシアル方向に非接触状態で支持
するようになっている。この磁気軸受装置は回転体をア
キシアル方向にだけ支持するものであるから、回転体を
ラジアル方向に支持するために、制御型ラジアル磁気軸
受装置などの非接触型軸受装置が併用される。
In the case of an uncontrolled magnetic bearing device, the magnetic support device is disposed below the rotating permanent magnet and is fixed above the rotating permanent magnet or a fixed permanent magnet that biases the rotating permanent magnet upward by a magnetic repulsive force. It is provided with a fixed permanent magnet that urges the rotating permanent magnet upward by a magnetic attraction force. The magnetic repulsive force or magnetic attraction force supports the rotating body in a non-contact state in the axial direction with respect to the fixed portion. It is like this. Since this magnetic bearing device supports the rotating body only in the axial direction, a non-contact type bearing device such as a control type radial magnetic bearing device is also used to support the rotating body in the radial direction.

【0007】上記のような永久磁石使用軸受装置の永久
磁石回転装置に設けられる環状の回転永久磁石には、内
周側と外周側に磁極が形成されてものと、アキシアル方
向の両端部に磁極が形成されたものとがある。内周側と
外周側に磁極が形成された永久磁石を使用する場合、ラ
ジアル方向に隣接する2つの永久磁石の間に強磁性体よ
りなるヨーク部材が配置され、永久磁石回転装置の端面
に形成された1つの凹所内に、複数の永久磁石の間にヨ
ーク部材が挟まれたものが組込まれる。すなわち、凹所
内の外周側の壁の内周部分に最も外側の永久磁石が圧入
され、その内側に、ヨーク部材と永久磁石が交互に圧入
される。アキシアル方向の両端部に磁極が形成された永
久磁石を使用する場合も、ラジアル方向に隣接する2つ
の永久磁石の間に非磁性体リングが配置され、上記同
様、永久磁石回転装置の端面に形成された1つの凹所内
に、複数の永久磁石の間に非磁性体リングが挟まれたも
のが組込まれる。
In the annular rotating permanent magnet provided in the permanent magnet rotating device of the bearing device using permanent magnets as described above, magnetic poles are formed on the inner peripheral side and the outer peripheral side, and magnetic poles are formed on both ends in the axial direction. Some are formed. When a permanent magnet having magnetic poles formed on the inner and outer circumferences is used, a yoke member made of a ferromagnetic material is arranged between two permanent magnets adjacent in the radial direction, and is formed on the end surface of the permanent magnet rotating device. The one in which the yoke member is sandwiched between the plurality of permanent magnets is incorporated into the one formed recess. That is, the outermost permanent magnet is press-fitted into the inner peripheral portion of the outer wall of the recess, and the yoke member and the permanent magnet are alternately press-fitted inside thereof. Even when a permanent magnet having magnetic poles formed at both ends in the axial direction is used, a non-magnetic ring is arranged between two permanent magnets adjacent in the radial direction, and is formed on the end surface of the permanent magnet rotating device as described above. A non-magnetic ring is sandwiched between a plurality of permanent magnets is incorporated in the one recessed portion.

【0008】[0008]

【発明が解決しようとする課題】上記の従来の永久磁石
使用軸受装置のように、永久磁石回転装置の端面に形成
された1つの凹所内に、内周側と外周側に磁極が形成さ
れた複数の環状の永久磁石の間にヨーク部材が挟まれた
ものが組込まれている場合、次のような問題がある。
As in the above conventional bearing device using a permanent magnet, magnetic poles are formed on the inner peripheral side and the outer peripheral side in one recess formed on the end surface of the permanent magnet rotating device. If a yoke member is sandwiched between a plurality of annular permanent magnets, the following problems occur.

【0009】外側の永久磁石あるいはヨーク部材につい
ては、遠心膨張しにくい永久磁石回転装置の壁に近いた
め、遠心膨張は小さいが、ある永久磁石あるいはヨーク
部材が遠心膨張すると、その内側のヨーク部材あるいは
永久磁石も遠心膨張しやすくなるため、内側の永久磁石
あるいはヨーク部材については、遠心膨張が大きくな
る。このため、内側の永久磁石あるいはヨーク部材につ
いては、その外側にあるヨーク部材あるいは永久磁石の
遠心膨張を考慮した大きなしめ代を設定しなければなら
ず、寸法管理が困難で、組立も困難である。また、内側
の永久磁石については、遠心膨張すなわちラジアル方向
の変位が大きいため、回転体が停止している初期位置決
め時と高速回転時とで永久磁石のラジアル方向の位置に
変化が生じる。永久磁石が環状の一体物であれば、その
内周側と外周側に磁極を形成することができないので、
永久磁石の内周側と外周側に磁極を形成する場合には、
永久磁石は円周方向に複数のセグメントに分割される。
この場合、遠心膨張により、永久磁石のセグメント間に
円周方向の隙間が生じることもある。このため、永久磁
石による磁束分布が初期位置決め時と高速回転時とで変
化したり、回転軸心の周囲の磁束分布が一様でなくなっ
たりする。また、とくに内側の永久磁石については、大
きな遠心膨張が生じるため、遠心破壊を起こすおそれが
ある。超伝導軸受の場合、回転軸心の周囲の磁束の分布
が一様で、磁束分布が回転によって変化しないことが重
要であり、上記のように回転軸心の周囲の磁束分布が変
化したり一様でなくなったりすると、超伝導軸受装置の
動作が不安定になる。
Since the outer permanent magnet or yoke member is close to the wall of the permanent magnet rotating device which is less likely to be centrifugally expanded, the centrifugal expansion is small, but when a certain permanent magnet or yoke member is centrifugally expanded, the inner yoke member or yoke member is Since the permanent magnets also easily undergo centrifugal expansion, the centrifugal expansion of the inner permanent magnet or the yoke member becomes large. Therefore, for the inner permanent magnet or the yoke member, it is necessary to set a large tightening margin in consideration of the centrifugal expansion of the outer yoke member or the permanent magnet, and it is difficult to manage the dimensions and the assembly is also difficult. . Further, since the inner permanent magnet has a large centrifugal expansion, that is, a large displacement in the radial direction, the radial position of the permanent magnet changes between the initial positioning when the rotor is stopped and the high speed rotation. If the permanent magnet is an annular one piece, it is not possible to form magnetic poles on the inner and outer peripheral sides,
When forming magnetic poles on the inner and outer circumferences of the permanent magnet,
The permanent magnet is divided into a plurality of segments in the circumferential direction.
In this case, centrifugal expansion may cause a circumferential gap between the segments of the permanent magnet. Therefore, the magnetic flux distribution due to the permanent magnet may change between the initial positioning and the high speed rotation, or the magnetic flux distribution around the rotation axis may not be uniform. In addition, especially for the inner permanent magnet, a large centrifugal expansion occurs, which may cause centrifugal destruction. In the case of superconducting bearings, it is important that the magnetic flux distribution around the rotating shaft center is uniform and that the magnetic flux distribution does not change due to rotation, and as described above, the magnetic flux distribution around the rotating shaft center may change. Otherwise, the operation of the superconducting bearing device becomes unstable.

【0010】アキシアル方向の両端部に磁極が形成され
ている場合は、永久磁石を環状の一体物にすることがで
きる。しかし、永久磁石回転装置の端面に形成された1
つの凹所内に、アキシアル方向の両端部に磁極が形成さ
れた複数の環状の永久磁石の間に非磁性体リングが挟ま
れたものが組込まれている場合にも、上記と同様の問題
がある。
When the magnetic poles are formed at both ends in the axial direction, the permanent magnet can be made into an annular one piece. However, 1 formed on the end face of the permanent magnet rotating device
The same problem as above also occurs when one recess contains a non-magnetic ring sandwiched between a plurality of annular permanent magnets with magnetic poles formed at both ends in the axial direction. .

【0011】この発明の目的は、上記の問題を解決し、
回転永久磁石の寸法管理および組立が容易で、永久磁石
の遠心膨張が小さく、永久磁石が遠心破壊を起こすおそ
れのない永久磁石使用軸受装置および永久磁石回転装置
を提供することにある。
The object of the present invention is to solve the above problems,
(EN) It is possible to provide a bearing device using a permanent magnet and a permanent magnet rotating device in which the dimensional control and assembly of the rotating permanent magnet are easy, the centrifugal expansion of the permanent magnet is small, and the permanent magnet does not cause centrifugal damage.

【0012】[0012]

【課題を解決するための手段】この発明による永久磁石
使用軸受装置は、垂直軸を中心に回転する回転体の永久
磁石回転装置に設けられた回転永久磁石と、固定部分に
設けられた磁気支持装置とで、磁気力により回転体を非
接触支持する装置であって、永久磁石回転装置の非磁性
体よりなる部分の軸方向端面に複数の環状の回転永久磁
石が同心状に配置され、回転体の軸心方向に回転永久磁
石と対向するように磁気支持装置が配置されている永久
磁石使用軸受装置において、永久磁石回転装置の軸方向
端面に複数の環状凹みぞが同心状に形成され、各凹みぞ
内に回転永久磁石が1つずつ圧入により取付けられてい
ることを特徴とするものである。
A bearing device using a permanent magnet according to the present invention comprises a rotating permanent magnet provided on a permanent magnet rotating device of a rotating body which rotates about a vertical axis, and a magnetic support provided on a fixed portion. A device for supporting a rotating body in a non-contact manner by a magnetic force, in which a plurality of annular rotating permanent magnets are concentrically arranged on the axial end face of a portion of the permanent magnet rotating device made of a non-magnetic member to rotate. In a bearing device using a permanent magnet in which a magnetic support device is arranged so as to face the rotating permanent magnet in the axial direction of the body, a plurality of annular grooves are concentrically formed on the axial end surface of the permanent magnet rotating device, One of the rotary permanent magnets is press-fitted into each of the grooves to be mounted.

【0013】環状の永久磁石には、環状の一体物よりな
る永久磁石と、円周方向に分割された複数のセグメント
が組合わされて環状をなす永久磁石の両方が含まれる。
The ring-shaped permanent magnet includes both a ring-shaped permanent magnet and a ring-shaped permanent magnet formed by combining a plurality of circumferentially divided segments.

【0014】たとえば、磁気支持装置が超伝導体を備え
ており、永久磁石回転装置の複数の環状の回転永久磁石
が、磁束分布が上記回転軸心に対して対称になり、かつ
上記回転軸心のまわりの磁束分布が回転によって変化し
ないように、同心状に配置され、磁気支持装置の超伝導
体が、回転永久磁石の磁束が所定量侵入する離隔位置で
あってかつ回転体の回転によって侵入磁束の分布が変化
しない位置に、回転永久磁石と上記回転軸心方向に対向
するように配置されている。
For example, the magnetic support device includes a superconductor, and the plurality of annular rotating permanent magnets of the permanent magnet rotating device have a magnetic flux distribution symmetrical with respect to the rotation axis and the rotation axis. Are arranged concentrically so that the magnetic flux distribution around the magnet does not change due to rotation, and the superconductor of the magnetic support device is in a separated position where the magnetic flux of the rotating permanent magnet penetrates by a predetermined amount and enters by the rotation of the rotor. It is arranged at a position where the distribution of magnetic flux does not change so as to face the rotating permanent magnet in the direction of the rotation axis.

【0015】たとえば、磁気支持装置が、永久磁石回転
装置の回転永久磁石を磁気反発力または磁気吸引力によ
り上向きに付勢する固定永久磁石を備えている。
For example, the magnetic support device includes a fixed permanent magnet that biases the rotating permanent magnet of the permanent magnet rotating device upward by magnetic repulsion or magnetic attraction.

【0016】たとえば、永久磁石回転装置の回転永久磁
石が、円板状の非磁性体製回転部材の軸方向端面に設け
られている。
For example, the rotating permanent magnet of the permanent magnet rotating device is provided on the axial end surface of the disk-shaped rotating member made of a non-magnetic material.

【0017】たとえば、非磁性体製回転部材の外側に環
状の複合繊維強化プラスチック製補強部材が一体状に固
定されている。
For example, an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outside of the non-magnetic rotating member.

【0018】この発明による永久磁石回転装置は、円板
状の非磁性体製回転部材と、回転部材の軸方向端面に同
心状に設けられた複数の回転永久磁石とを備えており、
回転部材の軸方向端面に複数の環状凹みぞが同心状に形
成され、各凹みぞ内に回転永久磁石が1つずつ圧入によ
り取付けられていることを特徴とするものである。
The permanent magnet rotating device according to the present invention comprises a disk-shaped rotating member made of a non-magnetic material, and a plurality of rotating permanent magnets concentrically provided on the axial end surface of the rotating member.
A plurality of annular grooves are concentrically formed on the end face in the axial direction of the rotating member, and one rotating permanent magnet is fitted into each groove by press fitting.

【0019】たとえば、非磁性体製回転部材の外側に環
状の複合繊維強化プラスチック製補強部材が一体状に固
定されている。
For example, an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outside of the non-magnetic rotating member.

【0020】[0020]

【作用】各回転永久磁石は、たとえば、永久磁石回転装
置の各凹みぞ内の外周側の壁の内周部分に圧入される。
永久磁石回転装置の凹みぞの壁の部分の遠心膨張は小さ
いので、しめ代を小さくすることができ、回転永久磁石
の寸法管理および組立が容易で、永久磁石の遠心膨張も
小さく、永久磁石が遠心破壊を起こすこともない。そし
て、永久磁石の遠心膨張が小さいため、内周側と外周側
に磁極が形成された円周方向に複数のセグメントに分割
された回転永久磁石の場合でも、永久磁石のラジアル方
向の変位が小さく、また、セグメント間に円周方向の隙
間が生じることもない。したがって、永久磁石による磁
束分布が初期位置決め時と高速回転時とで変化したり、
回転軸心の周囲の磁束分布が一様でなくなったりするこ
とがなく、超伝導軸受装置に適用した場合も動作が安定
している。
The rotating permanent magnets are, for example, press-fitted into the inner peripheral portion of the wall on the outer peripheral side in each groove of the permanent magnet rotating device.
Since the centrifugal expansion of the wall of the groove of the permanent magnet rotating device is small, it is possible to reduce the tightening margin, the size and assembly of the rotating permanent magnet are easy, and the centrifugal expansion of the permanent magnet is also small. It does not cause centrifugal breakdown. Further, since the centrifugal expansion of the permanent magnet is small, even in the case of the rotating permanent magnet divided into a plurality of segments in the circumferential direction in which magnetic poles are formed on the inner peripheral side and the outer peripheral side, the displacement of the permanent magnet in the radial direction is small. Also, no circumferential gap is created between the segments. Therefore, the magnetic flux distribution due to the permanent magnet changes between initial positioning and high-speed rotation,
The magnetic flux distribution around the axis of rotation does not become uneven, and the operation is stable when applied to a superconducting bearing device.

【0021】内周側と外周側に磁極が形成された回転永
久磁石とこれらの間に配置されるヨーク部材を使用する
場合、ヨーク部材は、たとえば、永久磁石回転装置の凹
みぞ内の回転永久磁石より内周側の壁の外周部分に圧入
される。永久磁石回転装置の凹みぞの壁の部分の遠心膨
張は小さいので、しめ代を小さくすることができ、ヨー
ク部材の寸法管理および組立も容易である。ヨーク部材
は、同じ凹みぞ内の回転永久磁石の内側に圧入されても
よい。このようにしても、ヨーク部材の寸法管理につい
ては、その外側にある1つの回転永久磁石の小さい遠心
膨張だけを考慮すればよいので、やはりしめ代を小さく
することができ、寸法管理および組立が容易である。
When a rotating permanent magnet having magnetic poles formed on the inner and outer peripheral sides and a yoke member arranged between them are used, the yoke member is, for example, a rotating permanent magnet in a groove of a permanent magnet rotating device. It is pressed into the outer peripheral portion of the wall on the inner peripheral side of the magnet. Since the centrifugal expansion of the wall portion of the groove of the permanent magnet rotating device is small, the tightening margin can be reduced, and the dimensional control and assembly of the yoke member are easy. The yoke member may be press-fitted inside the rotating permanent magnet in the same groove. Even in this case, regarding the dimensional control of the yoke member, only a small centrifugal expansion of one rotating permanent magnet on the outer side thereof needs to be taken into consideration, so that the tightening margin can be reduced and the dimensional control and assembly can be performed. It's easy.

【0022】アキシアル方向の両端部に磁極が形成され
た回転永久磁石を使用する場合、永久磁石回転装置の各
凹みぞ内に1つの永久磁石だけを圧入すればよい。この
ようにすると、ラジアル方向に隣接する2つの回転永久
磁石の間に永久磁石回転装置の凹みぞの非磁性体よりな
る仕切り壁の部分が存在するので、別に非磁性体リング
を組込む必要がない。
When using a rotary permanent magnet having magnetic poles formed at both ends in the axial direction, only one permanent magnet needs to be press-fitted into each groove of the permanent magnet rotating device. With this configuration, since the partition wall portion made of the non-magnetic material of the groove of the permanent magnet rotating device exists between the two rotating permanent magnets that are adjacent in the radial direction, it is not necessary to separately install the non-magnetic material ring. .

【0023】永久磁石回転装置の非磁性体製回転部材の
外側に環状の複合繊維強化プラスチック製補強部材が一
体に固定されている場合、補強部材により、非磁性体製
回転部材の遠心膨張が小さく抑えられ、その結果、回転
永久磁石の遠心膨張がさらに小さく抑えられる。
When the annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outside of the non-magnetic rotating member of the permanent magnet rotating device, the reinforcing member reduces the centrifugal expansion of the non-magnetic rotating member. As a result, centrifugal expansion of the rotating permanent magnet is further suppressed.

【0024】[0024]

【実施例】以下、図面を参照して、この発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1〜図3は、この発明を電力貯蔵装置に
おけるフライホイール装置の超伝導軸受装置に適用した
第1実施例を示している。
1 to 3 show a first embodiment in which the present invention is applied to a superconducting bearing device of a flywheel device in an electric power storage device.

【0026】図1はフライホイール装置の全体構成を概
略的に示し、図2および図3はその超伝導軸受装置の部
分を詳細に示している。
FIG. 1 schematically shows the overall construction of the flywheel device, and FIGS. 2 and 3 show in detail the portion of the superconducting bearing device.

【0027】フライホイール装置は、垂直な回転体(1)
、回転体(1) をアキシアル方向(上下方向)およびラ
ジアル方向に支持するための超伝導軸受装置(2) 、起動
時および運転停止時に回転体(1) をラジアル方向に非接
触支持するための上下2組の制御型ラジアル磁気軸受装
置(3)(4)、起動時に回転体(1) の位置決めを行うための
初期位置決め装置(5) 、ならびに発電電動機(6) を備え
ており、これらが、複数の部材よりなる固定ハウジング
(固定部分)(7) で囲まれた真空チャンバ(8) 内に配置
されている。
The flywheel device comprises a vertical rotating body (1)
, A superconducting bearing device (2) for supporting the rotating body (1) in the axial direction (vertical direction) and the radial direction, for supporting the rotating body (1) in the radial direction in a non-contact manner at start-up and operation stop It is equipped with two sets of upper and lower control type radial magnetic bearing devices (3) (4), an initial positioning device (5) for positioning the rotating body (1) at startup, and a generator motor (6). , Is arranged in a vacuum chamber (8) surrounded by a fixed housing (fixed portion) (7) composed of a plurality of members.

【0028】回転体(1) は、垂直な回転軸(9) の高さの
中間部に円板状のフライホイール(10)と永久磁石回転装
置(11)が固定されたものであり、ハウジング(7) 内の中
心に若干の上下動ができるように配置されている。フラ
イホイール(10)はたとえばアルミニウム合金により円板
状に形成されており、その外側にCFRP(複合繊維強
化プラスチック)製の環状の補強部材(12)が一体状に固
定されている。
The rotating body (1) has a disk-shaped flywheel (10) and a permanent magnet rotating device (11) fixed to the middle of the vertical axis of rotation (9) and has a housing. (7) It is placed in the center so that it can move up and down slightly. The flywheel (10) is made of, for example, an aluminum alloy in a disk shape, and an annular reinforcing member (12) made of CFRP (composite fiber reinforced plastic) is integrally fixed to the outside thereof.

【0029】超伝導軸受装置(2) は、回転体(1) の永久
磁石回転装置(11)と、その下面に対向するようにハウジ
ング(7) に固定状に設けられた磁気支持装置(13)とから
構成されている。
The superconducting bearing device (2) comprises a permanent magnet rotating device (11) of the rotating body (1) and a magnetic support device (13) fixedly provided in the housing (7) so as to face the lower surface thereof. ) And.

【0030】永久磁石回転装置(11)は、フライホイール
(10)の下端面に密着するように回転軸(9) に固定された
円板状の非磁性体製回転部材(14)と、回転部材(14)の下
端面に同心状に設けられた複数の環状の回転永久磁石(1
5)とを備えている。回転部材(14)はたとえばアルミニウ
ム合金、非磁性ステンレス鋼などの非磁性体で円板状に
形成され、その外側に環状のCFRP製補強部材(16)が
一体状に固定されている。回転部材(14)の下端面に、円
形の仕切り壁(17)で仕切られた複数の環状凹みぞ(18)が
同心状に形成されている。各凹みぞ(18)内に、環状の回
転永久磁石(15)と強磁性体よりなる環状のヨーク部材(1
9)とが、永久磁石(15)が外側になるようにはめられて固
定されている。永久磁石(15)の外周部分は、凹みぞ(18)
の外周側の壁あるいは仕切り壁(17)の内周部分に圧入さ
れている。ヨーク部材(19)の内周部分は、凹みぞ(18)の
内周側の仕切り壁(17)あるいは壁の外周部分に圧入され
ている。そして、同一の凹みぞ(18)内の永久磁石(15)の
内周部分とヨーク部材(19)の外周部分とはゆるくはめ合
わされ、これらの間にはほとんど隙間がないかあるいは
わずかな隙間があけられている。各永久磁石(15)は円周
方向に複数のセグメント(15a) に等分されており、内周
側と外周側に磁極が形成されている。そして、ラジアル
方向に隣接する2つの永久磁石(15)の磁極が互いに同じ
極性になるように、永久磁石(15)が配置されている。す
なわち、内側から1、3、5番目の永久磁石(15)は内周
側がS極で外周側がN極となり、2、4番目の永久磁石
(15)は内周側がN極で外周側がS極となっている。な
お、永久磁石(15)が円周方向に複数のセグメント(15a)
に分割されているのは、永久磁石が環状の一体物であれ
ばその内周部と外周部に磁極を形成することができない
からである。さらに、隣り合う環状の永久磁石(15)の分
割面は重ならないように位相がずらされている。これ
は、分割面での磁束の分布状態のむらを極力抑えるため
である。永久磁石(15)は環状をなし、回転体(1) の回転
軸心(A) に対して同心状に配置されているので、永久磁
石(15)の磁束分布が回転軸心(A) に対して対称になり、
かつ回転軸心(A) の周囲の磁束分布が回転によって変化
しないようになっている。
The permanent magnet rotating device (11) is a flywheel.
A disc-shaped non-magnetic rotating member (14) fixed to the rotating shaft (9) so as to be in close contact with the lower end surface of (10), and concentrically provided on the lower end surface of the rotating member (14). Multiple annular rotating permanent magnets (1
5) and are provided. The rotating member (14) is made of a non-magnetic material such as aluminum alloy or non-magnetic stainless steel in a disc shape, and an annular CFRP reinforcing member (16) is integrally fixed to the outside thereof. A plurality of annular concave grooves (18) partitioned by a circular partition wall (17) are concentrically formed on the lower end surface of the rotating member (14). An annular yoke member (1) composed of an annular rotating permanent magnet (15) and a ferromagnetic material is provided in each groove (18).
9) and are fixed so that the permanent magnet (15) is fitted outside. The outer circumference of the permanent magnet (15) has a groove (18).
It is press-fitted into the outer peripheral side wall or the inner peripheral portion of the partition wall (17). The inner peripheral portion of the yoke member (19) is press-fitted into the partition wall (17) on the inner peripheral side of the groove (18) or the outer peripheral portion of the wall. Then, the inner peripheral portion of the permanent magnet (15) and the outer peripheral portion of the yoke member (19) in the same groove (18) are loosely fitted to each other, and there is little or no gap between them. It is open. Each permanent magnet (15) is equally divided into a plurality of segments (15a) in the circumferential direction, and magnetic poles are formed on the inner peripheral side and the outer peripheral side. The permanent magnets (15) are arranged so that the magnetic poles of the two permanent magnets (15) adjacent in the radial direction have the same polarity. That is, the 1st, 3rd, and 5th permanent magnets (15) from the inside have the S pole on the inner circumference side and the N pole on the outer circumference side, and the 2nd and 4th permanent magnets.
(15) has an N pole on the inner peripheral side and an S pole on the outer peripheral side. The permanent magnet (15) has a plurality of segments (15a) in the circumferential direction.
The reason why the permanent magnet is divided into two is that if the permanent magnet is an annular one piece, magnetic poles cannot be formed on the inner peripheral portion and the outer peripheral portion thereof. Furthermore, the phases of the divided surfaces of the adjacent annular permanent magnets (15) are shifted so that they do not overlap. This is to suppress the unevenness of the distribution state of the magnetic flux on the split surface as much as possible. Since the permanent magnet (15) has an annular shape and is concentrically arranged with respect to the rotation axis (A) of the rotating body (1), the magnetic flux distribution of the permanent magnet (15) is at the rotation axis (A). To be symmetrical with respect to
Moreover, the magnetic flux distribution around the rotation axis (A) does not change due to rotation.

【0031】磁気支持装置(13)は、永久磁石回転装置(1
1)の下面に所定の間隔をおいて対向するようにハウジン
グ(7) に固定された環状の冷却ケース(20)、および超伝
導体(21)を備えている。冷却ケース(20)は、たとえば銅
合金、非磁性ステンレス鋼などの非磁性体からなる。冷
却ケース(20)内の空間に、環状の超伝導体(21)が固定状
に配置されている。図示は省略したが、冷却ケース(20)
内の空間は冷却流体供給管および同排出管を介して冷却
装置に接続されており、この冷却装置により、たとえば
液体窒素などの冷却流体が供給管、冷却ケース(20)内の
空間および排出管を介して循環させられ、これによって
超伝導体(21)が冷却されるようになっている。超伝導体
(21)は第2種超伝導体であり、イットリウム系高温超伝
導体、たとえばYBaCu7-x からなるバルクの
内部に常伝導体(YBaCu)を均一に混在させ
たものからなり、第2種超伝導状態が出現する温度環境
下において、永久磁石(15)から発せられる磁束を内部に
拘束する性質を持つものである。そして、超伝導体(21)
は、永久磁石(15)の磁束が所定量侵入する離隔位置であ
ってかつ回転体(1) の回転によって侵入磁束の分布が変
化しない位置に、永久磁石(15)と対向するように配置さ
れている。
The magnetic support device (13) is a permanent magnet rotating device (1
An annular cooling case (20) fixed to the housing (7) and a superconductor (21) are provided on the lower surface of 1) so as to face each other at a predetermined interval. The cooling case (20) is made of a non-magnetic material such as copper alloy or non-magnetic stainless steel. An annular superconductor (21) is fixedly arranged in the space inside the cooling case (20). Although not shown, the cooling case (20)
The space inside is connected to the cooling device via the cooling fluid supply pipe and the discharge pipe.By this cooling device, the cooling fluid such as liquid nitrogen is supplied to the space inside the cooling case (20) and the discharge pipe. Through which the superconductor (21) is cooled. Superconductor
(21) is a type II superconductor, in which a normal conductor (Y 2 Ba 1 Cu 1 ) is uniformly mixed in the bulk of a yttrium-based high-temperature superconductor, for example, YBa 2 Cu 3 O 7-x. It has the property of internally restraining the magnetic flux emitted from the permanent magnet (15) in a temperature environment where the second-class superconducting state appears. And superconductors (21)
Is placed so as to face the permanent magnet (15) at a position where the magnetic flux of the permanent magnet (15) enters a predetermined amount and at a position where the distribution of the invading magnetic flux does not change due to the rotation of the rotating body (1). ing.

【0032】各ラジアル磁気軸受装置(3)(4)は、詳細な
図示は省略したが、回転体(1) を互いに直交する2つの
ラジアル方向(X軸およびY軸方向)の両側から吸引し
て同方向の回転体(1) の位置を制御するための電磁石、
ならびに回転体(1) のX軸およびY軸方向の変位を検出
するための変位センサを備えており、これらが図示しな
い磁気軸受制御装置に接続されている。そして、磁気軸
受制御装置により、変位センサの出力に基づいて電磁石
の電流値すなわち吸引力が制御され、その結果、回転体
(1) のラジアル方向の位置が制御されるようになってい
る。なお、ラジアル磁気軸受装置およびその制御装置自
体は公知のものであるから、詳細な説明は省略する。
Although not shown in detail in the radial magnetic bearing devices (3) and (4), the rotor (1) is sucked from both sides in two radial directions (X-axis and Y-axis directions) orthogonal to each other. An electromagnet for controlling the position of the rotating body (1) in the same direction,
Further, a displacement sensor for detecting the displacement of the rotating body (1) in the X-axis and Y-axis directions is provided, and these are connected to a magnetic bearing control device (not shown). Then, the magnetic bearing control device controls the current value of the electromagnet, that is, the attraction force, based on the output of the displacement sensor.
The radial position of (1) is controlled. Since the radial magnetic bearing device and its control device are publicly known, detailed description thereof will be omitted.

【0033】発電電動機(6) は、詳細な図示は省略した
が、回転体(1) に取付けられたロータと、その周囲のハ
ウジング(7) に固定状に設けられたステータとからな
る。この電動機(6) は、電力貯蔵時には電動機として作
動して回転体(1) を高速回転させ、電力取出し時には発
電機として作動するようになっている。
Although not shown in detail, the generator-motor (6) is composed of a rotor mounted on the rotating body (1) and a stator fixedly mounted on the housing (7) around the rotor. The electric motor (6) operates as an electric motor when storing electric power to rotate the rotating body (1) at a high speed, and operates as a generator when extracting electric power.

【0034】初期位置決め装置(5) は、詳細な図示は省
略したが、回転体(1) の下方のハウジング(7) の部分を
昇降する昇降体を備え、回転体(1) を所定の位置まで持
上げるようになっている。
Although not shown in detail, the initial positioning device (5) is provided with an elevating body for elevating and lowering a portion of the housing (7) below the rotating body (1), and the rotating body (1) is set at a predetermined position. It is designed to be lifted up to.

【0035】ハウジング(7) の上部および下部に、非常
時に回転体(1) の上下両端寄りの部分を支持する転がり
軸受からなるタッチダウン軸受(22)(23)が設けられてい
る。
Touchdown bearings (22) and (23), which are rolling bearings, are provided on the upper and lower portions of the housing (7) to support the upper and lower end portions of the rotating body (1) in an emergency.

【0036】回転体(1) の運転を開始する際には、ま
ず、真空チャンバ(8) 内を真空状態にし、初期位置決め
装置(5) により、停止状態の回転体(1) を所定の位置ま
で持上げて、回転体(1) のアキシアル方向の初期位置決
めを行う。また、上下の磁気軸受装置(3)(4)を駆動し
て、回転体(1) のラジアル方向の初期位置決めを行う。
そして、冷却装置により超伝導軸受装置(2) の冷却ケー
ス(20)内に冷却流体を循環させ、超伝導体(21)を冷却し
て第2種超伝導状態に保持する。すると、回転永久磁石
(15)から発せられる磁束の多くが超伝導体(21)の内部に
侵入して拘束されることになる(ピンニング現象)。こ
こで、超伝導体(21)はその内部に常伝導体粒子が均一に
混在されているため、超伝導体(21)内部への侵入磁束の
分布が一定となり、そのため、超伝導体(21)に対して回
転永久磁石(15)とともに回転体(1) が拘束される。した
がって、回転体(1) は、きわめて安定した状態で、アキ
シアル方向およびラジアル方向に支持されることにな
る。このとき、超伝導体(14)に侵入した磁束は、磁束分
布が回転軸心(A) に対して均一で不変である限り、回転
を妨げる抵抗とはならない。このように超伝導軸受装置
(2) および磁気軸受装置(3)(4)によって回転体(1) が支
持されたならば、初期位置決め装置(5) による回転体
(1) の支持をなくす。初期位置決め装置(5) による支持
がなくなると、回転体(1) は自重により若干下降する
が、自重による下向きの力と超伝導軸受装置(2)のアキ
シアル方向の支持力とが釣合う位置に停止する。これに
より、回転体(1)は、超伝導軸受装置(2) と磁気軸受装
置(3)(4)とで非接触支持されたことになる。回転体(1)
が非接触支持されたならば、電動機(6) を起動して、回
転体(1) を回転させ、運転回転領域まで加速する。回転
体(1) が運転回転領域に達するまでの間に共振が発生し
ても、磁気軸受装置(3)(4)によりふれの発生が防止され
る。回転体(1) が運転回転領域に達したならば、所定の
回転数に保持され、磁気軸受装置(3)(4)の駆動が停止さ
せられて、磁気軸受装置(3)(4)によるラジアル方向の支
持がなくなる。磁気軸受装置(3)(4)によるラジアル方向
の支持がなくなっても、回転体(1) は、超伝導軸受装置
(2) の超伝導体(21)に侵入した磁束のピン止め力によっ
てアキシアル方向およびラジアル方向に支持され、安定
した回転を継続する。そして、回転体(1) が運転回転領
域で回転している間に、電気エネルギが回転運動エネル
ギに変換されてフライホイール(10)に貯蔵される。
When starting the operation of the rotating body (1), first, the vacuum chamber (8) is evacuated, and the stopped rotating body (1) is moved to a predetermined position by the initial positioning device (5). Lift it up to the initial position of the rotating body (1) in the axial direction. Further, the upper and lower magnetic bearing devices (3) and (4) are driven to perform the initial positioning of the rotating body (1) in the radial direction.
Then, the cooling fluid is circulated in the cooling case (20) of the superconducting bearing device (2) by the cooling device to cool the superconductor (21) and maintain it in the second-class superconducting state. Then, the rotating permanent magnet
Most of the magnetic flux generated from (15) enters the inside of the superconductor (21) and is restricted (pinning phenomenon). Here, since the normal conductor particles are uniformly mixed in the superconductor (21), the distribution of the magnetic flux penetrating into the superconductor (21) becomes constant, and therefore the superconductor (21 ), The rotating body (1) is restrained together with the rotating permanent magnet (15). Therefore, the rotating body (1) is supported in the axial direction and the radial direction in an extremely stable state. At this time, the magnetic flux penetrating the superconductor (14) does not become a resistance that hinders rotation as long as the magnetic flux distribution is uniform and unchanged with respect to the rotation axis (A). Thus, the superconducting bearing device
If the rotor (1) is supported by (2) and the magnetic bearing device (3) (4), the rotor by the initial positioning device (5)
Eliminate the support of (1). When the initial positioning device (5) loses the support, the rotating body (1) slightly descends due to its own weight, but the downward force due to its own weight is balanced with the axial support force of the superconducting bearing device (2). Stop. As a result, the rotating body (1) is supported by the superconducting bearing device (2) and the magnetic bearing devices (3) and (4) in a non-contact manner. Rotating body (1)
If is supported in a non-contact manner, the electric motor (6) is started, the rotating body (1) is rotated, and the rotating body is accelerated to the operating rotation range. Even if resonance occurs before the rotating body (1) reaches the operating rotation range, the magnetic bearing devices (3) and (4) prevent the occurrence of runout. When the rotating body (1) reaches the operating rotation range, it is maintained at a predetermined rotation speed, the drive of the magnetic bearing device (3) (4) is stopped, and the magnetic bearing device (3) (4) There is no support in the radial direction. Even if the radial bearing by the magnetic bearing device (3) (4) is lost, the rotating body (1) still has the superconducting bearing device.
It is supported in the axial and radial directions by the pinning force of the magnetic flux penetrating the superconductor (21) in (2), and continues stable rotation. Then, while the rotating body (1) is rotating in the operating rotation region, electric energy is converted into rotational kinetic energy and stored in the flywheel (10).

【0037】回転体(1) が運転回転領域で回転している
ときに停電が発生した場合、発電電動機(6) は停止する
が、フライホイール(10)により、回転体(1) はわずかに
減速するものの継続して回転させられる。その結果、発
電電動機(6) が発電機として作動し、フライホイール(1
0)に貯蔵されていた回転運動エネルギが電気エネルギと
して取出され、図示しない蓄電池に蓄えられる。蓄電池
に蓄えられた電力は、図示しない外部の電力消費財およ
び超伝導軸受装置(2) の冷却装置に送られ、電力消費財
および超伝導軸受装置(2) が作動を継続する。蓄電池に
蓄えられた電力の一部は磁気軸受制御装置に送られ、こ
れにより磁気軸受装置(3)(4)が駆動される。そして、フ
ライホイール(10)に蓄えられていた回転運動エネルギが
減少して回転体(1) が停止するまでの間、回転体(1) は
超伝導軸受装置(2) および磁気軸受装置(3)(4)によって
非接触状態で支持され、共振点で生じる回転体(1) のふ
れは、上記の起動時と同様に、磁気軸受装置(3)(4)によ
って減少させられる。
When a power failure occurs while the rotating body (1) is rotating in the operating rotation range, the generator motor (6) is stopped, but the flywheel (10) causes the rotating body (1) to slightly move. Although it slows down, it is continuously rotated. As a result, the generator motor (6) operates as a generator and the flywheel (1
The rotational kinetic energy stored in 0) is taken out as electric energy and stored in a storage battery (not shown). The electric power stored in the storage battery is sent to the external power consumer goods and the cooling device of the superconducting bearing device (2) (not shown), and the power consumer goods and the superconducting bearing device (2) continue to operate. Part of the electric power stored in the storage battery is sent to the magnetic bearing control device, which drives the magnetic bearing devices (3) and (4). Then, until the rotational kinetic energy stored in the flywheel (10) decreases and the rotating body (1) stops, the rotating body (1) keeps the superconducting bearing device (2) and the magnetic bearing device (3). ) (4) is supported by the magnetic bearing device (3) (4) in a non-contact state, and the runout of the rotating body (1) generated at the resonance point is reduced by the magnetic bearing devices (3) (4) as in the case of the above-mentioned startup.

【0038】停電時以外でも、発電電動機(6) を停止さ
せると、停電の場合と同様に、フライホイール(10)に貯
蔵されていた回転運動エネルギを電気エネルギとして取
出すことができる。
When the generator motor (6) is stopped even during a power failure, the rotational kinetic energy stored in the flywheel (10) can be taken out as electrical energy, as in the case of a power failure.

【0039】上記の超伝導軸受装置(2) では、永久磁石
回転装置(11)がラジアル方向に同心状に配置された複数
の環状の永久磁石(15)を備え、各永久磁石(15)の内周側
と外周側に磁極が形成され、ラジアル方向に隣接する2
つの永久磁石(15)の磁極が互いに同じ磁極であり、しか
もラジアル方向に隣接する2つの永久磁石(15)の間に強
磁性体よりなるヨーク部材(19)が挟まれているので、ヨ
ーク部材(19)の超伝導体(21)を向いた部分に磁束が局所
的に集中し、その結果、超伝導体(21)に侵入する磁束が
多くなって、超伝導軸受装置(2) の負荷容量および剛性
が向上する。
In the above superconducting bearing device (2), the permanent magnet rotating device (11) is provided with a plurality of annular permanent magnets (15) arranged concentrically in the radial direction. Magnetic poles are formed on the inner circumference side and the outer circumference side, and are adjacent in the radial direction.
Since the magnetic poles of the two permanent magnets (15) are the same as each other, and the yoke member (19) made of a ferromagnetic material is sandwiched between the two permanent magnets (15) adjacent in the radial direction, the yoke member The magnetic flux is locally concentrated in the part of (19) facing the superconductor (21), and as a result, the magnetic flux entering the superconductor (21) increases and the load on the superconducting bearing device (2) increases. Capacity and rigidity are improved.

【0040】しかしながら、回転永久磁石(15)は、アキ
シアル方向の両端部に磁極が形成されたものであっても
よい。その場合は、永久磁石(15)を環状の一体物にする
ことができる。
However, the rotary permanent magnet (15) may have magnetic poles formed at both ends in the axial direction. In that case, the permanent magnet (15) can be made into an annular one piece.

【0041】また、上記の超伝導軸受装置(2) では、永
久磁石回転装置(11)において、非磁性体製回転部材(14)
の端面の複数の同心状の環状凹みぞ(18)のそれぞれに、
環状の永久磁石(15)とヨーク部材(19)が1組ずつ組込ま
れているので、永久磁石(15)およびヨーク部材(19)の寸
法管理および組立が容易で、高速回転時の遠心力による
永久磁石(15)の変形が小さく、したがって、超伝導軸受
装置の動作が安定しており、しかも永久磁石(15)が遠心
破壊を起こすこともない。すなわち、各永久磁石(15)が
遠心膨張の小さい回転部材(14)の壁あるいは仕切り壁(1
7)の内周部分にそれぞれ圧入されているので、しめ代を
小さくすることができ、永久磁石(15)の寸法管理および
組立が容易で、永久磁石(15)の遠心膨張も小さく、永久
磁石(15)が遠心破壊を起こすこともない。そして、永久
磁石(15)の遠心膨張が小さいため、永久磁石(15)が円周
方向に複数のセグメント(15a) に分割されていても、永
久磁石(15)のラジアル方向の変位が小さく、また、セグ
メント(15a) 間に円周方向の隙間が生じることもない。
したがって、永久磁石(15)による磁束分布が初期位置決
め時と高速回転時とで変化したり、回転軸心の周囲の磁
束分布が一様でなくなったりすることがなく、超伝導軸
受装置(2) の動作が安定している。さらに、各ヨーク部
材(19)が遠心膨張の小さい回転部材(14)の壁あるいは仕
切り壁(17)の外周部分にそれぞれ圧入されているので、
しめ代を小さくすることができ、ヨーク部材(19)の寸法
管理および組立も容易である。なお、ヨーク部材(19)
は、同じ凹みぞ(18)内の永久磁石(15)の内側に圧入され
てもよい。このようにしても、ヨーク部材(19)の寸法管
理については、その外側にある1つの永久磁石(15)の小
さい遠心膨張だけを考慮すればよいので、やはりしめ代
を小さくすることができ、寸法管理が容易である。
In the above superconducting bearing device (2), in the permanent magnet rotating device (11), the non-magnetic rotating member (14) is used.
In each of the plurality of concentric annular groove (18) on the end face of
Since the ring-shaped permanent magnet (15) and the yoke member (19) are assembled one by one, the dimensional control and assembly of the permanent magnet (15) and the yoke member (19) are easy, and due to centrifugal force during high-speed rotation. The deformation of the permanent magnet (15) is small, and therefore the operation of the superconducting bearing device is stable, and the permanent magnet (15) does not undergo centrifugal breakdown. That is, each permanent magnet (15) has a wall or partition wall (1) of the rotating member (14) with a small centrifugal expansion.
Since they are press-fitted into the inner peripheral part of 7), the tightening margin can be reduced, the permanent magnet (15) can be easily dimensioned and assembled, and the permanent magnet (15) also has a small centrifugal expansion, resulting in a permanent magnet. (15) does not cause centrifugal breakdown. And since the centrifugal expansion of the permanent magnet (15) is small, even if the permanent magnet (15) is circumferentially divided into a plurality of segments (15a), the radial displacement of the permanent magnet (15) is small, Moreover, no circumferential gap is formed between the segments (15a).
Therefore, the magnetic flux distribution due to the permanent magnet (15) does not change between initial positioning and high-speed rotation, and the magnetic flux distribution around the rotation axis does not become uneven, and the superconducting bearing device (2) The operation is stable. Furthermore, since each yoke member (19) is press-fitted into the outer peripheral portion of the wall or partition wall (17) of the rotating member (14) with small centrifugal expansion,
The tightening margin can be reduced, and the dimensional control and assembly of the yoke member (19) are easy. The yoke member (19)
May be press-fitted inside the permanent magnet (15) in the same recess (18). Even in this case, for the dimensional control of the yoke member (19), only the small centrifugal expansion of the one permanent magnet (15) on the outer side of the yoke member (19) needs to be taken into consideration, so that the tightening allowance can be reduced. Easy size control.

【0042】永久磁石回転装置(11)の非磁性体回転部材
(14)の外側に固定されている補強部材(16)を構成するC
FRPは、軽量でヤング率が大きい。そして、軽量であ
ることより、高速回転時に補強部材(16)に作用する遠心
力が小さく、しかもヤング率が大きいことより、遠心力
による補強部材(16)の変形(遠心膨張)も小さい。この
ため、補強部材(16)の内側にはめられている回転部材(1
4)の遠心膨張も小さく抑えられ、その結果、回転永久磁
石(15)の遠心膨張がさらに小さく抑えられる。同様に、
フライホイール(10)の外側に固定されたCFRP製の補
強部材(12)により、フライホイール(10)の遠心膨張がお
よび遠心破壊が防止される。
Non-magnetic rotating member of permanent magnet rotating device (11)
C constituting the reinforcing member (16) fixed to the outside of (14)
FRP is lightweight and has a large Young's modulus. Since it is lightweight, the centrifugal force acting on the reinforcing member (16) during high-speed rotation is small, and since the Young's modulus is large, deformation (centrifugal expansion) of the reinforcing member (16) due to centrifugal force is small. Therefore, the rotary member (1) fitted inside the reinforcing member (16)
The centrifugal expansion of 4) is also suppressed to be small, and as a result, the centrifugal expansion of the rotating permanent magnet (15) is further suppressed. Similarly,
The CFRP reinforcement member (12) fixed to the outside of the flywheel (10) prevents centrifugal expansion and centrifugal breakdown of the flywheel (10).

【0043】上記実施例では、永久磁石回転装置(11)が
上方に、磁気支持装置(13)が下方に配置されているが、
これらの上下関係を逆様にして、磁気支持装置が上方
に、永久磁石回転装置が下方に配置されることもある。
In the above embodiment, the permanent magnet rotating device (11) is arranged above and the magnetic supporting device (13) is arranged below.
The magnetic support device may be arranged on the upper side and the permanent magnet rotating device may be arranged on the lower side by reversing the vertical relationship.

【0044】図4は、この発明を電力貯蔵装置における
フライホイール装置の非制御型磁気軸受装置に適用した
第2実施例を示している。
FIG. 4 shows a second embodiment in which the present invention is applied to an uncontrolled magnetic bearing device of a flywheel device in an electric power storage device.

【0045】図4には、フライホイール装置のうちの非
制御型磁気軸受装置の部分だけが示されている。第2実
施例のフライホイール装置の全体構成は、磁気支持装置
として超伝導軸受装置のかわりに非制御型磁気軸受装置
が用いられている点、初期位置決め装置が設けられてい
ない点を除いて、第1実施例のフライホイール装置とほ
ぼ同様であり、同じ部分には同一の符号を付している。
また、第2実施例の説明において、図4に示されていな
い部分であって第1実施例と同じ部分については、図1
の図面参照符号を使用して説明する。
FIG. 4 shows only the portion of the uncontrolled magnetic bearing device of the flywheel device. The overall configuration of the flywheel device according to the second embodiment is different from that of the non-controlled magnetic bearing device in place of the superconducting bearing device as the magnetic support device, and that the initial positioning device is not provided. It is almost the same as the flywheel device of the first embodiment, and the same parts are designated by the same reference numerals.
Further, in the description of the second embodiment, the portions that are not shown in FIG. 4 and are the same as those in the first embodiment will be described with reference to FIG.
Will be described with reference to the drawings.

【0046】非制御型磁気軸受装置(25)は、回転体(1)
の永久磁石回転装置(26)と、その下面に対向するように
ハウジング(7) に固定状に設けられた磁気支持装置(27)
とから構成されている。
The uncontrolled magnetic bearing device (25) is composed of the rotating body (1).
Permanent magnet rotating device (26) and a magnetic support device (27) fixedly provided in the housing (7) so as to face the lower surface thereof.
It consists of and.

【0047】永久磁石回転装置(26)の非磁性体製回転部
材(14)および補強部材(16)の構成は、第1実施例と同じ
である。この場合、永久磁石回転装置(26)はアキシアル
方向の両端部に磁極が形成された複数の環状の回転永久
磁石(28)を備えており、回転部材(14)の各凹みぞ(18)内
に1つの永久磁石(28)だけが組込まれている。永久磁石
(28)は、アキシアル方向の両端部に磁極が形成されたも
のであるから、環状の一体物にすることができる。永久
磁石(28)の外周部分は、凹みぞ(18)の外周側の壁あるい
は仕切り壁(17)の内周部分に圧入されている。永久磁石
(28)の内周部分は、凹みぞ(18)の内周側の仕切り壁(17)
あるいは壁の外周部分にゆるくはめ合わされ、これらの
間にはほとんど隙間がないかあるいはわずかな隙間があ
けられている。ラジアル方向に隣接する2つの永久磁石
(28)の間に非磁性体製の仕切り壁(17)の部分が存在する
ので、非磁性体リングを別に組込む必要がない。そし
て、凹みぞ(18)内に永久磁石(28)を1つだけ圧入すれば
よいので、第1実施例の場合と同様、永久磁石(28)の寸
法管理および組立が容易で、高速回転時の遠心力による
永久磁石(28)の変形が小さく、永久磁石(28)が遠心破壊
を起こすこともない。
The configurations of the non-magnetic rotating member (14) and the reinforcing member (16) of the permanent magnet rotating device (26) are the same as those in the first embodiment. In this case, the permanent magnet rotating device (26) is provided with a plurality of annular rotating permanent magnets (28) having magnetic poles formed at both ends in the axial direction, and is provided in each groove (18) of the rotating member (14). Only one permanent magnet (28) is installed in the. permanent magnet
Since (28) has magnetic poles formed at both ends in the axial direction, it can be made into an annular one piece. The outer peripheral portion of the permanent magnet (28) is press-fitted into the outer peripheral wall of the groove (18) or the inner peripheral portion of the partition wall (17). permanent magnet
The inner peripheral part of (28) is the partition wall (17) on the inner peripheral side of the groove (18).
Alternatively, they are loosely fitted to the outer peripheral portion of the wall, with little or no gap between them. Two permanent magnets adjacent in the radial direction
Since the partition wall (17) made of a non-magnetic material exists between the (28), it is not necessary to separately assemble the non-magnetic material ring. Further, since only one permanent magnet (28) needs to be press-fitted into the recessed groove (18), the dimension management and assembly of the permanent magnet (28) are easy as in the case of the first embodiment, and at the time of high speed rotation. The deformation of the permanent magnet (28) due to the centrifugal force is small, and the permanent magnet (28) does not cause centrifugal destruction.

【0048】磁気支持装置(27)は、永久磁石回転装置(2
6)の下面に所定の間隔をおいて対向するようにハウジン
グ(7) に固定された穴あき円板状の非磁性体製固定部材
(29)、および固定部材(29)の上面に同心状に設けられた
複数の環状の固定永久磁石(30)を備えている。固定部材
(29)の上面に、ラジアル方向の幅が比較的広い1つの環
状凹所(31)が形成され、この凹所(31)内に、複数の環状
の固定永久磁石(30)と、これらの間に挟まれた複数の非
磁性体リング(32)とがはめられて固定されている。固定
永久磁石(30)は、アキシアル方向の両端部に磁極が形成
されたものである。固定永久磁石(30)の数は回転永久磁
石(28)の数と同数であり、固定永久磁石(30)は回転永久
磁石(28)にほぼ対向するように配置されている。各固定
永久磁石(30)の磁極の配置は対応する回転永久磁石(28)
のそれと逆で、各固定永久磁石(30)が対応する回転永久
磁石(28)を磁気反発力によって上向きに付勢するように
なっている。
The magnetic support device (27) is a permanent magnet rotating device (2
A disc-shaped non-magnetic fixing member fixed in the housing (7) so as to face the lower surface of 6) with a predetermined gap.
(29) and a plurality of annular fixed permanent magnets (30) concentrically provided on the upper surface of the fixing member (29). Fixing member
One annular recess (31) having a relatively large radial width is formed on the upper surface of (29), and a plurality of annular fixed permanent magnets (30) and these are formed in the recess (31). A plurality of non-magnetic rings (32) sandwiched therebetween are fitted and fixed. The fixed permanent magnet (30) has magnetic poles formed at both ends in the axial direction. The number of fixed permanent magnets (30) is the same as the number of rotating permanent magnets (28), and the fixed permanent magnets (30) are arranged so as to face the rotating permanent magnets (28). The arrangement of the magnetic poles of each fixed permanent magnet (30) corresponds to that of the corresponding rotating permanent magnet (28).
On the contrary, each fixed permanent magnet (30) biases the corresponding rotating permanent magnet (28) upward by the magnetic repulsive force.

【0049】第2実施例のフライホイール装置では、磁
気支持装置(27)の固定永久磁石(30)と永久磁石回転装置
(26)の回転永久磁石(28)の磁気反発力により、回転体
(1) がアキシアル方向に非接触支持される。また、上下
の制御型ラジアル磁気軸受装置(3)(4)により、回転体
(1) がラジアル方向に非接触支持される。そして、発電
電動機(6) により、回転体(1) が高速回転させられる。
In the flywheel device of the second embodiment, the fixed permanent magnet (30) of the magnetic support device (27) and the permanent magnet rotating device are used.
Due to the magnetic repulsive force of the rotating permanent magnet (28) of (26), the rotating body
(1) is supported in a non-contact manner in the axial direction. In addition, the upper and lower controlled radial magnetic bearing devices (3) (4) allow
(1) is supported in the radial direction without contact. Then, the rotating body (1) is rotated at high speed by the generator motor (6).

【0050】他は、第1実施例の場合と同様である。Others are the same as in the case of the first embodiment.

【0051】図5は、この発明を電力貯蔵装置における
フライホイール装置の非制御型磁気軸受装置に適用した
第3実施例を示している。
FIG. 5 shows a third embodiment in which the present invention is applied to an uncontrolled magnetic bearing device of a flywheel device in an electric power storage device.

【0052】図5には、フライホイール装置のうちの非
制御型磁気軸受装置の部分だけが示されている。第3実
施例のフライホイール装置の全体構成は、第2実施例の
フライホイール装置とほぼ同様であり、同じ部分には同
一の符号を付している。
FIG. 5 shows only a part of the uncontrolled magnetic bearing device of the flywheel device. The overall configuration of the flywheel device according to the third embodiment is almost the same as that of the flywheel device according to the second embodiment, and the same parts are designated by the same reference numerals.

【0053】非制御型磁気軸受装置(34)は、回転体(1)
の永久磁石回転装置(35)と、その上面に対向するように
ハウジング(7) に固定状に設けられた磁気支持装置(36)
とから構成されている。
The non-controlled magnetic bearing device (34) includes a rotating body (1).
Permanent magnet rotating device (35) and a magnetic support device (36) fixedly provided in the housing (7) so as to face the upper surface thereof.
It consists of and.

【0054】フライホイール(10)、永久磁石回転装置(3
5)および磁気支持装置(36)は、第2実施例のフライホイ
ール(10)、永久磁石回転装置(26)および磁気支持装置(2
7)の上下関係を逆にしたものであるから、対応する部分
に同一の符号を付し、詳細な説明は省略した。
Flywheel (10), permanent magnet rotating device (3
5) and the magnetic supporting device (36) are the flywheel (10), the permanent magnet rotating device (26) and the magnetic supporting device (2) of the second embodiment.
Since the vertical relationship of 7) is reversed, the same reference numerals are given to corresponding parts, and detailed description thereof is omitted.

【0055】第3実施例の場合、磁気支持装置(36)の各
固定永久磁石(30)の磁極の配置は対応する永久磁石回転
装置(35)の回転永久磁石(28)のそれと同じで、各固定永
久磁石(30)が対応する回転永久磁石(28)を磁気吸引力に
よって上向きに付勢するようになっている。
In the case of the third embodiment, the arrangement of the magnetic poles of the fixed permanent magnets (30) of the magnetic support device (36) is the same as that of the rotary permanent magnets (28) of the corresponding permanent magnet rotation device (35), Each fixed permanent magnet (30) biases the corresponding rotating permanent magnet (28) upward by a magnetic attraction force.

【0056】他は、第2実施例の場合と同様である。Others are the same as in the case of the second embodiment.

【0057】第2および第3実施例においても、回転永
久磁石(28)および固定永久磁石(30)として、内周側と外
周側に磁極が形成された第1実施例の回転永久磁石(15)
と同様のものを用いることができる。
Also in the second and third embodiments, as the rotating permanent magnet (28) and the fixed permanent magnet (30), the rotating permanent magnet (15) of the first embodiment in which magnetic poles are formed on the inner peripheral side and the outer peripheral side, respectively. )
The same as can be used.

【0058】[0058]

【発明の効果】この発明の永久磁石使用軸受装置および
永久磁石回転装置によれば、上述のように、回転永久磁
石の寸法管理および組立が容易で、高速回転時の遠心力
による永久磁石の変形が小さく、永久磁石が遠心破壊を
起こすこともない。そして、遠心力による変形が小さい
ため、超伝導軸受装置に適用した場合も、動作が安定し
ている。
As described above, according to the bearing device using a permanent magnet and the permanent magnet rotating device of the present invention, the dimension management and assembly of the rotating permanent magnet are easy, and the permanent magnet is deformed by the centrifugal force during high speed rotation. Is small, and the permanent magnet does not cause centrifugal damage. Since the deformation due to the centrifugal force is small, the operation is stable even when applied to the superconducting bearing device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を示すフライホイール装
置の概略縦断面図である。
FIG. 1 is a schematic vertical sectional view of a flywheel device showing a first embodiment of the present invention.

【図2】図1のフライホイール装置の超伝導軸受装置の
部分の拡大縦断面図である。
2 is an enlarged vertical sectional view of a portion of a superconducting bearing device of the flywheel device of FIG.

【図3】図1のIII −III 線の断面図である。3 is a sectional view taken along line III-III in FIG.

【図4】この発明の第2実施例を示すフライホイール装
置の非制御型磁気軸受装置の部分の縦断面図である。
FIG. 4 is a longitudinal sectional view of a part of a non-control type magnetic bearing device of a flywheel device showing a second embodiment of the present invention.

【図5】この発明の第3実施例を示すフライホイール装
置の非制御型磁気軸受装置の部分の縦断面図である。
FIG. 5 is a longitudinal sectional view of a portion of a non-controlled magnetic bearing device of a flywheel device showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) 回転体 (2) 超伝導軸受装置 (7) 固定ハウジング(固定部分) (11)(26)(35) 永久磁石回転装置 (13)(27)(36) 磁気支持装置 (14) 非磁性体製回転部材 (15)(28) 回転永久磁石 (16) 補強部材 (18) 環状凹みぞ (21) 超伝導体 (25)(34) 非制御型磁気軸受装置 (30) 固定永久磁石 (A) 回転軸心 (1) Rotating body (2) Superconducting bearing device (7) Fixed housing (fixed part) (11) (26) (35) Permanent magnet rotating device (13) (27) (36) Magnetic support device (14) Non Rotating member made of magnetic material (15) (28) Rotating permanent magnet (16) Reinforcing member (18) Annular groove (21) Superconductor (25) (34) Uncontrolled magnetic bearing device (30) Fixed permanent magnet ( A) axis of rotation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江口 正二 大阪市中央区南船場三丁目5番8号 光洋 精工株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Shoji Eguchi, 3-5-8 Minamisenba, Chuo-ku, Osaka City Koyo Seiko Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】垂直軸を中心に回転する回転体の永久磁石
回転装置に設けられた回転永久磁石と、固定部分に設け
られた磁気支持装置とで、磁気力により回転体を非接触
支持する装置であって、永久磁石回転装置の非磁性体よ
りなる部分の軸方向端面に複数の環状の回転永久磁石が
同心状に配置され、回転体の軸心方向に回転永久磁石と
対向するように磁気支持装置が配置されている永久磁石
使用軸受装置において、 永久磁石回転装置の軸方向端面に複数の環状凹みぞが同
心状に形成され、各凹みぞ内に回転永久磁石が1つずつ
圧入により取付けられていることを特徴とする永久磁石
使用軸受装置。
1. A non-contact support of a rotating body by a magnetic force by a rotating permanent magnet provided in a permanent magnet rotating device of a rotating body that rotates around a vertical axis and a magnetic supporting device provided in a fixed portion. In the device, a plurality of annular rotary permanent magnets are concentrically arranged on an axial end surface of a portion made of a non-magnetic body of the permanent magnet rotating device, and face the rotary permanent magnet in the axial direction of the rotary body. In a bearing device using a permanent magnet in which a magnetic support device is arranged, a plurality of annular groove grooves are concentrically formed on the axial end surface of the permanent magnet rotating device, and one rotating permanent magnet is press-fitted into each groove. A bearing device using a permanent magnet, which is installed.
【請求項2】磁気支持装置が超伝導体を備えており、永
久磁石回転装置の複数の環状の回転永久磁石が、磁束分
布が上記回転軸心に対して対称になり、かつ上記回転軸
心のまわりの磁束分布が回転によって変化しないよう
に、同心状に配置され、磁気支持装置の超伝導体が、回
転永久磁石の磁束が所定量侵入する離隔位置であってか
つ回転体の回転によって侵入磁束の分布が変化しない位
置に、回転永久磁石と上記回転軸心方向に対向するよう
に配置されていることを特徴とする請求項1の永久磁石
使用軸受装置。
2. A magnetic support device comprising a superconductor, wherein a plurality of annular rotating permanent magnets of a permanent magnet rotating device have a magnetic flux distribution symmetrical with respect to said rotation axis and said rotation axis. Are arranged concentrically so that the magnetic flux distribution around the magnet does not change due to rotation, and the superconductor of the magnetic support device is in a separated position where the magnetic flux of the rotating permanent magnet penetrates by a predetermined amount and enters by the rotation of the rotor. 2. The bearing device using a permanent magnet according to claim 1, wherein the bearing device is arranged so as to face the rotating permanent magnet in the direction of the rotation axis at a position where the distribution of magnetic flux does not change.
【請求項3】磁気支持装置が、永久磁石回転装置の回転
永久磁石を磁気反発力または磁気吸引力により上向きに
付勢する固定永久磁石を備えていることを特徴とする請
求項1の永久磁石使用軸受装置。
3. The permanent magnet according to claim 1, wherein the magnetic support device includes a fixed permanent magnet that biases the rotating permanent magnet of the permanent magnet rotating device upward by a magnetic repulsive force or a magnetic attractive force. Bearing device used.
【請求項4】永久磁石回転装置の回転永久磁石が、円板
状の非磁性体製回転部材の軸方向端面に設けられている
ことを特徴とする請求項1の磁気軸受装置。
4. The magnetic bearing device according to claim 1, wherein the rotating permanent magnet of the permanent magnet rotating device is provided on an axial end surface of a disk-shaped non-magnetic rotating member.
【請求項5】非磁性体製回転部材の外側に環状の複合繊
維強化プラスチック製補強部材が一体状に固定されてい
ることを特徴とする請求項4の永久磁石使用軸受装置。
5. The bearing device using a permanent magnet according to claim 4, wherein an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outside of the non-magnetic rotating member.
【請求項6】円板状の非磁性体製回転部材と、回転部材
の軸方向端面に同心状に設けられた複数の回転永久磁石
とを備えており、回転部材の軸方向端面に複数の環状凹
みぞが同心状に形成され、各凹みぞ内に回転永久磁石が
1つずつ圧入により取付けられていることを特徴とする
永久磁石回転装置。
6. A disk-shaped non-magnetic rotating member, and a plurality of rotating permanent magnets concentrically provided on an axial end surface of the rotating member, wherein a plurality of rotating permanent magnets are provided on the axial end surface of the rotating member. A permanent magnet rotating device, characterized in that annular grooves are formed concentrically, and one rotating permanent magnet is fitted into each groove by press fitting.
【請求項7】非磁性体製回転部材の外側に環状の複合繊
維強化プラスチック製補強部材が一体状に固定されてい
ることを特徴とする請求項6の永久磁石回転装置。
7. The permanent magnet rotating device according to claim 6, wherein an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outside of the non-magnetic rotating member.
JP31625394A 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device Expired - Fee Related JP3663472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31625394A JP3663472B2 (en) 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31625394A JP3663472B2 (en) 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device

Publications (2)

Publication Number Publication Date
JPH08170644A true JPH08170644A (en) 1996-07-02
JP3663472B2 JP3663472B2 (en) 2005-06-22

Family

ID=18075044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31625394A Expired - Fee Related JP3663472B2 (en) 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device

Country Status (1)

Country Link
JP (1) JP3663472B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084656A (en) * 1996-09-09 1998-03-31 Ebara Corp Rotating machine for magnetic levitation
JP2013013216A (en) * 2011-06-29 2013-01-17 Prospine:Kk Magnetic coupling and agitator
EP4290091A1 (en) * 2022-06-09 2023-12-13 Shin-Etsu Chemical Co., Ltd. Magnetic circuit device for magnetic bearing

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160643A (en) * 1974-06-19 1975-12-26
JPS5343173A (en) * 1976-10-01 1978-04-19 Toray Ind Inc High speed rotary body
JPS58186766U (en) * 1982-06-08 1983-12-12 三菱電機株式会社 flywheel device
JPS5953056A (en) * 1982-09-20 1984-03-27 Mitsubishi Electric Corp Flywheel device
JPS61164442A (en) * 1985-01-16 1986-07-25 Agency Of Ind Science & Technol Energy input/output device for superhigh-speed rotating fly-wheel
JPH04217830A (en) * 1990-07-26 1992-08-07 Shikoku Sogo Kenkyusho:Kk Power storage system
JPH04282050A (en) * 1991-02-26 1992-10-07 Shikoku Sogo Kenkyusho:Kk Electric power storage device
JPH0549191A (en) * 1991-08-13 1993-02-26 Kumagai Gumi Co Ltd Power storage system
JPH05180225A (en) * 1991-03-15 1993-07-20 Koyo Seiko Co Ltd Superconductive bearing device
JPH062646A (en) * 1992-06-19 1994-01-11 Sumitomo Special Metals Co Ltd Superconductive floating type turning gear
JPH0681845A (en) * 1992-09-03 1994-03-22 Koyo Seiko Co Ltd Supercondctive bearing device
JPH06503703A (en) * 1990-12-04 1994-04-21 ユニバーシテイー・オブ・ヒユーストン−ユニバーシテイー・パーク High temperature superconducting magnetic bearing
JPH06233479A (en) * 1993-02-02 1994-08-19 Nippon Seiko Kk Electric power storage apparatus
JPH07217653A (en) * 1994-01-19 1995-08-15 Alcatel Cit Magnetic bearing
JPH08111946A (en) * 1994-10-07 1996-04-30 Nippon Seiko Kk Superconducting flywheel device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50160643A (en) * 1974-06-19 1975-12-26
JPS5343173A (en) * 1976-10-01 1978-04-19 Toray Ind Inc High speed rotary body
JPS58186766U (en) * 1982-06-08 1983-12-12 三菱電機株式会社 flywheel device
JPS5953056A (en) * 1982-09-20 1984-03-27 Mitsubishi Electric Corp Flywheel device
JPS61164442A (en) * 1985-01-16 1986-07-25 Agency Of Ind Science & Technol Energy input/output device for superhigh-speed rotating fly-wheel
JPH04217830A (en) * 1990-07-26 1992-08-07 Shikoku Sogo Kenkyusho:Kk Power storage system
JPH06503703A (en) * 1990-12-04 1994-04-21 ユニバーシテイー・オブ・ヒユーストン−ユニバーシテイー・パーク High temperature superconducting magnetic bearing
JPH04282050A (en) * 1991-02-26 1992-10-07 Shikoku Sogo Kenkyusho:Kk Electric power storage device
JPH05180225A (en) * 1991-03-15 1993-07-20 Koyo Seiko Co Ltd Superconductive bearing device
JPH0549191A (en) * 1991-08-13 1993-02-26 Kumagai Gumi Co Ltd Power storage system
JPH062646A (en) * 1992-06-19 1994-01-11 Sumitomo Special Metals Co Ltd Superconductive floating type turning gear
JPH0681845A (en) * 1992-09-03 1994-03-22 Koyo Seiko Co Ltd Supercondctive bearing device
JPH06233479A (en) * 1993-02-02 1994-08-19 Nippon Seiko Kk Electric power storage apparatus
JPH07217653A (en) * 1994-01-19 1995-08-15 Alcatel Cit Magnetic bearing
JPH08111946A (en) * 1994-10-07 1996-04-30 Nippon Seiko Kk Superconducting flywheel device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084656A (en) * 1996-09-09 1998-03-31 Ebara Corp Rotating machine for magnetic levitation
JP2013013216A (en) * 2011-06-29 2013-01-17 Prospine:Kk Magnetic coupling and agitator
EP4290091A1 (en) * 2022-06-09 2023-12-13 Shin-Etsu Chemical Co., Ltd. Magnetic circuit device for magnetic bearing

Also Published As

Publication number Publication date
JP3663472B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
JP3577558B2 (en) Flywheel equipment
US20080315696A1 (en) Lift magnet mechanism for flywheel power storage systems
US5588754A (en) Backup bearings for extreme speed touch down applications
JP2002095209A (en) Flywheel apparatus for storing electric power
US8633625B2 (en) Shaft-less energy storage flywheel
JP3206044B2 (en) Composite superconducting bearing device
JP3665878B2 (en) Bearing device and starting method thereof
JP3551537B2 (en) Flywheel equipment
JPH08170644A (en) Bearing device using permanent magnet and permanent magnet rotating device
JPH08296645A (en) Magnetic bearing device
JP3236925B2 (en) Superconducting bearing device
JP3577559B2 (en) Flywheel equipment
JP3358362B2 (en) Superconducting magnetic bearing device
JP3632101B2 (en) Power storage device
JPH0681845A (en) Supercondctive bearing device
JP3385771B2 (en) Superconducting magnetic bearing device
JP3324319B2 (en) Magnetic bearing device
JPH09233803A (en) Braking device for high-speed rotating equipment
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
JPH08219158A (en) Magnetic bearing device
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same
JPH08111946A (en) Superconducting flywheel device
JP3025159B2 (en) Flywheel device using generator / motor
JP2001343020A (en) Superconductive magnetic bearing and superconductive flywheel
WO1997024536A1 (en) Radial constrained backup bushings for re-centering of magnetic bearings

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees