JPH062646A - Superconductive floating type turning gear - Google Patents

Superconductive floating type turning gear

Info

Publication number
JPH062646A
JPH062646A JP4186295A JP18629592A JPH062646A JP H062646 A JPH062646 A JP H062646A JP 4186295 A JP4186295 A JP 4186295A JP 18629592 A JP18629592 A JP 18629592A JP H062646 A JPH062646 A JP H062646A
Authority
JP
Japan
Prior art keywords
permanent magnet
ring
shaped
permanent magnets
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4186295A
Other languages
Japanese (ja)
Other versions
JP2799802B2 (en
Inventor
Takashi Utsuki
敬 宇津木
Masutaro Hayase
益太郎 隼瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4186295A priority Critical patent/JP2799802B2/en
Publication of JPH062646A publication Critical patent/JPH062646A/en
Application granted granted Critical
Publication of JP2799802B2 publication Critical patent/JP2799802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make the surface flux density of a permanent magnet uniformizable as well as to secure the smooth rotation of a turntable, in a superconductive floating type turning gear that sets up a ringlike permanent magnet and an oxide superconductor rotatably in a relative manner. CONSTITUTION:Ringlike permanent magnets 1 consisting of Nd-Fe-B permanent magnets of six, twelve and eighteen divisions are embedded and set up in one side of a nonmagnetic material turntable 3 concentrically with a shaft 2 as the center, and each of ringlike metal soft magnetic materials 4 in the same form as the magnet is installed on each top of these ringlike permanent magnets 1. Since each surface flux density of these divided type permanent magnets installed on the turntable is uniformizable, the extent of resistance against rotation becomes lessened, and thus turning performance is improvable in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、酸化物超電導体の超
電導磁気浮上力を利用した電力貯蔵装置用のフライホイ
ールや磁気軸受装置に使用する非接触の超電導浮上型回
転装置の改良に係り、リング状永久磁石の酸化物超電導
体対向面にリング状金属軟質磁性材料を固着してリング
状永久磁石の発生する表面磁束密度を均一にし、回転盤
の極めて円滑な回転を可能にした超電導浮上型回転装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact superconducting levitation type rotating device for use in a flywheel or a magnetic bearing device for a power storage device utilizing the superconducting magnetic levitation force of an oxide superconductor, A superconducting levitation type in which a ring-shaped metallic soft magnetic material is fixed to the surface of the ring-shaped permanent magnet that faces the oxide superconductor to make the surface magnetic flux density generated by the ring-shaped permanent magnet uniform, enabling extremely smooth rotation of the rotating disk. Regarding a rotating device.

【0002】[0002]

【従来の技術】従来より、超電導体の物理的特性を生か
した技術の研究が盛んに行われているが、特に最近で
は、マイスナー効果及びピン止め効果による超電導浮上
力を利用した非接触の超電導浮上型回転装置は、原理的
にそれがエネルギー不要、低摩擦、高速回転等を可能と
するため、磁気軸受装置や、電力貯蔵装置用大型フライ
ホイール等への利用が研究されている。
2. Description of the Related Art Conventionally, a lot of research has been conducted on technology utilizing the physical characteristics of superconductors. In particular, recently, non-contact superconductivity utilizing superconducting levitation force by Meissner effect and pinning effect. The levitation type rotating device is theoretically capable of energy-free, low friction, high-speed rotation, and the like, and therefore its use for a magnetic bearing device, a large flywheel for a power storage device, and the like has been studied.

【0003】特に、液体窒素温度で作動する酸化物超電
導体の発見によって、冷却体として安価で取扱いの容易
な液体窒素が使用できるようになったこと、及び強い超
電導浮上力を持つ高温超電導バルク材料が開発されたこ
とが超電導体に対する浮上力を利用した研究の大きな契
機となった。
In particular, the discovery of oxide superconductors that operate at liquid nitrogen temperatures has made it possible to use liquid nitrogen as a cooling body, which is inexpensive and easy to handle, and a high-temperature superconducting bulk material having a strong superconducting levitation force. The development of was a major impetus for research using the levitation force for superconductors.

【0004】フライホイールによる電力貯蔵は、電力を
回転エネルギーに蓄え、必要な時に電力として取り出し
て使用するものである。超電導フライホイールを大型化
すれば、より多くの電力貯蔵が可能となり、このような
装置の大型化は、永久磁石と超電導体の数を増やすこと
によって達成できる。
The electric power storage by the flywheel is one in which electric power is stored in rotational energy and is taken out and used as electric power when necessary. Larger superconducting flywheels allow more power storage, and such larger devices can be achieved by increasing the number of permanent magnets and superconductors.

【0005】磁気軸受においても、大きな負荷が加わる
場合でも安定した回転を維持するために、又用途の拡大
等の観点から、これらの大型化が要求されている。軸受
の具体的な構成としては下記の如き構成が知られてい
る。すなわち、図4(四国電力(株)、(株)四国総合
研究所、平成3年6月発行の研究期報No.57に所載
(52〜61頁)の芝山宗昭、高畑良一ら執筆の「超電
導磁気軸受の基本特性および大型フライホイール軸受へ
の適用化検討」より転用)を参照して説明すると、8個
の円板形イットリウム系超電導体6を環状に埋め込んだ
一対の円盤5を空隙を形成して対向させ、その空隙内に
両面にリング状永久磁石1を埋め込んだ回転盤3を、各
超電導体表面から所定の隙間を設けて前記円盤と同心状
に配置する。リング状永久磁石1は通常、複数に分割さ
れた弓形状のNd−Fe−B系永久磁石から構成され、
軸2に一体化された非磁性材からなる回転盤3に埋め込
む。軸2の上方には駆動用モータ7が設置されている。
Also in the magnetic bearing, in order to maintain stable rotation even when a large load is applied, and from the viewpoint of expansion of applications, it is required to increase their size. The following configurations are known as specific configurations of the bearing. 4 (Shikoku Electric Power Co., Inc., Shikoku Research Institute Co., Ltd., published in June 1991, Research Bulletin No. 57 (pages 52-61), written by Muneaki Shibayama and Ryoichi Takahata. This is explained with reference to “Basic characteristics of superconducting magnetic bearings and study of application to large flywheel bearings”), and a pair of discs 5 in which eight disc-shaped yttrium-based superconductors 6 are annularly embedded are provided as voids. The rotating discs 3 are formed so as to face each other, and the ring-shaped permanent magnets 1 are embedded on both surfaces in the space, and are arranged concentrically with the discs with a predetermined gap from the surface of each superconductor. The ring-shaped permanent magnet 1 is usually composed of a plurality of arc-shaped Nd-Fe-B-based permanent magnets,
It is embedded in the rotary disk 3 made of a non-magnetic material and integrated with the shaft 2. A drive motor 7 is installed above the shaft 2.

【0006】[0006]

【発明が解決しようとする課題】上記の装置において、
永久磁石を組み込んだ回転盤3に駆動モータ7によって
回転力を付与すると、前記のイットリウム系超電導体と
永久磁石とのマイスナー効果によって発生する浮上力に
より、原理的には非接触状態を維持したまま半永久的に
回転する。しかし、現実的には各磁石の磁力不均一等を
要因として円盤の回転に偏心が起こり、やがて回転は停
止する。
In the above device,
When a rotating force is applied to the turntable 3 incorporating a permanent magnet by the drive motor 7, the non-contact state is maintained in principle due to the levitation force generated by the Meissner effect between the yttrium-based superconductor and the permanent magnet. It rotates semi-permanently. However, in reality, eccentricity occurs in the rotation of the disk due to the non-uniform magnetic force of each magnet, and the rotation eventually stops.

【0007】また、上記永久磁石が円盤状で大径になる
と、その中心部分での磁束は外周部に比べて小さくな
り、磁石自体あまり効率的な使用ができなくなるため、
通常リング状として使用し、さらに所要の浮上力を得る
ために複数のリング状磁石を同心状に配置して用いる。
When the permanent magnet is disk-shaped and has a large diameter, the magnetic flux at the central portion becomes smaller than that at the outer peripheral portion, and the magnet itself cannot be used very efficiently.
Usually, it is used as a ring shape, and a plurality of ring magnets are arranged concentrically in order to obtain a required levitation force.

【0008】しかし、大型のリング状の永久磁石を一体
品で製造するには制限があり、製造可能制限内の大きさ
の磁石を複数個接着してリング状に配置する。また、リ
ング状永久磁石の磁力を均一にするために、複数個の磁
石の中から磁力が近似する磁石を選び出して配置する必
要があり、量産性の上からは効率的ではない。しかも、
各磁石を接着して一体化するため、磁石と磁石の円周方
向の継ぎ目の部分は、磁束密度が低くなることが避けら
れない。磁束密度の不均一性は、回転盤の回転に対する
抵抗力となり、回転停止の原因となる。
However, there is a limitation in manufacturing a large-sized ring-shaped permanent magnet as an integrated product, and a plurality of magnets having sizes within the manufacturable limit are bonded and arranged in a ring shape. Further, in order to make the magnetic force of the ring-shaped permanent magnet uniform, it is necessary to select and arrange a magnet having a similar magnetic force from a plurality of magnets, which is not efficient in terms of mass productivity. Moreover,
Since the magnets are adhered and integrated, it is inevitable that the magnetic flux density is low at the portion where the magnets and the magnets are circumferentially joined. The non-uniformity of the magnetic flux density causes a resistance against the rotation of the rotating disk, which causes the rotation to stop.

【0009】この発明は、上述の問題に鑑み永久磁石と
酸化物超電導体とを対向配置してなる超電導浮上型回転
装置において、該永久磁石の表面磁束密度を均一にで
き、完全非接触で実質的に永久作動を可能にした構成の
回転装置の提供を目的としている。
In view of the above-mentioned problems, the present invention is a superconducting levitation type rotating device in which a permanent magnet and an oxide superconductor are arranged so as to face each other, and the surface magnetic flux density of the permanent magnet can be made uniform and substantially non-contact. The object of the present invention is to provide a rotating device having a structure that enables permanent operation.

【0010】[0010]

【課題を解決するための手段】この発明は、空隙を形成
して対向する少なくとも1つのリング状永久磁石と、酸
化物超電導体とを相対的に回転可能に配置した非接触の
超電導浮上型回転装置において、前記リング状永久磁石
の酸化物超電導体対向面に対向方向に貫通する継ぎ目の
ないリング状金属軟質磁性材料を固着したことを特徴と
する超電導浮上型回転装置である。
DISCLOSURE OF THE INVENTION The present invention is a non-contact superconducting levitation type rotation in which at least one ring-shaped permanent magnet and an oxide superconductor which are opposed to each other with a gap are rotatably arranged. The superconducting levitation type rotating device is characterized in that a seamless ring-shaped metallic soft magnetic material penetrating in a facing direction is fixed to a surface of the ring-shaped permanent magnet facing the oxide superconductor.

【0011】この発明において、使用する超電導体は強
力な超電導磁気反発力を要するため、YBa2Cu
3x、Bi2Sr2Ca2Cu3x等の酸化物高温超電導
体が用いられる。特に、強い反発力と軸ずれに対する安
定性の得られるイットリウム系超電導体が適している。
In the present invention, since the superconductor used requires strong superconducting magnetic repulsion, YBa 2 Cu is used.
3 O x, an oxide high-temperature superconductor such as Bi 2 Sr 2 Ca 2 Cu 3 O x is used. In particular, yttrium-based superconductors, which can provide strong repulsive force and stability against axis deviation, are suitable.

【0012】この発明に用いる永久磁石としては、従来
の鋳造磁石やフェライト磁石等が用いられるが、特に超
電導体への対向面に強力な磁束を発生させ、装置の小型
化を可能にする最大エネルギー積の高いNd−Fe−B
系磁石等の希土類永久磁石が好ましい。永久磁石は前記
の如く、少なくとも1つのリング状永久磁石から構成す
る必要があるが、超電導体はこれらのリング状永久磁石
の良好なマイスナー効果及びピン止め効果による超電導
浮上を達成する構成であればいずれの構成でも良く、例
えば図3に示すような、円板状の複数の超電導体を前記
永久磁石に対向させて環状に配置する等、要求される諸
特性に応じて適宜選定することができる。さらに、リン
グ状永久磁石の外径が小さい場合は継ぎ目のない一体型
の永久磁石も利用でき、外径が大きい場合は実施例の如
く複数の弓型磁石を接続して所要内外径のリング状永久
磁石に組み立てることができる。
Conventional permanent magnets used in the present invention may be conventional cast magnets or ferrite magnets. However, the maximum energy required to generate a strong magnetic flux on the surface facing the superconductor and to downsize the device. High product Nd-Fe-B
A rare earth permanent magnet such as a system magnet is preferable. As described above, the permanent magnet needs to be composed of at least one ring-shaped permanent magnet, but the superconductor has a structure that achieves superconducting levitation by the good Meissner effect and pinning effect of these ring-shaped permanent magnets. Any configuration may be adopted, and for example, as shown in FIG. 3, a plurality of disc-shaped superconductors may be arranged in an annular shape so as to face the permanent magnets, and can be appropriately selected according to various characteristics required. . Further, when the outer diameter of the ring-shaped permanent magnet is small, a seamless integral type permanent magnet can be used, and when the outer diameter is large, a plurality of bow-shaped magnets are connected to form a ring-shaped permanent magnet having a required inner and outer diameter as in the embodiment. Can be assembled into a permanent magnet.

【0013】永久磁石と超電導体は、永久磁石の一方の
磁極対向面にのみ超電導体を配置する構成だけでなく、
一対の超電導体間に少なくとも1つの永久磁石を同心状
に配置する等、種々の構成が採用できる。永久磁石の磁
化方向は、いずれの場合も超電導体との対向方向と同一
方向となるが、各対向面に形成される磁極(N,S)
は、永久磁石と超電導体との空隙寸法(対向距離)によ
って選定することが望ましい。すなわち、半径方向に隣
接するリング状永久磁石の各々の磁極が同極である場合
は、比較的上記永久磁石と超電導体との対向距離とが大
きくても、永久磁石から発生する磁束が超電導体に効果
的に作用するが、隣接する磁極が異極である場合は、上
記距離があまり大きすぎると、磁束の一部が超電導体に
達しないものもあり、超電導体に対し有効に作用しな
い。これらのことを考慮して永久磁石の数量、形状、配
置等を選定することが好ましい。
The permanent magnet and the superconductor are not limited to the structure in which the superconductor is arranged only on one magnetic pole facing surface of the permanent magnet.
Various configurations can be adopted, such as arranging at least one permanent magnet concentrically between a pair of superconductors. The magnetizing direction of the permanent magnet is the same as the facing direction of the superconductor in each case, but the magnetic poles (N, S) formed on each facing surface.
Is preferably selected according to the gap size (opposing distance) between the permanent magnet and the superconductor. That is, when the magnetic poles of the ring-shaped permanent magnets that are adjacent to each other in the radial direction have the same pole, even if the facing distance between the permanent magnet and the superconductor is relatively large, the magnetic flux generated from the permanent magnet is However, when the adjacent magnetic poles are different in polarity, if the distance is too large, some of the magnetic flux does not reach the superconductor, and thus does not act effectively on the superconductor. In consideration of these things, it is preferable to select the number, shape, arrangement, etc. of the permanent magnets.

【0014】回転盤に配置されるリング状永久磁石表面
に固着する金属軟質磁性材料は、例えば、1枚板から打
ち抜き成形して所要内外径の一体型リングとなすことが
でき、さらに外径が非常に大きい場合は、円周を所要数
に分割した円弧状の部材を接続してリング状に形成する
が、継ぎ目が永久磁石の酸化物超電導体対向面方向に貫
通して発生する磁束密度の低下を将来しないないよう
に、くさび状等の凹凸嵌合や傾斜面同士を重ね合うなど
の構造を採用する必要がある。また、金属軟質磁性材料
の厚みは、後述の材質や永久磁石の寸法などにより適宜
選定する。金属軟質磁性材料は、飽和磁束密度の高い材
料、例えばパーメンジュール等が望ましいが、パーマロ
イ、純鉄、もしくはけい素鋼板でも良い。金属軟質磁性
材料と永久磁石との接合方法は、ただ永久磁石上に金属
軟質磁性材料を設置して永久磁石の吸着力によって固着
させてもよいが、高速回転での使用を考慮すると、接着
剤等で強固に固着させることが望ましい。
The metal soft magnetic material adhered to the surface of the ring-shaped permanent magnet arranged on the rotating disk can be formed by punching from a single plate to form an integral ring having a required inner and outer diameters, and further having an outer diameter. If it is very large, it is formed into a ring shape by connecting arc-shaped members that divide the circumference into the required number, but the magnetic flux density generated when the seam penetrates in the direction facing the oxide superconductor of the permanent magnet is generated. In order to prevent the deterioration in the future, it is necessary to adopt a structure such as a wedge-shaped concave-convex fitting and overlapping inclined surfaces. Further, the thickness of the metal soft magnetic material is appropriately selected depending on the material described later and the dimensions of the permanent magnet. The metal soft magnetic material is preferably a material having a high saturation magnetic flux density, such as permendur, but it may be permalloy, pure iron, or a silicon steel plate. As for the method of joining the metal soft magnetic material and the permanent magnet, the metal soft magnetic material may simply be installed on the permanent magnet and fixed by the attractive force of the permanent magnet, but considering the use at high speed rotation, the adhesive It is desirable to firmly fix them by using such means as.

【0015】上記の永久磁石を支持する回転盤は、実施
例で図示する円盤状の構成に限定されるものではなく、
1つのリング状磁石あるいは複数のリング状磁石を同心
状に支持でき、超電導体との相対的な回転を阻害しない
構成であればいずれの形態でも良く、材質にはAl、C
u等の非磁性材が用いられる。
The rotary disk for supporting the above-mentioned permanent magnet is not limited to the disk-shaped structure shown in the embodiment,
Any form may be used as long as it can support one ring-shaped magnet or a plurality of ring-shaped magnets concentrically and does not impede relative rotation with the superconductor.
A non-magnetic material such as u is used.

【0016】図面による発明の開示図1、図2にこの発
明による超電導浮上型回転装置用回転盤の一例を示して
いる。非磁性材の回転盤3aの片面には軸2を中心とし
て同心状に6分割、12分割、18分割のNd−Fe−
B系永久磁石からなるリング状永久磁石1を埋設配置さ
れ、各リング状永久磁石1上面には、磁石と同様形状の
リング状金属軟質磁性材料4が着設してある。
Disclosure of the Invention According to the Drawings FIG. 1 and FIG. 2 show an example of a turntable for a superconducting levitation type rotating device according to the present invention. On one surface of the turntable 3a made of non-magnetic material, concentric 6-division, 12-division, and 18-division Nd-Fe- with the axis 2 as the center.
A ring-shaped permanent magnet 1 made of a B-system permanent magnet is embedded and arranged, and a ring-shaped metal soft magnetic material 4 having the same shape as the magnet is attached to the upper surface of each ring-shaped permanent magnet 1.

【0017】[0017]

【作用】この発明による超電導浮上型回転装置は、回転
盤に設けた分割型の永久磁石の表面磁束密度を均一にで
きるため、回転に対する抵抗が小さくなり、回転性能を
向上させることができる。さらに、永久磁石の対向面表
面に金属軟質磁性材料を接合することにより、磁束密度
は永久磁石のみの場合より大きくなるため、安定した浮
上力が得られる。
In the superconducting levitation type rotating device according to the present invention, since the surface magnetic flux density of the split type permanent magnets provided on the rotating disk can be made uniform, the resistance against rotation can be reduced and the rotating performance can be improved. Further, by bonding the metal soft magnetic material to the surface of the facing surface of the permanent magnet, the magnetic flux density becomes larger than that of the permanent magnet alone, so that a stable levitation force can be obtained.

【0018】[0018]

【実施例】外径220mm、内径170mm、高さ20
mmのリング状Nd−Fe−B系磁石で6分割接着品の
表面磁束密度を測定した。図3の○印のプロットで示す
ように、接着部分(継ぎ目)で磁束密度が大きく低下し
ていることが分かる。そこで永久磁石に同じリング形状
で厚さ2mmのパーメンジュールからなる金属軟質磁性
材料を固着することによって、図3の□印のプロットで
示すように、表面の磁束密度を均一にすることができ
た。
Example: Outer diameter 220 mm, inner diameter 170 mm, height 20
The surface magnetic flux density of the 6-divided bonded product was measured with a ring-shaped Nd-Fe-B-based magnet of mm. As shown by the plot with a circle in FIG. 3, it can be seen that the magnetic flux density is significantly reduced at the bonded portion (seam). Therefore, by sticking a metallic soft magnetic material made of permendur having the same ring shape and a thickness of 2 mm to the permanent magnet, the magnetic flux density on the surface can be made uniform as shown by the plot of □ in FIG. It was

【0019】また、図1に示した金属軟質磁性材料4を
リング状永久磁石1表面に固着して両面に配設した回転
盤3を、図4に示す超電導磁気軸受装置に使用した。こ
の装置の駆動用モータに電力を入力して作動させると、
リング状永久磁石表面に金属軟質磁性材料を固着しない
場合に比べて、回転数を上げることができ、非常に良い
回転性能であることが分かった。
Further, the rotary disk 3 having the metal soft magnetic material 4 shown in FIG. 1 fixed to the surface of the ring-shaped permanent magnet 1 and arranged on both surfaces was used in the superconducting magnetic bearing device shown in FIG. When electric power is input to the drive motor of this device to operate it,
It was found that the rotation speed can be increased and the rotation performance is very good as compared with the case where the metal soft magnetic material is not fixed to the surface of the ring-shaped permanent magnet.

【0020】[0020]

【発明の効果】この発明による超電導浮上型回転装置
は、分割型の永久磁石の発生する表面磁束密度を均一に
でき、回転に対する抵抗が小さくなり、円盤の回転に偏
心が発生せず、回転性能を向上させることができる。さ
らに、永久磁石表面に金属軟質磁性材料を着設すると磁
束密度は、着設前のより大きくなり安定した浮上力が得
られる利点がある。また、電力貯蔵装置用のフライホイ
ールの如く、回転盤の直径を大きくした場合には、必然
的に多数分割型の永久磁石を使用するが、この発明の金
属軟質磁性材料を永久磁石表面に着設することにより、
容易に永久磁石の発生する表面磁束密度を均一にでき、
半径数mクラスの回転盤でも容易に対応できる。
The superconducting levitation type rotating device according to the present invention can make the surface magnetic flux density generated by the split type permanent magnet uniform, the resistance to the rotation becomes small, the eccentricity does not occur in the rotation of the disk, and the rotation performance is improved. Can be improved. Further, when a soft metal magnetic material is attached to the surface of the permanent magnet, the magnetic flux density becomes larger than that before attachment, and there is an advantage that a stable levitation force can be obtained. In addition, when the diameter of the rotary disk is increased, as in a flywheel for a power storage device, a multi-part permanent magnet is inevitably used, but the metal soft magnetic material of the present invention is attached to the surface of the permanent magnet. By setting
The surface magnetic flux density generated by the permanent magnet can be easily made uniform,
Even a rotating disc with a radius of several meters can be easily handled.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による超電導浮上型回転装置に用いる
回転盤の一例を示す一部破断上面説明図である。
FIG. 1 is a partially cutaway top view showing an example of a turntable used in a superconducting levitation type rotating device according to the present invention.

【図2】図1における直径方向の縦断説明図である。FIG. 2 is a vertical cross-sectional explanatory view in the diametrical direction in FIG.

【図3】回転盤の永久磁石の周方向角度と永久磁石表面
の磁束密度Bgとの関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a circumferential angle of a permanent magnet of a rotating disk and a magnetic flux density Bg on the surface of the permanent magnet.

【図4】この発明による超電導浮上型回転装置の一例を
示す一部破断斜視説明図である。
FIG. 4 is a partially cutaway perspective view showing an example of a superconducting levitation type rotating device according to the present invention.

【符号の説明】[Explanation of symbols]

1 リング状永久磁石 2 軸 3,3a 回転盤 4 金属軟質磁性材料 5 円盤 6 イットリウム系超電導体 7 駆動モータ 1 Ring-shaped permanent magnet 2 Axis 3, 3a Rotating disk 4 Metal soft magnetic material 5 Disk 6 Yttrium-based superconductor 7 Drive motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空隙を形成して対向する少なくとも1つ
のリング状永久磁石と、酸化物超電導体とを相対的に回
転可能に配置した非接触の超電導浮上型回転装置におい
て、前記リング状永久磁石の酸化物超電導体対向面に対
向方向に貫通する継ぎ目のないリング状金属軟質磁性材
料を固着したことを特徴とする超電導浮上型回転装置。
1. A non-contact superconducting levitation type rotating device in which at least one ring-shaped permanent magnet and a superconducting oxide which are opposed to each other with a gap formed therebetween are rotatably arranged relative to each other. 2. A superconducting levitation type rotating device, characterized in that a seamless ring-shaped metal soft magnetic material penetrating in the opposite direction is fixed to the surface of the oxide superconductor opposite to.
JP4186295A 1992-06-19 1992-06-19 Superconducting levitation type rotating device Expired - Fee Related JP2799802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4186295A JP2799802B2 (en) 1992-06-19 1992-06-19 Superconducting levitation type rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4186295A JP2799802B2 (en) 1992-06-19 1992-06-19 Superconducting levitation type rotating device

Publications (2)

Publication Number Publication Date
JPH062646A true JPH062646A (en) 1994-01-11
JP2799802B2 JP2799802B2 (en) 1998-09-21

Family

ID=16185821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4186295A Expired - Fee Related JP2799802B2 (en) 1992-06-19 1992-06-19 Superconducting levitation type rotating device

Country Status (1)

Country Link
JP (1) JP2799802B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170644A (en) * 1994-12-20 1996-07-02 Koyo Seiko Co Ltd Bearing device using permanent magnet and permanent magnet rotating device
US5826472A (en) * 1995-10-19 1998-10-27 Sumitomo Wiring Systems, Ltd. Method and apparatus for processing a wire
US5838082A (en) * 1995-02-17 1998-11-17 Seiko Epson Corporation Superconducting bearing device
JP2008295251A (en) * 2007-05-28 2008-12-04 Railway Technical Res Inst Magnetic levitation type rotor mechanism mountable on vehicle
JP2010096044A (en) * 2008-10-15 2010-04-30 Akifumi Hoshino Motor for rotary device using gravity, and rotary device using magnetism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170644A (en) * 1994-12-20 1996-07-02 Koyo Seiko Co Ltd Bearing device using permanent magnet and permanent magnet rotating device
US5838082A (en) * 1995-02-17 1998-11-17 Seiko Epson Corporation Superconducting bearing device
US5826472A (en) * 1995-10-19 1998-10-27 Sumitomo Wiring Systems, Ltd. Method and apparatus for processing a wire
JP2008295251A (en) * 2007-05-28 2008-12-04 Railway Technical Res Inst Magnetic levitation type rotor mechanism mountable on vehicle
JP2010096044A (en) * 2008-10-15 2010-04-30 Akifumi Hoshino Motor for rotary device using gravity, and rotary device using magnetism

Also Published As

Publication number Publication date
JP2799802B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US6175175B1 (en) Levitation pressure and friction losses in superconducting bearings
US5525849A (en) Superconducting bearing
JP2547287B2 (en) Superconducting bearing device
JPH05180225A (en) Superconductive bearing device
JP3675010B2 (en) Superconducting bearing device
JPH062646A (en) Superconductive floating type turning gear
JPH08284956A (en) Super-conductive magnetic bearing device
JP3358362B2 (en) Superconducting magnetic bearing device
JP3554054B2 (en) Superconducting bearing device
JPH08296645A (en) Magnetic bearing device
JPH07327338A (en) Superconducting levitation rotary system
JP3397823B2 (en) Superconducting bearing device
JP3271330B2 (en) Magnet magnetizing device
JPH08219158A (en) Magnetic bearing device
JPH0681845A (en) Supercondctive bearing device
Tixador et al. Hybrid superconducting magnetic suspensions
JP4064081B2 (en) Load reducing device
JPH08288124A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
JP3471441B2 (en) Energy storage device with ring flywheel
JPH11257354A (en) Rotor for magnetic bearing and superconductive magnetic bearing
JPH09233803A (en) Braking device for high-speed rotating equipment
JP3324319B2 (en) Magnetic bearing device
JPH05164131A (en) Superconductive bearing device
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same
JPH08288125A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees