JPH08288125A - Superconducting magnetic levitation apparatus and magnetizing method of its superconductor - Google Patents
Superconducting magnetic levitation apparatus and magnetizing method of its superconductorInfo
- Publication number
- JPH08288125A JPH08288125A JP7113645A JP11364595A JPH08288125A JP H08288125 A JPH08288125 A JP H08288125A JP 7113645 A JP7113645 A JP 7113645A JP 11364595 A JP11364595 A JP 11364595A JP H08288125 A JPH08288125 A JP H08288125A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- permanent magnet
- shaped
- ring
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 66
- 238000005339 levitation Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 9
- 239000002131 composite material Substances 0.000 claims description 16
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 230000004907 flux Effects 0.000 abstract description 13
- 230000005415 magnetization Effects 0.000 abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910001172 neodymium magnet Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、超電導方式の磁気浮
上装置の改良と超電導体の磁化方法に係り、特に同軸配
置の複合リング状主永久磁石からなる回転盤の主永久磁
石のリング間にラジアル異方性磁石を配置して発生磁束
を増大させて、磁気浮上力あるいは磁化力を向上させた
超電導磁気浮上装置並びにその超電導体の磁化方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a magnetic levitation device of a superconducting type and a method of magnetizing a superconductor, and more particularly, between the rings of main permanent magnets of a rotary disk composed of coaxial main composite permanent magnets. The present invention relates to a superconducting magnetic levitation apparatus in which a radial anisotropic magnet is arranged to increase a generated magnetic flux to improve a magnetic levitation force or a magnetizing force, and a method for magnetizing a superconductor thereof.
【0002】[0002]
【従来の技術】従来より、超電導体の物理的特性を生か
した技術の研究が盛んに行われているが、特に最近で
は、磁気浮上効果及びピン止め効果による超電導浮上力
を利用した非接触の超電導浮上型回転装置は、原理的に
それがエネルギー不要、低摩擦、高速回転等を可能とす
るため、磁気軸受装置や、電力貯蔵装置用大型フライホ
イール等への利用が研究されている。2. Description of the Related Art Conventionally, a lot of research has been conducted on techniques utilizing the physical characteristics of superconductors. In particular, recently, a non-contact type utilizing the superconducting levitation force by the magnetic levitation effect and the pinning effect has been developed. The superconducting levitation type rotating device has been studied for use in magnetic bearing devices, large flywheels for electric power storage devices, etc., because it enables energy-free, low friction, and high-speed rotation in principle.
【0003】特に、液体窒素温度領域で超電導現象が得
られる酸化物超電導体の発見によって、冷却体として安
価で取扱いの容易な液体窒素が使用できるようになった
こと、及び強い超電導浮上力を持つ高温超電導バルク材
料が開発されたことが超電導体に対する浮上力を利用し
た研究の大きな契機となった。In particular, the discovery of an oxide superconductor capable of obtaining a superconducting phenomenon in the liquid nitrogen temperature region has made it possible to use liquid nitrogen, which is inexpensive and easy to handle, as a cooling body, and has a strong superconducting levitation force. The development of high-temperature superconducting bulk material has been a major impetus for research utilizing the levitation force for superconductors.
【0004】フライホイールによる電力貯蔵は、電力を
回転エネルギーに蓄え、必要な時に電力として取り出し
て使用するものである。超電導フライホイールを大型化
すれば、より多くの電力貯蔵が可能となり、このような
装置の大型化は、永久磁石と超電導体の数を増やすこと
によって達成できる。さらに、強力な磁場でもって超電
導体を磁化することにより、磁気的により一層強力な超
電導磁石とすることによっても達成できる。The electric power storage by the flywheel is one in which electric power is stored in rotational energy and is taken out and used as electric power when necessary. Larger superconducting flywheels allow more power storage, and such larger devices can be achieved by increasing the number of permanent magnets and superconductors. Further, by magnetizing the superconductor with a strong magnetic field, it is possible to achieve a magnetically stronger superconducting magnet.
【0005】[0005]
【発明が解決しようとする課題】超電導方式磁気浮上装
置において、超電導体はその周囲温度が臨界温度以下に
なると、超電導現象を起こし、永久磁石による磁場によ
って磁化されて超電導磁石となり、永久磁石との間に反
発または吸引作用が働き、磁気浮上が起こる。従って、
回転側の永久磁石体と固定側の超電導体を対向させた該
装置では、超電導体は予め永久磁石体の磁極配置に合わ
せて磁化しておく必要がある。In the superconducting type magnetic levitation device, when the ambient temperature of the superconductor falls below the critical temperature, the superconducting phenomenon occurs and the superconductor is magnetized by the magnetic field of the permanent magnet to become the superconducting magnet. Repulsion or suction works between them, causing magnetic levitation. Therefore,
In the device in which the permanent magnet body on the rotating side and the superconductor on the stationary side are opposed to each other, the superconductor must be magnetized in advance in accordance with the magnetic pole arrangement of the permanent magnet body.
【0006】例えば、円板形イットリウム系超電導体を
環状に複数環配置した固定盤と、リング状永久磁石を複
数リング埋め込んだ回転盤とからなる磁気浮上装置にお
いて、超電導体を所要の磁極パターンで磁化する方法を
考慮するに、超電導体の着磁で一般的なコイル着磁で
は、環状に配置された超電導体に種々の磁極を形成する
のに複雑な巻線を行う必要があり、実用化するには極め
て困難であるため、永久磁石を用いて着磁されていた。
しかも、永久磁石を用いた着磁では、コイルのように強
力な磁場にて着磁できないため、当該磁気浮上装置にお
いて強力な磁気浮上力と駆動エネルギーが得られない問
題があった。[0006] For example, in a magnetic levitation device comprising a fixed plate in which a plurality of disc-shaped yttrium-based superconductors are annularly arranged and a rotary plate in which a plurality of ring-shaped permanent magnets are embedded, a superconductor is formed in a required magnetic pole pattern. Considering the magnetizing method, in general coil magnetization for superconductor magnetization, it is necessary to perform complicated windings to form various magnetic poles in the superconductor arranged in an annular shape. Since it is extremely difficult to do so, it was magnetized using a permanent magnet.
Moreover, the magnetization using a permanent magnet cannot be magnetized with a strong magnetic field like a coil, and thus there is a problem that a strong magnetic levitation force and driving energy cannot be obtained in the magnetic levitation device.
【0007】この発明は、超電導方式磁気浮上装置にお
ける超電導体の着磁の問題点に鑑み、永久磁石を用いた
着磁において、任意の磁極パターンで着磁が容易に実施
できかつ強力な超電導磁石を得ることが可能な超電導磁
気浮上装置における超電導体の磁化方法、並びに当該着
磁を完了後そのまま強力な超電導磁石として利用できる
超電導磁気浮上装置の提供を目的としている。In view of the problem of magnetizing a superconductor in a superconducting magnetic levitation device, the present invention is a strong superconducting magnet that can be easily magnetized with an arbitrary magnetic pole pattern in magnetizing using a permanent magnet. It is an object of the present invention to provide a method for magnetizing a superconductor in a superconducting magnetic levitation device capable of obtaining the above, and a superconducting magnetic levitation device that can be used as a powerful superconducting magnet as it is after the magnetization is completed.
【0008】[0008]
【課題を解決するための手段】発明者は、従来は回転盤
の複合永久磁石リングを直接超電導体に接触させて超電
導体対向方向つまり回転軸方向に平行な磁界にて着磁が
行われていたが、この場合、超電導体の磁化磁界強度は
主に永久磁石の固有の表面磁束密度に依存し、大きな磁
力による着磁ができないことに鑑み、超電導体対向方向
に着磁された複数のリング状磁石を、互いに異磁極を対
向させるよう同軸配置することにより、超電導体への磁
化力及び磁気浮上特性を改善できるが、これに加えて各
リング状磁石間にリング状補助永久磁石を配し、これを
ラジアル方向に着磁しかつ隣接リング状主磁石の対向磁
極面と異極性とすれば、リング状の主従永久磁石による
磁気回路を新たに形成し超電導体対向面間のギャップパ
ーミアンスが上昇し、ギャップへの有効磁束が大幅に増
大し、超電導体への磁化力を増大できまた、超電導磁石
の大幅な磁気特性を向上することを知見し、この発明を
完成した。The inventor has conventionally magnetized a composite permanent magnet ring of a rotating disk by directly contacting the superconductor with a magnetic field parallel to the superconductor opposing direction, that is, the rotation axis direction. However, in this case, the magnetizing magnetic field strength of the superconductor mainly depends on the surface magnetic flux density peculiar to the permanent magnet, and it cannot be magnetized by a large magnetic force. By arranging the ring-shaped magnets coaxially so that the different magnetic poles face each other, the magnetizing force on the superconductor and the magnetic levitation characteristics can be improved.In addition to this, a ring-shaped auxiliary permanent magnet is placed between each ring-shaped magnet. , If it is magnetized in the radial direction and has a different polarity from the facing magnetic pole surface of the adjacent ring-shaped main magnet, a magnetic circuit is newly formed by the ring-shaped main and slave permanent magnets, and the gap permeance between the facing surfaces of the superconductor increases. , And effective magnetic flux is increased significantly to the gap, it can increase the magnetizing force of the superconductor also found that to increase the substantial magnetic properties of the superconducting magnet, thereby completing the present invention.
【0009】すなわち、この発明は、環状に配置した超
電導体からなる固定盤と、これに対向配置する同軸配置
の複合リング状主永久磁石からなる回転盤とから構成さ
れ、該複合リング状主永久磁石が厚み方向に着磁され互
いに異磁極を超電導体に対向させて同軸配置され、かつ
複合リング状主永久磁石のリング間にラジアル方向かつ
隣接主磁石周端面と異磁極に着磁されたリング状補助永
久磁石を配設したことを特徴とする超電導磁気浮上装置
である。また、この発明は、上記の構成において、補助
永久磁石は主永久磁石の厚み方向の半分以下の厚みで主
永久磁石の超電導体対向面とは反対面側に配置した超電
導磁気浮上装置を併せて提案する。That is, the present invention comprises a stationary plate made of an annularly arranged superconductor, and a rotating plate made of a coaxially arranged composite ring-shaped main permanent magnet opposed to the fixed plate. A ring magnetized in the thickness direction and coaxially arranged with the different magnetic poles facing the superconductor, and in the radial direction between the rings of the composite ring-shaped main permanent magnet and the magnetized different magnetic poles with the peripheral end face of the adjacent main magnet. Is a superconducting magnetic levitation device, in which an auxiliary permanent magnet is provided. Further, in the present invention, in the above-mentioned configuration, the auxiliary permanent magnet also has a superconducting magnetic levitation device in which the thickness of the main permanent magnet is half or less in the thickness direction of the main permanent magnet, and the superconducting magnetic levitation device is arranged on the opposite side of the main permanent magnet. suggest.
【0010】また、この発明は、同軸配置の複合リング
状永久磁石と超電導体とを対向させた超電導方式磁気浮
上装置において、該複合リング状主永久磁石が厚み方向
に着磁され互いに異磁極を超電導体に対向させて同軸配
置され、かつ複合リング状永久磁石のリング間にラジア
ル方向かつ隣接主磁石周端面と異磁極に着磁されたリン
グ状補助永久磁石を配設し、リング状永久磁石の当該対
向面に形成した磁極パターンを超電導体対向面に当接さ
せて超電導体を磁化することを特徴とする超電導磁気浮
上装置における超電導体の磁化方法である。Further, according to the present invention, in a superconducting magnetic levitation device in which a coaxially arranged composite ring-shaped permanent magnet and a superconductor are opposed to each other, the composite ring-shaped main permanent magnet is magnetized in the thickness direction to have different magnetic poles. A ring-shaped permanent magnet is arranged coaxially opposite to the superconductor, and a ring-shaped auxiliary permanent magnet magnetized in a radial direction between the adjacent main magnet peripheral end faces and a different magnetic pole is arranged between the rings of the composite ring-shaped permanent magnet. Is a method of magnetizing a superconductor in a superconducting magnetic levitation apparatus, wherein the magnetic pole pattern formed on the facing surface is brought into contact with the facing surface of the superconductor to magnetize the superconductor.
【0011】[0011]
【作用】この発明による超電導磁気浮上装置の作用につ
いて、図面に基づいて詳述する。図1は、この発明によ
る一実施例を示す超電導磁気浮上装置の半縦断面説明図
である。まず、超電導磁気浮上装置はその浮上力を確保
するために、磁石厚みや残留磁束密度の大きい永久磁石
を利用するが、例えば、超電導体からなる固定盤1に対
向する回転側の回転盤10を、超電導体対向方向に磁化
されたリング状主永久磁石11,12だけで構成する
と、大きな空隙がリング状主磁石間に存在し磁気漏洩が
大きく、磁石が保有する磁気エネルギーを主対向隙間に
集中することが不可能である。The operation of the superconducting magnetic levitation device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a semi-longitudinal sectional view showing a superconducting magnetic levitation device according to an embodiment of the present invention. First, the superconducting magnetic levitation device uses a permanent magnet having a large magnet thickness and a large residual magnetic flux density in order to secure its levitation force. For example, the rotating side rotary plate 10 facing the fixed plate 1 made of a superconductor is used. , If only the ring-shaped main permanent magnets 11 and 12 magnetized in the opposing direction of the superconductor are used, a large air gap exists between the ring-shaped main magnets and the magnetic leakage is large, and the magnetic energy held by the magnets is concentrated in the main opposing gap. Impossible to do.
【0012】そこで、同軸配置された複合リング状主永
久磁石を互いに異磁極を超電導体対向方向に対向させて
配置することにより、磁気浮上特性が改善されるが、空
隙への磁気漏洩は避けられず、さらに磁束の効率化を図
る必要がある。一方、各主リング状永久磁石間に継鉄を
採用すると、重量大幅増と大型化するため、回転盤(フ
ライホイール)としての浮上ギャップの確保が困難にな
る。Therefore, the magnetic levitation characteristics are improved by arranging the composite ring-shaped main permanent magnets coaxially arranged with different magnetic poles facing each other in the superconductor facing direction, but magnetic leakage to the air gap is avoided. First, it is necessary to further improve the efficiency of magnetic flux. On the other hand, if a yoke is used between the main ring-shaped permanent magnets, the weight will increase significantly and the size will increase, making it difficult to secure a floating gap as a rotary disk (flywheel).
【0013】そこで、この発明では、ラジアル方向に着
磁された補助磁石を使用する。すなわち、図1における
超電導磁気浮上装置は、図示しないクライオタンクの底
面上に超電導体として例えばYBaCuO系酸化物超電
導体を用いた円板形超電導体を環状に埋め込んで構成し
た固定盤1が固定配置され、これに対向する上側の回転
盤10には複合リング状永久磁石11,12を用いてい
る。固定盤1の超電導体は内外一対のリング状超電導体
2,3からなり、回転盤10はそれぞれのリング状超電
導体2,3に対向するようリング状永久磁石11,12
が配置され、この永久磁石11,12間の固定盤1の対
向面とは反対側にラジアル方向に着磁されたリング状補
助永久磁石13を配置してある。Therefore, in the present invention, an auxiliary magnet magnetized in the radial direction is used. That is, in the superconducting magnetic levitation apparatus in FIG. 1, a fixed plate 1 constituted by annularly embedding a disc-shaped superconductor using, for example, a YBaCuO-based oxide superconductor as a superconductor on the bottom surface of a cryotank (not shown) is fixedly arranged. The composite ring-shaped permanent magnets 11 and 12 are used for the upper rotary disk 10 facing the upper rotary disk 10. The superconductor of the fixed plate 1 is composed of a pair of inner and outer ring-shaped superconductors 2 and 3, and the rotary plate 10 is arranged so that the ring-shaped permanent magnets 11 and 12 face the respective ring-shaped superconductors 2 and 3.
Is arranged, and a ring-shaped auxiliary permanent magnet 13 magnetized in the radial direction is arranged on the side opposite to the facing surface of the fixed platen 1 between the permanent magnets 11 and 12.
【0014】回転盤10のリング状永久磁石11,12
は、回転軸に平行方向(図のM方向)に磁化され、図で
は外周側のリング状永久磁石11の対向面がN極、その
反対側がS極、内周側のリング状永久磁石12の対向面
がS極、その反対側がN極であり、当該リング状補助永
久磁石13は回転盤10の半径方向に、外周側がN極で
内周側がS極にラジアル方向に着磁されている。Ring-shaped permanent magnets 11 and 12 of the turntable 10
Is magnetized in a direction parallel to the rotation axis (M direction in the figure). In the figure, the facing surface of the ring-shaped permanent magnet 11 on the outer peripheral side is the N pole, the opposite side is the S pole, and the ring-shaped permanent magnet 12 on the inner peripheral side is The opposing surface is an S pole, and the opposite side is an N pole. The ring-shaped auxiliary permanent magnet 13 is magnetized in the radial direction of the rotating disk 10, the N pole on the outer peripheral side and the S pole on the inner peripheral side in the radial direction.
【0015】ここでは、リング状補助永久磁石13はパ
ーミアンスを増大させ、磁石効率を向上させるため、主
永久磁石11,12の厚み方向の半分以下の厚みとし、
主永久磁石11,12の超電導体対向面とは反対面側に
配置することが望ましいが、更に軸方向に厚みを増した
り、複数層の磁石を積層することもできる。材質として
は、高磁気性能のNd−Fe−B系またはPr−Fe−
B系磁石が、あるいは軽量なNd系ボンド磁石、フェラ
イト磁石が適切である。なお、重量は幾分かさむが磁気
特性を向上させるために継鉄を使用してもよい。Here, in order to increase the permeance and improve the magnet efficiency of the ring-shaped auxiliary permanent magnet 13, the thickness of the main permanent magnets 11 and 12 is set to half or less in the thickness direction,
It is desirable to arrange the main permanent magnets 11 and 12 on the side opposite to the surface facing the superconductor, but it is also possible to further increase the thickness in the axial direction or stack a plurality of layers of magnets. As the material, Nd-Fe-B system or Pr-Fe- with high magnetic performance is used.
B-based magnets, or lightweight Nd-based bonded magnets and ferrite magnets are suitable. It should be noted that a yoke may be used in order to improve the magnetic characteristics although the weight is somewhat reduced.
【0016】かかる構成により、補助永久磁石13保有
の磁気エネルギーに加えて、主従の磁石による磁気回路
形成にて漏洩磁束が低減され、比較的少ない重量増にて
主磁石たるリング状永久磁石11,12の磁気特性の有
効利用を図ることが可能となる。すなわち、ラジアル方
向に着磁しかつ隣接リング状永久磁石11,12の対向
磁極面と異極性とすれば、リング状の主従永久磁石によ
る磁気回路を新たに形成して超電導体対向面間のパーミ
アンスが上昇し、ギャップへの有効磁束が大幅に増大
し、超電導体への磁化力を増大できる。With this structure, in addition to the magnetic energy possessed by the auxiliary permanent magnet 13, the leakage magnetic flux is reduced by forming a magnetic circuit by the main and sub magnets, and the ring-shaped permanent magnet 11 serving as the main magnet is relatively small in weight. It is possible to effectively utilize the magnetic properties of No. 12. That is, if the magnetic poles are magnetized in the radial direction and have different polarities from the opposing magnetic pole surfaces of the adjacent ring-shaped permanent magnets 11 and 12, a magnetic circuit is newly formed by the ring-shaped main and slave permanent magnets and the permeance between the superconductor opposing surfaces is increased. Is increased, the effective magnetic flux to the gap is greatly increased, and the magnetizing force to the superconductor can be increased.
【0017】着磁に際して、固定盤1はクライオタンク
内に充填された液体窒素等の冷媒にてその臨界温度以下
に冷却されて超電導励起状態となり、リング状主永久磁
石11,12とリング状補助永久磁石13とからなる回
転盤10をこの固定盤1の超電導体に直接当接すること
により、上述のごとく供給磁束が集中して高磁束密度の
磁界が得られた永久磁石11,12により着磁すること
ができ、より強大な超電導磁石が得られ、より強力な磁
気浮上力を発生する超電導磁気浮上装置が得られる。When magnetized, the stationary platen 1 is cooled to a temperature below its critical temperature by a refrigerant such as liquid nitrogen filled in a cryotank and becomes a superconducting excited state, and the ring-shaped main permanent magnets 11 and 12 and the ring-shaped auxiliary magnets. By directly contacting the rotating plate 10 including the permanent magnet 13 with the superconductor of the fixed plate 1, the supply magnetic flux is concentrated and the magnetic fields having high magnetic flux density are obtained by the permanent magnets 11 and 12 as described above. Therefore, a stronger superconducting magnet can be obtained, and a superconducting magnetic levitation device that generates a stronger magnetic levitation force can be obtained.
【0018】なお、永久磁石体の固有温度特性として、
着磁磁石はその周囲温度が高温では小さく、低温領域で
は大きな磁気エネルギーを保有することから、上記の超
電導体を磁化するとき、この磁石温度特性差を利用して
回転盤11のリング状永久磁石12,13も超電導体と
同様に低温雰囲気内に配置して冷却し、得られた大きな
磁石磁場にて超電導体を着磁することにより、強力な超
電導磁石を得ることができる。着磁を完了した後、永久
磁石の冷却媒体のみを除去して、冷却媒体の摩擦抵抗を
取り除き、特に磁石周辺を真空状態にすれば、より一層
摩擦損失の少ない、かつ強力な磁気浮上力と駆動エネル
ギーが得られることになる。As a characteristic temperature characteristic of the permanent magnet body,
The magnetized magnet has a small ambient temperature and a large magnetic energy in a low temperature region. Therefore, when magnetizing the above-mentioned superconductor, the magnetized temperature characteristic difference is utilized to make the ring-shaped permanent magnet of the rotating disk 11. Similarly to the superconductor, 12 and 13 are also placed in a low temperature atmosphere to be cooled, and the superconductor is magnetized by the obtained large magnetic field, so that a strong superconducting magnet can be obtained. After the magnetization is completed, only the cooling medium of the permanent magnet is removed to remove the frictional resistance of the cooling medium. Especially, if the surroundings of the magnet are placed in a vacuum state, the magnetic levitation force with less friction loss can be obtained. Driving energy will be obtained.
【0019】この発明において、着磁及び可動体に用い
る永久磁石体としては、従来の鋳造磁石やフェライト磁
石等が用いられるが、特に超電導体への対向面に強力な
磁束を発生させ、装置の小型化を可能にする最大エネル
ギー積の高いラジアル異方性Nd−Fe−B系等の希土
類永久磁石が好ましく、特に、着磁時に同時に冷却する
場合は−100℃以下での低温磁気特性にすぐれたラジ
アル異方性Pr−Fe−B系磁石が最適である。永久磁
石体を支持する回転盤は、1つのリング状磁石あるいは
複数のリング状磁石を同心状に支持でき、超電導体との
相対的な回転を阻害しない構成であればいずれの形態で
も良く、材質にはAl、Cu等の非磁性材が用いられ
る。In the present invention, a conventional cast magnet, a ferrite magnet or the like is used as the permanent magnet body used for the magnetization and the movable body. Particularly, a strong magnetic flux is generated on the surface facing the superconductor, and the permanent magnet body is used for the apparatus. A rare earth permanent magnet such as a radial anisotropic Nd-Fe-B system having a high maximum energy product that enables downsizing is preferable, and particularly when cooled simultaneously at the time of magnetization, it has excellent low-temperature magnetic characteristics at -100 ° C or less. A radial anisotropic Pr-Fe-B magnet is optimal. The turntable that supports the permanent magnet body may have any configuration as long as it can concentrically support one ring-shaped magnet or a plurality of ring-shaped magnets and does not impede relative rotation with the superconductor. A non-magnetic material such as Al or Cu is used for.
【0020】[0020]
【実施例】図1と同様に、図示しない断熱材で底面と外
周部を被覆したクライオタンク内には、超電導体として
YBaCuO系を用いた円板形超電導体を環状に埋め込
んだ固定盤が固定配置され、互いに異磁極を超電導体対
向方向に対向させた、内外径が異なり磁石間の距離を所
定の寸法に設定した2つのリング状永久磁石とその間に
配置するラジアル異方性補助永久磁石とからなる回転盤
が固定盤に対向させてある。磁石として、外側のリング
状主永久磁石に外径99mm、内径70mm、高さ7m
m寸法のNd−Fe−B系磁石、内側のリング状主永久
磁石に外径48mm、内径20mm、高さ7mm寸法の
Nd−Fe−B系磁石、リング状補助永久磁石に約外径
70mm、内径48mm、高さ2.5mm寸法のNd−
Fe−B系磁石を用いたところ、17%重量増に対し
て、主間隙2mmの位置にて磁束密度は約30%増加を
見た。EXAMPLE As in FIG. 1, in a cryotank whose bottom and outer peripheral portions are covered with a heat insulating material (not shown), a fixed plate in which a disc-shaped superconductor made of YBaCuO as a superconductor is embedded in a ring is fixed. Two ring-shaped permanent magnets which are arranged and have different magnetic poles opposed to each other in a superconductor-opposing direction and which have different inner and outer diameters and have a predetermined distance between magnets; and a radial anisotropic auxiliary permanent magnet arranged between them. The rotating plate consisting of is opposed to the fixed plate. As a magnet, the outer ring-shaped main permanent magnet has an outer diameter of 99 mm, an inner diameter of 70 mm, and a height of 7 m.
m size Nd-Fe-B system magnet, inner ring-shaped main permanent magnet outer diameter 48 mm, inner diameter 20 mm, height 7 mm Nd-Fe-B system magnet, ring-shaped auxiliary permanent magnet approximately outer diameter 70 mm, Nd- with inner diameter of 48 mm and height of 2.5 mm
When the Fe-B magnet was used, the magnetic flux density was found to increase by about 30% at the position where the main gap was 2 mm, while the weight increase was 17%.
【0021】[0021]
【発明の効果】この発明は、異磁極を超電導体対向方向
へ対向させた同軸配置の複合リング状主永久磁石からな
る回転盤の主永久磁石のリング間にラジアル異方性磁石
を配置しリング状の主従永久磁石による磁気回路を新た
に形成して発生磁束を増大させて、磁気浮上力あるいは
着磁時の磁化力を向上させたことを特徴とし、実施例に
明らかなように、超電導磁気浮上装置で特に重要な、永
久磁石からなる回転盤の軽量化並びに回転盤と超電導体
からなる固定盤との対向間隙を適切に確保できかつ対向
間隙に高磁界を形成でき、高性能な装置を得ることがで
きる。According to the present invention, a radial anisotropic magnet is arranged between the rings of the main permanent magnets of the rotating disk which is composed of coaxially arranged composite ring-shaped main permanent magnets with different magnetic poles facing each other in the superconductor facing direction. It is characterized in that a magnetic circuit is newly formed by the master-slave permanent magnets in the shape of a circle to increase the generated magnetic flux and to improve the magnetic levitation force or the magnetizing force at the time of magnetization. It is particularly important in a levitation device to reduce the weight of a rotating disk made of permanent magnets, to properly secure a facing gap between the rotating disk and a fixed plate made of a superconductor, and to form a high magnetic field in the facing gap, thus providing a high-performance device. Obtainable.
【図1】この発明による一実施例を示す超電導磁気浮上
装置の半縦断面説明図である。FIG. 1 is a semi-longitudinal sectional view showing a superconducting magnetic levitation device according to an embodiment of the present invention.
1 固定盤 2,3 リング状超電導体 10 回転盤 11,12 リング状主永久磁石 13 リング状補助永久磁石 1 fixed plate 2,3 ring-shaped superconductor 10 rotating plate 11,12 ring-shaped main permanent magnet 13 ring-shaped auxiliary permanent magnet
Claims (3)
と、これに対向配置する同軸配置の複合リング状主永久
磁石からなる回転盤とから構成され、該複合リング状主
永久磁石が厚み方向に着磁され互いに異磁極を超電導体
に対向させて同軸配置され、かつ複合リング状主永久磁
石のリング間にラジアル方向かつ隣接主磁石周端面と異
磁極に着磁されたリング状補助永久磁石を配設したこと
を特徴とする超電導磁気浮上装置。1. A stationary plate made of a superconductor arranged in an annular shape, and a rotary plate made of a coaxially arranged composite ring-shaped main permanent magnet opposed to the fixed plate, the composite ring-shaped main permanent magnet having a thickness direction. Ring-shaped auxiliary permanent magnets that are magnetized in the same direction and are coaxially arranged with their different magnetic poles facing the superconductor, and that are magnetically polarized between the rings of the composite ring-shaped main permanent magnet in the radial direction and the adjacent main magnet peripheral end face and the different magnetic poles. A superconducting magnetic levitation device, characterized in that
久磁石の厚み方向の半分以下の厚みで主永久磁石の超電
導体対向面とは反対面側に配置したことを特徴とする超
電導磁気浮上装置。2. The superconducting magnetic levitation according to claim 1, wherein the auxiliary permanent magnet is arranged on the surface of the main permanent magnet opposite to the surface facing the superconductor in a thickness of half or less in the thickness direction of the main permanent magnet. apparatus.
導体とを対向させた超電導方式磁気浮上装置において、
該複合リング状主永久磁石が厚み方向に着磁され互いに
異磁極を超電導体に対向させて同軸配置され、かつ複合
リング状永久磁石のリング間にラジアル方向かつ隣接主
磁石周端面と異磁極に着磁されたリング状補助永久磁石
を配設し、リング状永久磁石の当該対向面に形成した磁
極パターンを超電導体対向面に当接させて超電導体を磁
化することを特徴とする超電導磁気浮上装置における超
電導体の磁化方法。3. A superconducting magnetic levitation device in which a composite ring-shaped permanent magnet coaxially arranged and a superconductor are opposed to each other,
The composite ring-shaped main permanent magnets are magnetized in the thickness direction and are coaxially arranged with their different magnetic poles facing the superconductor, and between the rings of the composite ring-shaped permanent magnets in the radial direction and between the adjacent main magnet peripheral end faces and different magnetic poles. Superconducting magnetic levitation characterized by arranging a magnetized ring-shaped auxiliary permanent magnet and magnetizing the superconductor by bringing the magnetic pole pattern formed on the facing surface of the ring-shaped permanent magnet into contact with the facing surface of the superconductor. Method of magnetizing a superconductor in an apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113645A JPH08288125A (en) | 1995-04-13 | 1995-04-13 | Superconducting magnetic levitation apparatus and magnetizing method of its superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7113645A JPH08288125A (en) | 1995-04-13 | 1995-04-13 | Superconducting magnetic levitation apparatus and magnetizing method of its superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08288125A true JPH08288125A (en) | 1996-11-01 |
Family
ID=14617505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7113645A Pending JPH08288125A (en) | 1995-04-13 | 1995-04-13 | Superconducting magnetic levitation apparatus and magnetizing method of its superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08288125A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007019127A (en) * | 2005-07-06 | 2007-01-25 | Yaskawa Electric Corp | Periodic magnetic field generator and linear motor using the same |
CN100452467C (en) * | 2001-05-11 | 2009-01-14 | 艾迪森股份公司 | Method for preparation of high densified superconductor massive bodies of MGB2 relevant solid end-products and their use |
-
1995
- 1995-04-13 JP JP7113645A patent/JPH08288125A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100452467C (en) * | 2001-05-11 | 2009-01-14 | 艾迪森股份公司 | Method for preparation of high densified superconductor massive bodies of MGB2 relevant solid end-products and their use |
JP2007019127A (en) * | 2005-07-06 | 2007-01-25 | Yaskawa Electric Corp | Periodic magnetic field generator and linear motor using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8471660B2 (en) | Assembly for magnetization of rare-earth permanent magnets | |
US7315103B2 (en) | Superconducting rotating machines with stationary field coils | |
CN102900761B (en) | Permanent magnet biased axial hybrid magnetic bearing | |
US6169352B1 (en) | Trapped field internal dipole superconducting motor generator | |
JPH07229517A (en) | Magnetic bearing device of rotor shaft | |
CN108050156A (en) | A kind of sextupole hybrid magnetic bearing | |
CN114198403A (en) | Five-degree-of-freedom hybrid magnetic bearing | |
CN204284204U (en) | A kind of low power consumption permanent magnet biased axial hybrid magnetic bearing | |
CN202883726U (en) | Permanent magnet bias magnet axial mixed magnetic bearing | |
Telezing et al. | Torque characteristics analysis of a novel hybrid superconducting magnetic coupling with axial-flux using a magnetic equivalent circuit model | |
JPH08288125A (en) | Superconducting magnetic levitation apparatus and magnetizing method of its superconductor | |
WO2007148736A1 (en) | Inductor type synchronizer | |
JPH08288124A (en) | Superconducting magnetic levitation apparatus and magnetizing method of its superconductor | |
JPH10136609A (en) | Motor and storage apparatus using the wire | |
CN216951299U (en) | Two-half-degree-of-freedom hybrid magnetic bearing | |
JPH08203727A (en) | Magnetizing method of superconductor in superconducting magnetic levitation device | |
JP2799802B2 (en) | Superconducting levitation type rotating device | |
JPS61218120A (en) | Magnetic field generator | |
JP5335260B2 (en) | Cylindrical power generator having a two-pole shaft rotating body levitated by a high-temperature superconductor | |
GB2613326A (en) | New type of monopole-magnet rotating superconductive coupler | |
JP3271330B2 (en) | Magnet magnetizing device | |
JPH08250323A (en) | Method of magnetizing superconductor in superconducting magnetic levitation device | |
JP2003004041A (en) | Fly wheel type super conductivity magnetic bearing and its system | |
JPH07327338A (en) | Superconducting levitation rotary system | |
Kim et al. | Development of the noncontact rotating system using combined ring-shaped HTS bulks and permanent magnets |