JPH08203727A - Magnetizing method of superconductor in superconducting magnetic levitation device - Google Patents
Magnetizing method of superconductor in superconducting magnetic levitation deviceInfo
- Publication number
- JPH08203727A JPH08203727A JP7030156A JP3015695A JPH08203727A JP H08203727 A JPH08203727 A JP H08203727A JP 7030156 A JP7030156 A JP 7030156A JP 3015695 A JP3015695 A JP 3015695A JP H08203727 A JPH08203727 A JP H08203727A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- permanent magnet
- superconducting
- magnetizing
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 62
- 238000005339 levitation Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 30
- 239000007788 liquid Substances 0.000 abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 15
- 238000001816 cooling Methods 0.000 abstract description 8
- 230000005415 magnetization Effects 0.000 abstract description 8
- 239000003507 refrigerant Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 239000002826 coolant Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、磁気軸受や電力貯蔵
装置などに広く利用できる超電導方式の磁気浮上装置に
おける超電導体の磁化方法の改良に係り、対向配置させ
る永久磁石と超電導体とを同一の低温雰囲気下、例えば
液体窒素などの冷却媒体内に浸漬して、永久磁石の磁極
パターンを超電導体対向面に当接させて磁化すると、低
温雰囲気で大きな磁気エネルギーを有する永久磁石で磁
化でき、強力な超電導磁石を得ることが可能な超電導磁
気浮上装置における超電導体の磁化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method of magnetizing a superconductor in a magnetic levitation device of a superconducting system which can be widely used in magnetic bearings, electric power storage devices, and the like. In a low-temperature atmosphere, for example, by immersing in a cooling medium such as liquid nitrogen and contacting the magnetic pole pattern of the permanent magnet with the surface facing the superconductor, the permanent magnet having a large magnetic energy in the low-temperature atmosphere can be magnetized. The present invention relates to a method of magnetizing a superconductor in a superconducting magnetic levitation device capable of obtaining a strong superconducting magnet.
【0002】[0002]
【従来の技術】従来より、超電導体の物理的特性を生か
した技術の研究が盛んに行われているが、特に最近で
は、磁気浮上効果及びピン止め効果による超電導浮上力
を利用した非接触の超電導浮上型回転装置は、原理的に
それがエネルギー不要、低摩擦、高速回転等を可能とす
るため、磁気軸受装置や、電力貯蔵装置用大型フライホ
イール等への利用が研究されている。2. Description of the Related Art Conventionally, a lot of research has been conducted on techniques utilizing the physical characteristics of superconductors. In particular, recently, a non-contact type utilizing the superconducting levitation force by the magnetic levitation effect and the pinning effect has been developed. The superconducting levitation type rotating device has been studied for use in magnetic bearing devices, large flywheels for electric power storage devices, etc., because it enables energy-free, low friction, and high-speed rotation in principle.
【0003】特に、液体窒素温度領域で超電導現象が得
られる酸化物超電導体の発見によって、冷却体として安
価で取扱いの容易な液体窒素が使用できるようになった
こと、及び強い超電導浮上力を持つ高温超電導バルク材
料が開発されたことが超電導体に対する浮上力を利用し
た研究の大きな契機となった。In particular, the discovery of an oxide superconductor capable of obtaining a superconducting phenomenon in the liquid nitrogen temperature region has made it possible to use liquid nitrogen, which is inexpensive and easy to handle, as a cooling body, and has a strong superconducting levitation force. The development of high-temperature superconducting bulk material has been a major impetus for research utilizing the levitation force for superconductors.
【0004】フライホイールによる電力貯蔵は、電力を
回転エネルギーに蓄え、必要な時に電力として取り出し
て使用するものである。超電導フライホイールを大型化
すれば、より多くの電力貯蔵が可能となり、このような
装置の大型化は、永久磁石と超電導体の数を増やすこと
によって達成できる。さらに、強力な磁場でもって超電
導体を磁化することにより、磁気的により一層強力な超
電導磁石とすることによっても達成できる。The electric power storage by the flywheel is one in which electric power is stored in rotational energy and is taken out and used as electric power when necessary. Larger superconducting flywheels allow more power storage, and such larger devices can be achieved by increasing the number of permanent magnets and superconductors. Further, by magnetizing the superconductor with a strong magnetic field, it is possible to achieve a magnetically stronger superconducting magnet.
【0005】[0005]
【発明が解決しようとする課題】超電導方式磁気浮上装
置において、超電導体はその周囲温度が臨界温度以下に
なると、超電導現象を起こし、永久磁石による磁場によ
って磁化されて超電導磁石となり、永久磁石との間に反
発または吸引作用が働き、磁気浮上が起こる。従って、
回転側の永久磁石体と固定側の超電導体を対向させた該
装置では、超電導体は予め永久磁石体の磁極配置に合わ
せて磁化しておく必要がある。In the superconducting type magnetic levitation device, when the ambient temperature of the superconductor falls below the critical temperature, the superconducting phenomenon occurs and the superconductor is magnetized by the magnetic field of the permanent magnet to become the superconducting magnet. Repulsion or suction works between them, causing magnetic levitation. Therefore,
In the device in which the permanent magnet body on the rotating side and the superconductor on the stationary side are opposed to each other, the superconductor must be magnetized in advance in accordance with the magnetic pole arrangement of the permanent magnet body.
【0006】例えば、円板形イットリウム系超電導体を
環状に複数環配置した固定盤と、リング状永久磁石を複
数リング埋め込んだ回転盤とからなる磁気浮上装置にお
いて、超電導体を所要の磁極パターンで磁化する方法を
考慮するに、超電導体の着磁で一般的なコイル着磁で
は、環状に配置された超電導体に種々の磁極を形成する
のに複雑な巻線を行う必要があり、実用化するには極め
て困難であるため、永久磁石を用いて着磁されていた。
しかも、永久磁石を用いた着磁では、コイルのように強
力な磁場にて着磁できないため、当該磁気浮上装置にお
いて強力な磁気浮上力と駆動エネルギーが得られない問
題があった。[0006] For example, in a magnetic levitation device comprising a fixed plate in which a plurality of disc-shaped yttrium-based superconductors are annularly arranged and a rotary plate in which a plurality of ring-shaped permanent magnets are embedded, a superconductor is formed in a required magnetic pole pattern. Considering the magnetizing method, in general coil magnetization for superconductor magnetization, it is necessary to perform complicated windings to form various magnetic poles in the superconductor arranged in an annular shape. Since it is extremely difficult to do so, it was magnetized using a permanent magnet.
Moreover, the magnetization using a permanent magnet cannot be magnetized with a strong magnetic field like a coil, and thus there is a problem that a strong magnetic levitation force and driving energy cannot be obtained in the magnetic levitation device.
【0007】この発明は、超電導方式磁気浮上装置にお
ける超電導体の着磁の問題点に鑑み、任意の磁極パター
ンで着磁が容易に実施できかつ強力な超電導磁石を得る
ことが可能な超電導磁気浮上装置における超電導体の磁
化方法の提供を目的としている。In view of the problem of magnetizing a superconductor in a superconducting magnetic levitation device, the present invention makes it possible to easily carry out magnetization with an arbitrary magnetic pole pattern and to obtain a strong superconducting magnetic levitation. It is intended to provide a method for magnetizing a superconductor in an apparatus.
【0008】[0008]
【課題を解決するための手段】発明者は、容易に着磁で
きかつ強力な超電導磁石を得ることが可能な着磁方法を
目的に種々検討した結果、超電導方式磁気浮上装置にお
いて、超電導体を超電導状態にするために、従来は超電
導体のみを臨界温度以下に冷却するが、この時永久磁石
も同時に冷却すれば、磁石の固有温度特性により磁石の
磁力(最大エネルギー積)が増大することに着目し、超
電導体と永久磁石体の双方の同時冷却によって磁力強化
した強力な磁場でもって超電導体を磁化することによ
り、磁気的により一層強力な超電導磁石とすることがで
き、装置全体としての磁気浮上力を大幅に向上すること
を知見し、この発明を完成した。As a result of various studies for the purpose of a magnetizing method capable of easily magnetizing and obtaining a strong superconducting magnet, the inventor has found that in a superconducting magnetic levitation device, Conventionally, only the superconductor is cooled to the critical temperature or lower to bring it into a superconducting state. At this time, if the permanent magnet is also cooled at the same time, the magnetic force (maximum energy product) of the magnet increases due to the inherent temperature characteristic of the magnet. Focusing attention, magnetizing the superconductor with a strong magnetic field strengthened by simultaneous cooling of both the superconductor and the permanent magnet body makes it possible to make a magnetically stronger superconducting magnet. The present invention has been completed by finding that the levitation force is significantly improved.
【0009】すなわち、この発明は、例えば、空隙を形
成して対向する永久磁石体と超電導体とを相対的に回転
可能に配置した超電導磁気浮上回転装置において、永久
磁石体と超電導体とを同一又は温度が近似した低温雰囲
気下に置き、永久磁石体の当該対向面に形成した磁極パ
ターンを超電導体対向面に当接させて超電導体を磁化す
ることを特徴とする超電導磁気浮上装置における超電導
体の磁化方法である。また、この発明は、上記の構成に
おいて、着磁用永久磁石がPr−Fe−B系永久磁石で
ある超電導磁気浮上装置における超電導体の磁化方法を
合わせて提案する。That is, according to the present invention, for example, in a superconducting magnetic levitation rotating device in which a facing permanent magnet body and a superconductor are formed so as to be rotatable relative to each other, a permanent magnet body and a superconductor are the same. Alternatively, the superconductor in a superconducting magnetic levitation device is characterized in that the superconductor is magnetized by placing it in a low-temperature atmosphere having a similar temperature and bringing a magnetic pole pattern formed on the facing surface of the permanent magnet body into contact with the facing surface of the superconductor. This is the magnetizing method. The present invention also proposes a method of magnetizing a superconductor in a superconducting magnetic levitation device in which the magnetizing permanent magnet is a Pr-Fe-B system permanent magnet in the above-mentioned configuration.
【0010】この発明において、着磁対象の超電導体は
どのような組成でもよいが、液体窒素などの冷媒で強力
な超電導性を発揮する、イットリウム系およびサマリウ
ム系超電導体が適している。特に、YBa2Cu3Ox、
Bi2Sr2Ca2Cu3Ox等の酸化物高温超電導体が用
いられる。超電導体は後述の永久磁石による良好な磁気
浮上効果及び/又はピン止め効果を達成する構成であれ
ばいずれの構成でも良く、円板状の複数の超電導体を前
記永久磁石に対向させて環状に配置する等、要求される
諸特性に応じて適宜選定することができる。In the present invention, the superconductor to be magnetized may have any composition, but yttrium-based and samarium-based superconductors which exhibit strong superconductivity in a refrigerant such as liquid nitrogen are suitable. In particular, YBa 2 Cu 3 O x ,
An oxide high temperature superconductor such as Bi 2 Sr 2 Ca 2 Cu 3 O x is used. The superconductor may have any structure as long as it achieves a good magnetic levitation effect and / or pinning effect by a permanent magnet described later, and a plurality of disc-shaped superconductors are opposed to the permanent magnet to form an annular shape. It can be appropriately selected according to various characteristics required such as arrangement.
【0011】この発明において、着磁及び可動体に用い
る永久磁石体としては、従来の鋳造磁石やフェライト磁
石等が用いられるが、特に超電導体への対向面に強力な
磁束を発生させ、装置の小型化を可能にする最大エネル
ギー積の高いNd−Fe−B系等の希土類永久磁石が好
ましく、特に、−100℃以下での低温磁気特性にすぐ
れたPr−Fe−B系磁石が最適である。永久磁石体を
支持する回転盤は、1つのリング状磁石あるいは複数の
リング状磁石を同心状に支持でき、超電導体との相対的
な回転を阻害しない構成であればいずれの形態でも良
く、材質にはAl、Cu等の非磁性材が用いられる。In the present invention, a conventional cast magnet, a ferrite magnet or the like is used as the permanent magnet body used for the magnetization and the movable body. Especially, a strong magnetic flux is generated on the surface facing the superconductor, and A rare earth permanent magnet such as an Nd-Fe-B system having a high maximum energy product that enables downsizing is preferable, and a Pr-Fe-B system magnet having excellent low-temperature magnetic characteristics at -100 ° C or less is particularly preferable. . The turntable that supports the permanent magnet body may have any configuration as long as it can concentrically support one ring-shaped magnet or a plurality of ring-shaped magnets and does not impede relative rotation with the superconductor. A non-magnetic material such as Al or Cu is used for.
【0012】また、この発明において、着磁雰囲気は、
使用する超電導体の臨界温度以下、通常、使用する液体
窒素などの液体冷媒中に超電導体と永久磁石体を入れる
など、同一の雰囲気下におくほか、例えば、超電導体を
液体窒素で冷却し、永久磁石体をドライアイスで冷却す
るなど冷却温度が近似した雰囲気とすることも可能であ
る。In the present invention, the magnetizing atmosphere is
Below the critical temperature of the superconductor to be used, usually put the superconductor and the permanent magnet body in a liquid refrigerant such as liquid nitrogen to be used, etc., under the same atmosphere, for example, cooling the superconductor with liquid nitrogen, It is also possible to create an atmosphere in which the cooling temperature is similar, such as by cooling the permanent magnet body with dry ice.
【0013】[0013]
【作用】この発明は、超電導磁気浮上装置(浮上回転装
置、磁気軸受)において、例えば、予め着磁された永久
磁石体を有する回転盤を、超電導体の臨界温度以下の液
体冷媒下の雰囲気中に置いて、対向する超電導体を有す
る固定盤に当接させて、着磁された永久磁石体によって
超電導体を冷却雰囲気中で磁化することを特徴とする。According to the present invention, in a superconducting magnetic levitation device (levitation rotating device, magnetic bearing), for example, a rotary disk having a permanent magnet body magnetized in advance is placed in an atmosphere of a liquid refrigerant below the critical temperature of the superconductor. It is characterized in that the superconductor is magnetized in a cooling atmosphere by being abutted against a fixed plate having opposing superconductors and magnetized by a magnetized permanent magnet body.
【0014】永久磁石体の固有温度特性として、着磁磁
石はその周囲温度が高温では小さく、低温領域では大き
な磁気エネルギーを保有することから、超電導体を磁化
するとき、この磁石温度特性差を利用して永久磁石も超
電導体と同様に低温雰囲気において大きな磁石磁場にて
超電導体を磁化することにより、強力な超電導磁石を得
ることができる。着磁を完了した後、永久磁石の冷却媒
体のみを除去して、冷却媒体の摩擦抵抗を取り除き、特
に磁石周辺を真空状態にすれば、より一層摩擦損失の少
ない、かつ強力な磁気浮上力と駆動エネルギーが得られ
ることになる。As a characteristic temperature characteristic of the permanent magnet body, a magnetized magnet has a small ambient temperature and a large magnetic energy in a low temperature region. Therefore, when magnetizing a superconductor, this magnet temperature characteristic difference is used. Similarly to the superconductor, a strong magnet can be obtained by magnetizing the permanent magnet with a large magnet magnetic field in a low temperature atmosphere. After the magnetization is completed, only the cooling medium of the permanent magnet is removed to remove the frictional resistance of the cooling medium. Especially, if the surroundings of the magnet are placed in a vacuum state, the magnetic levitation force with less friction loss can be obtained. Driving energy will be obtained.
【0015】[0015]
【実施例】図1に示す超電導浮上型回転装置は、この発
明による着磁方法を実施するための一構成例であり、断
熱材2で底面と外周部を被覆したクライオタンク1に
は、内周面に密着して上下動可能なスライド側板3が収
納され、図示しない支持装置でスライド側板3を引上げ
ることにより、クライオタンク1の内容積が増大する構
成からなり、また、クライオタンク1の外周上部には液
体冷媒の排出用弁4が設けてある。DESCRIPTION OF THE PREFERRED EMBODIMENTS The superconducting levitation type rotating device shown in FIG. 1 is an example of the structure for carrying out the magnetizing method according to the present invention. The slide side plate 3 that is in close contact with the peripheral surface and is movable up and down is housed, and the slide side plate 3 is pulled up by a support device (not shown) to increase the internal volume of the cryotank 1. A valve 4 for discharging the liquid refrigerant is provided on the upper periphery.
【0016】クライオタンク1の底面上には、超電導体
としてYBaCu3Ox系を用いた円板形超電導体を環状
に埋め込んだ固定盤10が固定配置され、スライド側板
3を最大限引上げた状態で、液体冷媒として液体窒素5
をクライオタンク1内に導入し、複数のリング状永久磁
石体をに着設した回転盤11の永久磁石体を超電導体に
対向させて回転盤11をクライオタンク1内の液体窒素
5中に浸漬してある。On the bottom surface of the cryotank 1, there is fixedly arranged a fixed plate 10 in which a disc-shaped superconductor using YBaCu 3 O x system as a superconductor is embedded in a ring shape, and the slide side plate 3 is pulled up to the maximum extent. And liquid nitrogen as liquid refrigerant
Is introduced into the cryotank 1, the permanent magnet body of the turntable 11 having a plurality of ring-shaped permanent magnets attached thereto is opposed to the superconductor, and the turntable 11 is immersed in the liquid nitrogen 5 in the cryotank 1. I am doing it.
【0017】予め所定の磁極パターンに着磁された永久
磁石体を有する回転盤11を、対向する超電導体を有す
る固定盤10に当接させて、着磁された永久磁石体によ
って超電導体を液体窒素5中で磁化させる。その後、排
出用弁4を作動させて液体窒素5を所定量排出すること
により、スライド側板3を下げてクライオタンク1内だ
けに液体窒素5が充満して固定盤10のみを冷却するこ
とができ、回転盤11を空気中あるいは真空中で浮上さ
せた状態の超電導浮上型回転装置が得られた。A rotating disk 11 having a permanent magnet body magnetized in advance with a predetermined magnetic pole pattern is brought into contact with a stationary disk 10 having a superconducting body facing each other, and the superconductor is liquidized by the magnetized permanent magnet body. Magnetize in nitrogen 5. After that, by operating the discharge valve 4 to discharge a predetermined amount of liquid nitrogen 5, the slide side plate 3 can be lowered to fill only the cryotank 1 with the liquid nitrogen 5 and cool only the fixed platen 10. Thus, a superconducting levitation type rotating device in which the turntable 11 is levitated in the air or vacuum is obtained.
【0018】ここでは、超電導体を磁化する磁石とし
て、極低温でも安定して優れた磁石特性を保有するPr
−Fe−B系磁石を用いたことにより、同磁石による常
温又はその近傍温度における磁化に比して、磁化力にて
液体窒素中で16%、液体ヘリウム中で21%の増大、
磁気反発力で15%〜25%増大する効果を確認した。Here, as a magnet for magnetizing a superconductor, Pr having stable and excellent magnet characteristics even at an extremely low temperature.
By using the —Fe—B based magnet, the magnetizing force is increased by 16% in liquid nitrogen and 21% in liquid helium, as compared with the magnetization at room temperature or in the vicinity thereof.
The effect of increasing the magnetic repulsion force by 15% to 25% was confirmed.
【0019】[0019]
【発明の効果】この発明は、実施例のごとく、極低温で
も安定して優れた磁石特性を保有するPr−Fe−B系
磁石とYBaCuO系第2種高温超電導体とを組み合わ
せて、液体窒素冷媒体(77K)にて、予め着磁された
永久磁石体を有する回転盤を、液体冷媒下の雰囲気中に
置いて、対向する超電導体を有する固定盤に当接させ
て、着磁された永久磁石体によって超電導体を冷却雰囲
気中で磁化するという、比較的簡易な装置で、かつ簡便
な方法で浮上力の増大など軸受特性を大幅に向上でき
る。また、この発明による超電導体の磁化方法は、永久
磁石体を有する回転盤を対向する超電導体を有する固定
盤に当接させて超電導体を着磁するため、当接時に回転
盤と固定盤と盤中心が相互に若干ずれても、超電導磁気
浮上装置としての回転軸芯は完全に一致した装置が得ら
れる利点がある。According to the present invention, as in the embodiments, liquid nitrogen is combined by combining a Pr—Fe—B type magnet having stable and excellent magnet characteristics at a very low temperature with a YBaCuO type 2 high temperature superconductor. A rotating body having a permanent magnet body magnetized in advance with a refrigerant body (77K) was placed in an atmosphere under a liquid refrigerant and brought into contact with a fixed board having a superconductor opposite thereto, and was magnetized. Bearing characteristics such as an increase in levitation force can be greatly improved by a relatively simple device in which a superconductor is magnetized in a cooling atmosphere by a permanent magnet body and by a simple method. Further, in the method for magnetizing a superconductor according to the present invention, since the rotary disk having the permanent magnet body is brought into contact with the fixed disk having the opposing superconductor to magnetize the superconductor, the rotary disk and the fixed disk are contacted at the time of contact. Even if the centers of the discs are slightly deviated from each other, there is an advantage that the superconducting magnetic levitation device can have a completely matched rotation axis.
【図1】この発明による着磁方法を実施するための一構
成例である超電導浮上型回転装置の縦断面説明図であ
る。FIG. 1 is a vertical cross-sectional explanatory view of a superconducting levitation type rotating device which is an example of a configuration for carrying out a magnetizing method according to the present invention.
1 クライオタンク 2 断熱材 3 スライド側板 4 排出用弁 5 液体窒素 10 固定盤 11 回転盤 1 Cryo Tank 2 Heat Insulating Material 3 Slide Side Plate 4 Discharge Valve 5 Liquid Nitrogen 10 Fixed Plate 11 Rotating Plate
Claims (2)
が近似した低温雰囲気下に置き、永久磁石体の当該対向
面に形成した磁極パターンを超電導体対向面に当接させ
て超電導体を磁化することを特徴とする超電導磁気浮上
装置における超電導体の磁化方法。1. A permanent magnet body and a superconductor are placed under the same or similar low temperature atmosphere, and the magnetic pole pattern formed on the facing surface of the permanent magnet body is brought into contact with the facing surface of the superconductor to form the superconductor. A method for magnetizing a superconductor in a superconducting magnetic levitation device characterized by magnetizing.
r−Fe−B系永久磁石であることを特徴とする超電導
磁気浮上装置における超電導体の磁化方法。2. The magnetizing permanent magnet according to claim 1, wherein
A magnetizing method for a superconductor in a superconducting magnetic levitation apparatus, which is an r-Fe-B system permanent magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7030156A JPH08203727A (en) | 1995-01-25 | 1995-01-25 | Magnetizing method of superconductor in superconducting magnetic levitation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7030156A JPH08203727A (en) | 1995-01-25 | 1995-01-25 | Magnetizing method of superconductor in superconducting magnetic levitation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08203727A true JPH08203727A (en) | 1996-08-09 |
Family
ID=12295900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7030156A Pending JPH08203727A (en) | 1995-01-25 | 1995-01-25 | Magnetizing method of superconductor in superconducting magnetic levitation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08203727A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105810384A (en) * | 2014-12-30 | 2016-07-27 | 北京有色金属研究总院 | Magnetizing method used for high-temperature bulk superconductor |
CN114429849A (en) * | 2022-01-26 | 2022-05-03 | 江苏南方永磁科技有限公司 | Full-automatic device for magnetizing sintered neodymium-iron-boron magnet |
-
1995
- 1995-01-25 JP JP7030156A patent/JPH08203727A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105810384A (en) * | 2014-12-30 | 2016-07-27 | 北京有色金属研究总院 | Magnetizing method used for high-temperature bulk superconductor |
CN114429849A (en) * | 2022-01-26 | 2022-05-03 | 江苏南方永磁科技有限公司 | Full-automatic device for magnetizing sintered neodymium-iron-boron magnet |
CN114429849B (en) * | 2022-01-26 | 2023-06-02 | 江苏南方永磁科技有限公司 | Full-automatic device for magnetizing sintered NdFeB magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hull et al. | Applications of bulk high-temperature superconductors | |
CN102610360B (en) | System and method for magnetization of rare-earth permanent magnets | |
US6441521B1 (en) | Hybrid superconducting motor/generator | |
JP2547287B2 (en) | Superconducting bearing device | |
JPH05180225A (en) | Superconductive bearing device | |
CN105659477A (en) | Superconductive electric motor and generator | |
Patel et al. | Magnetic levitation between a slab of soldered HTS tape and a cylindrical permanent magnet | |
JP2003219581A (en) | Superconducting flywheel power storage apparatus | |
WO1999004477A2 (en) | Trapped field internal dipole superconducting motor generator | |
JPH08203727A (en) | Magnetizing method of superconductor in superconducting magnetic levitation device | |
JPS6326312B2 (en) | ||
Telezing et al. | Torque characteristics analysis of a novel hybrid superconducting magnetic coupling with axial-flux using a magnetic equivalent circuit model | |
JPH08288124A (en) | Superconducting magnetic levitation apparatus and magnetizing method of its superconductor | |
Yoo et al. | Melt-processed LRE-Ba-Cu-O superconductors and prospects for their applications | |
JPH09501761A (en) | Thin film superconductor magnetic bearing | |
JPH08288125A (en) | Superconducting magnetic levitation apparatus and magnetizing method of its superconductor | |
JP2006173639A (en) | Magnetization device for bulk superconductor, method for magnetization, and superconducting synchronous machine | |
JPH08250323A (en) | Method of magnetizing superconductor in superconducting magnetic levitation device | |
JP3631399B2 (en) | Superconducting magnetizer | |
JPH062646A (en) | Superconductive floating type turning gear | |
JPH07327338A (en) | Superconducting levitation rotary system | |
JP2605200B2 (en) | Superconducting bearing device | |
JP4283406B2 (en) | Method and apparatus for magnetizing oxide superconducting material | |
Murakami | Applications of bulk high temperature superconductors | |
JP3192207B2 (en) | Magnetic bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040720 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20041112 |