JP2605200B2 - Superconducting bearing device - Google Patents

Superconducting bearing device

Info

Publication number
JP2605200B2
JP2605200B2 JP4051403A JP5140392A JP2605200B2 JP 2605200 B2 JP2605200 B2 JP 2605200B2 JP 4051403 A JP4051403 A JP 4051403A JP 5140392 A JP5140392 A JP 5140392A JP 2605200 B2 JP2605200 B2 JP 2605200B2
Authority
JP
Japan
Prior art keywords
superconductor
permanent magnet
rotating body
magnets
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4051403A
Other languages
Japanese (ja)
Other versions
JPH0735138A (en
Inventor
宗昭 芝山
健紀 多田
央二 小山
文彦 石川
博正 樋笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Original Assignee
Seiko Epson Corp
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Shikoku Research Institute Inc, Shikoku Electric Power Co Inc filed Critical Seiko Epson Corp
Priority to JP4051403A priority Critical patent/JP2605200B2/en
Publication of JPH0735138A publication Critical patent/JPH0735138A/en
Application granted granted Critical
Publication of JP2605200B2 publication Critical patent/JP2605200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば高速回転を必要
とする流体機械や工作機械、或は余剰電力をフライホイ
ールの運動エネルギーに変換して貯蔵する電力貯蔵装
置、またはジャイロスコープなどに適用される超電導軸
受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, a fluid machine or a machine tool requiring high speed rotation, an electric power storage device for converting surplus electric power into kinetic energy of a flywheel and storing it, or a gyroscope. To a superconducting bearing device to be used.

【0002】[0002]

【従来の技術】近年、回転体の高速回転と高剛性を可能
にした軸受装置として、非接触状態で回転体を支持し得
る超電導装置が開発されている。
2. Description of the Related Art In recent years, a superconducting device capable of supporting a rotating body in a non-contact state has been developed as a bearing device capable of rotating the rotating body at high speed and high rigidity.

【0003】この種の超電導軸受装置としては、例えば
回転体に同心状に設けられ、且つ軸線方向両端部が互い
に逆の極性を帯びた1つの環状永久磁石部と、この永久
磁石の端面に対して回転体の回転軸芯方向に間隔をおい
て対向するように配設された環状超電導体とを備えてい
るものが考えられる。
As this type of superconducting bearing device, for example, one annular permanent magnet portion which is provided concentrically on a rotating body and whose opposite axial ends have polarities opposite to each other, and an end face of this permanent magnet are provided. And an annular superconductor disposed so as to face each other at an interval in the direction of the axis of rotation of the rotating body.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この種
の軸受では、従来の軸受に比べて剛性が低いため、ピン
留め力の強い超電導体の開発が進められた(村上ら、I
CMC90 Topical Conference
1990)。更に、磁石の寸法や異極磁石の組み合わせ
配列法の適正化の努力がなされ、剛性は0.2kgf/mm・c
m2 に達した。(芝山ら、四国電力研究期報第58号平
成3年)。将来的には残留磁束密度の高い強力磁石の採
用によって、約4倍増が見込まれるが、それでも実用レ
ベルの剛性である1kgf/mm・cm2 に20〜30パーセン
ト不足するという問題点がある。
However, since this type of bearing has a lower rigidity than conventional bearings, a superconductor having a strong pinning force has been developed (Murakami et al., I.
CMC90 Topical Conference
1990). Efforts have been made to optimize the dimensions of the magnets and the method of arranging the combination of magnets with different polarities, and the rigidity is 0.2 kgf / mm · c.
It has been reached in m 2. (Shibayama et al., Shikoku Electric Power Research Bulletin No. 58, 1991). The use of a strong magnet having a high residual magnetic flux density is expected to increase about four times in the future, but there is still a problem that the practical level of rigidity of 1 kgf / mm · cm 2 is insufficient by 20 to 30%.

【0005】この問題の生じる理由は、次のとおりと考
えられる。即ち、軸受の剛性は永久磁石の発生する磁束
密度の勾配dB/dzに比例する。磁石の極性の周期的
な配列によって超電導体に接する側の磁場の強さは強め
られて剛性の増加に寄与しているが、超電導体に接しな
い側に存在する大気のために磁気抵抗が追加され、充分
に効果を発揮していない。
[0005] The reason why this problem occurs is considered as follows. That is, the rigidity of the bearing is proportional to the gradient dB / dz of the magnetic flux density generated by the permanent magnet. Due to the periodic arrangement of the polarity of the magnets, the strength of the magnetic field on the side in contact with the superconductor is strengthened and contributes to the increase in rigidity, but the magnetoresistance is added due to the atmosphere on the side not in contact with the superconductor It has not been fully effective.

【0006】[0006]

【課題を解決するための手段】本願発明は、負荷容量及
び剛性を向上させて、回転体の軸振れを防止して回転体
を非接触状態で安定的に支持できる超電導軸受装置を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a superconducting bearing device capable of improving load capacity and rigidity, preventing shaft runout of a rotating body, and stably supporting the rotating body in a non-contact state. With the goal.

【0007】本発明の請求項1の超電導軸受装置は,回
転体の回転軸芯に対して直交方向に延在する円板状の永
久磁石部と、この永久磁石部の円板状の端面に間隔をお
いて対向するように配設されるイットリウム系高温超電
導体とを備えた超電導軸受装置であって、前記永久磁石
部は、前記回転体に固定される強磁性体からなる円板部
と、この円板部の前記超電導体に臨む面において前記回
転軸芯と同心状に配設され、且つ互いに離間する複数の
環状の永久磁石と、前記円板部において隣合う永久磁石
間に介在するように配設される非磁性体とからなり、前
記複数の永久磁石の各々は、超電導体側の端部と円板部
側の端部同士が互いに逆の極性の磁気を帯びており、更
に、隣合う永久磁石の前記超電導体側の端部同士は互い
に逆の極性の磁気を帯びていることを特徴とする。
According to a first aspect of the present invention, there is provided a superconducting bearing device comprising: a disk-shaped permanent magnet portion extending in a direction perpendicular to a rotation axis of a rotating body; and a disk-shaped end surface of the permanent magnet portion. A superconducting bearing device comprising: an yttrium-based high-temperature superconductor disposed so as to face each other at an interval, wherein the permanent magnet portion is formed of a ferromagnetic material fixed to the rotating body. And a plurality of annular permanent magnets disposed concentrically with the rotation axis on a surface of the disk portion facing the superconductor and spaced apart from each other, and a permanent magnet adjacent to the disk portion. And a non-magnetic material disposed so as to be interposed between the magnets. Each of the plurality of permanent magnets has magnets of opposite polarities at the superconductor-side end and the disc-side end. Further, the ends of the adjacent permanent magnets on the superconductor side have opposite polarities. And characterized in that it is tinged with care.

【0008】本発明の請求項2の超電導軸受装置は,回
転体の回転軸芯に対して直交方向に延在する円板状の永
久磁石部と、この永久磁石部の外周面に対して回転体の
回転半径方向に間隔をおいて対向するように配置される
イットリウム系高温超電導体とを備えた超電導軸受装置
であって、前記永久磁石部が、前記回転体に固定され強
磁性体からなる円板部と、この円板部の側面部において
前記超電導体に対面するように配設され、且つ前記回転
軸芯方向に間隔を有する複数の環状の永久磁石と、隣合
う環状の永久磁石の間に介在する非磁性体とからなり、
各永久磁石の回転体の回転半径方向の両端部が互いに逆
の極性の磁気を帯び、隣接する永久磁石の同一側部同士
が互いに逆の極性の磁気を帯びている。
According to a second aspect of the present invention, there is provided a superconducting bearing device, comprising: a disk-shaped permanent magnet portion extending in a direction perpendicular to a rotation axis of a rotating body; It is arranged so as to face each other at intervals in the radius of rotation of the body
A superconducting bearing device comprising an yttrium-based high-temperature superconductor, wherein the permanent magnet portion is fixed to the rotating body, and a disc portion made of a ferromagnetic material; and a side portion of the disc portion to the superconductor. A plurality of annular permanent magnets disposed so as to face each other and having an interval in the rotational axis direction, and a non-magnetic body interposed between adjacent annular permanent magnets,
Both ends in the rotational radius direction of the rotating body of each permanent magnet bear magnets of opposite polarities, and the same sides of adjacent permanent magnets bear magnets of opposite polarities.

【0009】[0009]

【作用】第1及び第2のいずれの発明の場合も、永久磁
石部と超電導体とが所定の間隔をあけて対向した状態で
保持され、回転体が非接触状態で支持されるが、第1の
発明にかかる超電導軸受装置によれば、一方の磁石の正
極から発せられた磁束は反転した後に同磁石の負極側に
向って他方の磁石の正極から発せられる磁束に加算され
るため、磁束は強められ、磁束密度の勾配dB/dzが
大きくなる。更に、超電導体に接しない側の空間は強磁
性体で占められているために磁気抵抗は小さく、超電導
体に接する側の空間の磁束密度を高く保つことが出来
る。このため、剛性及び載荷力が向上する。
In any of the first and second aspects of the invention, the permanent magnet and the superconductor are held in a state where they face each other at a predetermined interval, and the rotating body is supported in a non-contact state. According to the superconducting bearing device according to the first aspect of the invention, the magnetic flux emitted from the positive electrode of one magnet is added to the magnetic flux emitted from the positive electrode of the other magnet toward the negative electrode side of the same magnet after reversing, And the gradient of magnetic flux density dB / dz increases. Further, since the space not in contact with the superconductor is occupied by the ferromagnetic material, the magnetic resistance is small, and the magnetic flux density in the space in contact with the superconductor can be kept high. For this reason, rigidity and loading force are improved.

【0010】また、第2の発明にかかる超電導軸受装置
によれば、一方の磁石の正極から発せられた磁束は反転
した後、同磁石の負極側に向うとともに他方の磁石の正
極から発せられる磁束に加算される。これにより、磁束
は強められ、磁束密度の勾配dB/dzが大きくなる。
更に、超電導体に接しない側の空間は強磁性体によって
占められているので、磁気抵抗は小さく、超電導体に接
する側の空間の磁束密度を高く保つことが出来る。この
ため、剛性及び載荷力が向上する。
Further, according to the superconducting bearing device of the second invention, the magnetic flux generated from the positive electrode of one magnet is reversed, and then the magnetic flux directed toward the negative electrode of the same magnet and generated from the positive electrode of the other magnet is reversed. Is added to As a result, the magnetic flux is strengthened, and the magnetic flux density gradient dB / dz increases.
Further, since the space not in contact with the superconductor is occupied by the ferromagnetic material, the magnetic resistance is small, and the magnetic flux density in the space in contact with the superconductor can be kept high. For this reason, rigidity and loading force are improved.

【0011】[0011]

【実施例】以下、本発明の実施例にかかる超電導軸受装
置を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A superconducting bearing device according to an embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は、第1実施例として設計した載荷力
が約200kgfの超電導軸受装置の主要部を概略的に
示している。
FIG. 1 schematically shows a main portion of a superconducting bearing device designed as a first embodiment and having a loading force of about 200 kgf.

【0013】超電導軸受装置は、垂直な軸状の回転体1
を備えている。回転体1には水平円板状の永久磁石部2
が同心状に設けられ、永久磁石部2の下端面に下方に
は、永久磁石部2に対して回転体1の回転軸芯方向に間
隔をあけて対向するように、環状の超電導体部3が配設
されている。
The superconducting bearing device has a vertical shaft-like rotating body 1.
It has. The rotating body 1 includes a horizontal disk-shaped permanent magnet 2
Are provided concentrically, and the annular superconductor section 3 is provided below the lower end surface of the permanent magnet section 2 so as to face the permanent magnet section 2 at an interval in the rotation axis direction of the rotating body 1. Are arranged.

【0014】永久磁石部2は回転体1に固定された状態
で設けられた強磁性体、例えば、鋼からなる水平な円板
部4を備えている。この円板部4には、図2に示すよう
に、非磁性体例えば、ジュラルミンからなる7つの環状
の隔壁5a〜5gが回転体1と同心状に複数形成されて
いる。隔壁5a〜5gの間にはそれぞれ環状の永久磁石
6a〜6fが嵌められて固定されている。全ての永久磁
石は上下両端部が互いに逆の極性の磁気を帯び、隣接す
る永久磁石の上下方向の同一端部が逆の極性の磁気を帯
びている。例えば、最も内側の永久磁石6aの上端部は
N極、下端部はS極の磁気を帯びており、内側から2番
目の永久磁石6bの上端部はS極、下端部はN極の磁気
を帯びている。そして、回転軸芯の周囲の磁束分布が回
転によって変化しないようになっている。
The permanent magnet section 2 has a horizontal disk section 4 made of a ferromagnetic material, for example, steel, provided in a state fixed to the rotating body 1. As shown in FIG. 2, a plurality of seven annular partition walls 5 a to 5 g made of a nonmagnetic material, for example, duralumin, are formed on the disk portion 4 concentrically with the rotating body 1. Annular permanent magnets 6a to 6f are fitted and fixed between the partition walls 5a to 5g, respectively. All of the permanent magnets have magnets of opposite polarities at upper and lower ends, and the same vertical end of adjacent permanent magnets has magnetism of opposite polarities. For example, the upper end of the innermost permanent magnet 6a has an N pole and the lower end has S pole magnetism. The upper end of the second permanent magnet 6b from the inside has an S pole and the lower end has N pole magnetism. Takes on. The magnetic flux distribution around the rotation axis is not changed by the rotation.

【0015】超電導体部3は、例えば、銅からなる穴開
き水平円板部7と、穴開き円板部7の穴7aの周囲の環
状部分に、永久磁石6a〜6fと対向し且つ周方向に互
いに近接して埋設されている複数の円板状の超電導体8
よりなる。
The superconductor portion 3 has a perforated horizontal disk portion 7 made of, for example, copper and an annular portion around the hole 7a of the perforated disk portion 7 facing the permanent magnets 6a to 6f and in the circumferential direction. Disc-shaped superconductors 8 buried adjacent to each other
Consisting of

【0016】超電導体8は、イットリウム系高温超電導
体、例えば、YBa2Cu3xからなる基板の内部に常
電導粒子(Y2Ba1Cu1)を均一に混在させたものか
らなり、永久磁石2から発せられる磁束侵入を拘束する
性質を持つものである。そして、超電導体8は永久磁石
部2の磁束が所定量侵入する離間位置であってかつ上記
回転体の回転によって侵入磁束の分布が変化しない位置
に配置されている。
The superconductor 8 is made of an yttrium-based high-temperature superconductor, for example, one in which normal conductive particles (Y 2 Ba 1 Cu 1 ) are uniformly mixed in a substrate made of YBa 2 Cu 3 O x , It has the property of restricting the intrusion of the magnetic flux emitted from the magnet 2. The superconductor 8 is arranged at a separated position where the magnetic flux of the permanent magnet portion 2 enters by a predetermined amount and at a position where the distribution of the invading magnetic flux does not change due to the rotation of the rotating body.

【0017】超電導軸受装置のハウジング(図示略)内
には、温度制御ユニット10及び冷凍機9などにより冷
却される冷却ケース11が固定され、この冷却ケース1
1に超電導体部3が固定されている。
A cooling case 11 cooled by a temperature control unit 10 and a refrigerator 9 is fixed in a housing (not shown) of the superconducting bearing device.
1, a superconductor section 3 is fixed.

【0018】超電導軸受装置を作動させる場合、超電導
体8は冷却ケース11内に循環させられる適当な冷媒に
よって冷却され、超電導状態に保持される。このため、
回転体1の永久磁石部2から発せられる磁束の多くが超
電導体8の内部に侵入して拘束されることとなる(ピン
ニング現象)。ここで、超電導体8はその内部に常電導
体粒子が均一に混在されているため、超電導体8内部へ
の侵入磁束の分布が一定となる。よって、回転体1の永
久磁石2があたかも超電導体8に立設した仮想ピンに貫
かれたようになり、回転体1が永久磁石部2とともに超
電導体8に拘束される。そのため、回転体1は極めて安
定的に浮上した状態でアキシャル方向及びラジアル方向
に支持されることとなる。
When operating the superconducting bearing device, the superconductor 8 is cooled by an appropriate refrigerant circulated in the cooling case 11 and is kept in a superconducting state. For this reason,
Most of the magnetic flux emitted from the permanent magnet portion 2 of the rotating body 1 enters the superconductor 8 and is restrained (pinning phenomenon). Here, since the superconductor 8 has the normal conductor particles uniformly mixed therein, the distribution of the magnetic flux penetrating into the superconductor 8 becomes constant. Therefore, the permanent magnet 2 of the rotating body 1 is as if penetrated by the virtual pin erected on the superconductor 8, and the rotating body 1 is restrained by the superconductor 8 together with the permanent magnet portion 2. Therefore, the rotating body 1 is supported in the axial direction and the radial direction while being extremely stably levitated.

【0019】永久磁石部2の隣接する永久磁石6a〜6
fの磁束は、それぞれ隣接する磁石から発せられて反転
中の磁束によって強められるから、永久磁石部に単一の
永久磁石が設けられている場合に比べて、磁束密度の勾
配dB/dzが大きくなる。このため、永久磁石部2と
超電導体8の間の磁気反発力が大きくなる。
Permanent magnets 6a-6 adjacent to the permanent magnet portion 2
Since the magnetic flux of f is strengthened by the magnetic flux being emitted from the adjacent magnets and being reversed, the gradient dB / dz of the magnetic flux density is larger than that in the case where a single permanent magnet is provided in the permanent magnet portion. Become. Therefore, the magnetic repulsion between the permanent magnet portion 2 and the superconductor 8 increases.

【0020】しかも、互いに隣接する6つの永久磁石の
上側は透磁率の高い鋼で連結されており、磁気回路の磁
気抵抗は減じられている。上下の空間が空気及び非磁性
体で占められている場合よりも超電導体に接する下側の
空間内の磁束密度は大きくなり、磁束密度の勾配も大き
くなる。このため剛性は増加する。
Moreover, the upper sides of the six permanent magnets adjacent to each other are connected by steel having a high magnetic permeability, so that the magnetic resistance of the magnetic circuit is reduced. The magnetic flux density in the lower space in contact with the superconductor becomes larger and the gradient of the magnetic flux density becomes larger than when the upper and lower spaces are occupied by air and a nonmagnetic material. This increases the stiffness.

【0021】(具体的実験例)この実験例は先に図1に
示した大型のスラスト軸受の一部を実験用に抽出模擬し
た図3の装置を用いて行ったものである。
(Specific Experimental Example) This experimental example was carried out using the apparatus shown in FIG. 3 in which a part of the large thrust bearing shown in FIG. 1 was extracted and simulated for experiments.

【0022】ローター側の一部を模する永久磁石部12
の平板14として鋼から形成された物を使用した。環状
磁石の一部を模する棒状磁石16a〜16fとして、幅
20mm、厚さ15mm、長さ160mmの棒状の稀土類磁石
を使用した。それぞれの棒磁石は隣接の棒磁石の上下方
向の同一端部が互いに逆の極性を帯びる異極組み合わせ
とした。隔壁には高さ15mm、幅が8mm、長さが160
mmのジュラルミンの角棒を用いた。また、超電導体18
としては、直径36mm、厚さ12mmのものを7個集積し
て、直径が108mm、厚さ12mmの模擬円板部を構成さ
せ、銅製の円板部17に埋設した。
The permanent magnet section 12 simulating a part of the rotor side
A plate formed of steel was used as the flat plate 14. Bar-shaped rare earth magnets having a width of 20 mm, a thickness of 15 mm, and a length of 160 mm were used as the bar-shaped magnets 16a to 16f that simulate a part of the ring magnet. Each bar magnet was a combination of different poles in which the same vertical end of an adjacent bar magnet had opposite polarities. The partition has a height of 15 mm, a width of 8 mm and a length of 160
A duralumin square bar of mm was used. Also, the superconductor 18
As a result, seven simulated discs having a diameter of 108 mm and a thickness of 12 mm were formed by accumulating seven pieces each having a diameter of 36 mm and a thickness of 12 mm, and buried in a copper disc 17.

【0023】そして、永久磁石部12と超電導体部13
との相対的位置決を行った後超電導体18を冷却して超
電導状態に保持した。このときの永久磁石部12と超電
導体部13の間の距離Zは2mmであった。その後、引っ
張り圧縮試験機を用いて永久磁石部12と超電導体部1
3とを相対的に接近、或は離間させ、それに必要な加重
を測定した。その結果を図4に示す。上記距離Zが1.
3〜2.7mmの範囲にあるときの剛性は6.4kgf/
mmであった。
The permanent magnet section 12 and the superconductor section 13
After superposition, the superconductor 18 was cooled and maintained in a superconducting state. At this time, the distance Z between the permanent magnet section 12 and the superconductor section 13 was 2 mm. Then, the permanent magnet part 12 and the superconductor part 1 were measured using a tensile compression tester.
3 was relatively approached or separated, and the required weight was measured. FIG. 4 shows the results. When the distance Z is 1.
The rigidity in the range of 3 to 2.7 mm is 6.4 kgf /
mm.

【0024】比較のために、平板4を鋼からジュラルミ
ンに変更した場合についても、永久磁石部と超電導体部
とを相対的に接近、或は離間させ、それに必要な加重を
測定した。その結果を図5に示す。上記距離Zが1.3
〜2.7mmの範囲にあるときの剛性は4.7kg/mmで
あった。
For comparison, when the flat plate 4 was changed from steel to duralumin, the permanent magnet portion and the superconductor portion were relatively moved closer to or away from each other, and the required load was measured. The result is shown in FIG. The distance Z is 1.3
The stiffness in the range of 22.7 mm was 4.7 kg / mm.

【0025】このように、磁石の配置や隔壁の材質が剛
性に及ぼす効果の因果関係を調べるために磁束密度の分
布を測定した。本発明の図3の配置・材質の元での磁束
密度は磁石中心垂線上で図6のようであった。従来の平
板及び隔壁が全てジュラルミンで作られる場合の磁束密
度分布を図中に破線で示す。
As described above, the distribution of the magnetic flux density was measured in order to examine the causal relationship between the effect of the arrangement of the magnets and the material of the partition walls on the rigidity. The magnetic flux density under the arrangement and material of FIG. 3 of the present invention was as shown in FIG. 6 on the perpendicular line to the center of the magnet. The magnetic flux density distribution when the conventional flat plate and the partition are all made of duralumin is shown by a broken line in the figure.

【0026】超電導体が空間で占めるZ=2〜14mmの
範囲で磁束密度B及びその勾配dB/dzは約1.2倍
であり、剛性の増倍(1.36倍)に傾向的に一致して
いる。
In the range of Z = 2 to 14 mm occupied by the superconductor, the magnetic flux density B and its gradient dB / dz are about 1.2 times, which tends to increase the rigidity (1.36 times). I do.

【0027】図7は、第2実施例の超電導軸受装置の主
要部を概略的に示している。
FIG. 7 schematically shows a main part of the superconducting bearing device according to the second embodiment.

【0028】この場合、永久磁石部32は強磁性体例え
ば、鋼からなる円板部34を備えている。円板部34の
外周面には上下方向に間隔をおいて複数例えば、3つの
環状の隔壁35a〜35cが、非磁性体例えば、ジュラ
ルミンで形成されており、これらの間にそれぞれ環状永
久磁石36a〜36bが嵌められて固定されている。各
永久磁石36a、36bは半径方向の両側部が互いに逆
の極性の磁気を帯び、隣接する永久磁石36a、36b
の半径方向の同一側部が逆の極性の磁気を帯びている。
例えば、上側の永久磁石36aの外周部はN極、内周部
はS極の磁気を帯びており、下側の永久磁石36bの外
周部はS極、内周部はN極の磁気を帯びている。そし
て、回転軸芯の周囲の磁束分布が回転によって変化しな
いようになっている。
In this case, the permanent magnet portion 32 has a disk portion 34 made of a ferromagnetic material, for example, steel. A plurality of, for example, three annular partition walls 35a to 35c are formed on the outer peripheral surface of the disk portion 34 at intervals in the vertical direction, and are formed of a non-magnetic material, for example, duralumin. To 36b are fitted and fixed. Each of the permanent magnets 36a, 36b has magnets of opposite polarities on both sides in the radial direction, and the adjacent permanent magnets 36a, 36b
On the same side in the radial direction are magnetized with opposite polarities.
For example, the outer periphery of the upper permanent magnet 36a has N pole and the inner periphery has S pole magnetism, and the outer periphery of the lower permanent magnet 36b has S pole and the inner periphery has N pole magnetism. ing. The magnetic flux distribution around the rotation axis is not changed by the rotation.

【0029】永久磁石部32の外周面に対向する位置に
は、超電導体33が回転体31の半径方向に間隔をおい
て配設されている。尚、この超電導体33は完全な環状
体であってもよいし、環状体の一部であってもよい。
A superconductor 33 is disposed at a position facing the outer peripheral surface of the permanent magnet portion 32 at an interval in the radial direction of the rotating body 31. The superconductor 33 may be a complete ring or a part of the ring.

【0030】この場合も、第1実施例について説明した
ように、第1に永久磁石部32の外周部における隣接す
る永久磁石36a、36bの磁束は、それぞれ隣接する
磁石から発せられて反転中の磁束によって互いに強めら
れること、第2に、超電導体に接しない内側の空間は強
磁性体で占められていることにより、超電導体に接する
外側の空間における磁束密度の勾配dB/dzが、永久
磁石部に単一の永久磁石が設けられている場合或は非磁
性体を隔壁として用いる場合に比べて、大きくなる。従
って、永久磁石部32と超電導体33との間の磁気反発
力が大きくなる。
Also in this case, as described in the first embodiment, first, the magnetic fluxes of the adjacent permanent magnets 36a and 36b on the outer peripheral portion of the permanent magnet portion 32 are emitted from the adjacent magnets and are being reversed. Second, since the inner space not in contact with the superconductor is occupied by a ferromagnetic material, the gradient of the magnetic flux density dB / dz in the outer space in contact with the superconductor is reduced by the permanent magnet. It is larger than when a single permanent magnet is provided in the portion or when a non-magnetic material is used as a partition. Therefore, the magnetic repulsion between the permanent magnet portion 32 and the superconductor 33 increases.

【0031】しかも、この磁力による載荷力の性質は、
永久磁石部32と超電導体33との間隔が、磁気反発力
とピン留め力とが吊りあっている距離から回転軸芯方向
に僅かに大きくなるだけで、両者間に大きな磁気吸引力
が発生し、逆に、上記間隔が上記吊合距離よりも僅かに
小さくなるだけで、両者間に大きな磁気反発力が発生す
る。従って、上記実施例の構成によれば超電導軸受装置
の負荷容量及び剛性が向上する。
Moreover, the nature of the loading force due to this magnetic force is as follows:
The distance between the permanent magnet portion 32 and the superconductor 33 is slightly increased in the direction of the axis of rotation due to the distance between the magnetic repulsion force and the pinning force, and a large magnetic attraction force is generated therebetween. Conversely, if the distance is slightly smaller than the hanging distance, a large magnetic repulsion is generated between the two. Therefore, according to the configuration of the above embodiment, the load capacity and rigidity of the superconducting bearing device are improved.

【0032】[0032]

【効果】本発明の第1、第2の発明にかかる超電導軸受
装置によれば、上述のように構成し,強磁性体の円板部
が超電導体の反対側の面に配設され,更に複数の永久磁
石の各々は、超電導体側の端部と円板部側の端部同士が
互いに逆の極性の磁気を帯びており、隣合う永久磁石の
前記超電導体側の端部同士は互いに逆の極性の磁気を帯
びているているので,磁束密度の勾配dB/dzが大き
くなり、負荷容量及び剛性が向上するとともに,回転体
の回転時の軸部れを防止して回転体を非接触状態で安定
的に支持できる。
According to the superconducting bearing device according to the first and second aspects of the present invention, the ferromagnetic disk portion is arranged on the opposite surface of the superconductor, having the above-described configuration. In each of the plurality of permanent magnets, the end on the superconductor side and the end on the disk portion side are magnetized with polarities opposite to each other, and the ends on the superconductor side of adjacent permanent magnets are opposite to each other. Since the magnet has polar magnetism, the gradient dB / dz of the magnetic flux density is increased, the load capacity and rigidity are improved, and the rotating body is prevented from being displaced during rotation, so that the rotating body is in a non-contact state. And can be stably supported.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例を示す超電導軸受装置の
主要部の概略図である。
FIG. 1 is a schematic view of a main part of a superconducting bearing device according to a first embodiment of the present invention.

【図2】図1に示す超電導軸受装置の永久磁石の配設状
態を示す部分拡大図である。
FIG. 2 is a partially enlarged view showing an arrangement state of permanent magnets in the superconducting bearing device shown in FIG.

【図3】剛性実験のために、超電導体軸受の一部分を抽
出した部分モデル主要部の概略図である。
FIG. 3 is a schematic diagram of a main part of a partial model in which a part of a superconductor bearing is extracted for a rigidity test.

【図4】第1実施例に準じる部分モデルを用いて行った
実験結果を示すグラフである。
FIG. 4 is a graph showing the results of an experiment performed using a partial model according to the first embodiment.

【図5】比較のために行った実験結果を示すグラフであ
る。
FIG. 5 is a graph showing the results of an experiment performed for comparison.

【図6】発明の作用を調べるために行った補助実験の結
果を示すグラフである。
FIG. 6 is a graph showing a result of an auxiliary experiment performed for investigating an effect of the present invention.

【図7】この発明の第2実施例を示す超電導軸受装置の
主要部の概略図である。
FIG. 7 is a schematic view of a main part of a superconducting bearing device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 回転体 2 永久磁石部 3 超電導体部 4 強磁性体の円板部 5a〜5g 非磁性体の隔壁 6a〜6f 環状の永久磁石 14 強磁性体の平板 15a〜15f 角棒状の永久磁石 34 強磁性体の円板部 36a〜36b 環状の永久磁石 DESCRIPTION OF SYMBOLS 1 Rotating body 2 Permanent magnet part 3 Superconductor part 4 Ferromagnetic disk part 5a-5g Nonmagnetic partition wall 6a-6f Annular permanent magnet 14 Ferromagnetic flat plate 15a-15f Square rod-shaped permanent magnet 34 Strong Disk portion of magnetic material 36a-36b Annular permanent magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 央二 香川県高松市屋島西町1420 (72)発明者 石川 文彦 香川県高松市木太町2867−4 (72)発明者 樋笠 博正 香川県高松市木太町2911−5 (56)参考文献 実開 平1−104430(JP,U) 実開 平1−100924(JP,U) 実開 昭61−49125(JP,U) 実開 昭59−144221(JP,U) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koji Koyama 1420 Yashima Nishimachi, Takamatsu City, Kagawa Prefecture (72) Inventor Fumihiko Ishikawa 2867-4 Kitamachi, Takamatsu City, Kagawa Prefecture (72) Inventor Hiromasa Higasa Takamatsu, Kagawa Prefecture 2911-5 Kitamachi (56) References Japanese Utility Model 1-104430 (JP, U) Japanese Utility Model 1-100924 (JP, U) Japanese Utility Model 61-49125 (JP, U) Japanese Utility Model 59-144221 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転体の回転軸芯に対して直交方向に延
在する円板状の永久磁石部と、この永久磁石部の円板状
の端面に間隔をおいて対向するように配設されるイット
リウム系高温超電導体とを備えた超電導軸受装置であっ
て、 前記永久磁石部は、前記回転体に固定される強磁性体か
らなる円板部と、この円板部の前記超電導体に臨む面に
おいて前記回転軸芯と同心状に配設され、且つ互いに離
間する複数の環状の永久磁石と、前記円板部において隣
合う永久磁石間に介在するように配設される非磁性体と
からなり、 前記複数の永久磁石の各々は、超電導体側の端部と円板
部側の端部同士が互いに逆の極性の磁気を帯びており、
更に、隣合う永久磁石の前記超電導体側の端部同士は互
いに逆の極性の磁気を帯びていることを特徴とする超電
導軸受装置。
1. A disk-shaped permanent magnet portion extending in a direction perpendicular to a rotation axis of a rotating body, and a disk-shaped end surface of the permanent magnet portion is disposed so as to face with a space therebetween. Done it
A superconducting bearing device comprising a lithium-based high-temperature superconductor, wherein the permanent magnet portion has a disk portion made of a ferromagnetic material fixed to the rotating body, and a surface of the disk portion facing the superconductor. And a plurality of annular permanent magnets disposed concentrically with the rotation axis and separated from each other, and a non-magnetic material disposed so as to be interposed between adjacent permanent magnets in the disk portion. Each of the plurality of permanent magnets has an end on the superconductor side and an end on the disc side having magnets having polarities opposite to each other,
Further, the superconducting bearing device is characterized in that ends of the adjacent permanent magnets on the superconductor side are magnetized with polarities opposite to each other.
【請求項2】 回転体の回転軸芯に対して直交方向に延
在する円板状の永久磁石部と、この永久磁石部の外周面
に対して回転体の回転半径方向に間隔をおいて対向する
ように配置されるイットリウム系高温超電導体とを備え
た超電導軸受装置であって、 前記永久磁石部が、前記回転体に固定され強磁性体から
なる円板部と、この円板部の側面部において前記超電導
体に対面するように配設され、且つ前記回転軸芯方向に
間隔を有する複数の環状の永久磁石と、隣合う環状の永
久磁石の間に介在する非磁性体とからなり、 各永久磁石の回転体の回転半径方向の両端部が互いに逆
の極性の磁気を帯び、隣接する永久磁石の同一側部同士
が互いに逆の極性の磁気を帯びている超電導軸受装置。
2. A disk-shaped permanent magnet portion extending in a direction orthogonal to the rotation axis of the rotating body, and spaced apart from the outer peripheral surface of the permanent magnet portion in the rotating radius direction of the rotating body. A superconducting bearing device comprising: an yttrium-based high-temperature superconductor arranged to face each other, wherein the permanent magnet portion is fixed to the rotating body and is made of a ferromagnetic disk. A plurality of annular permanent magnets arranged on the side surface so as to face the superconductor, and having an interval in the rotation axis direction, and a non-magnetic material interposed between adjacent annular permanent magnets. A superconducting bearing device in which both ends in the rotational radius direction of the rotating body of each permanent magnet bear magnets of opposite polarities and the same sides of adjacent permanent magnets bear magnets of opposite polarities.
JP4051403A 1992-03-10 1992-03-10 Superconducting bearing device Expired - Fee Related JP2605200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4051403A JP2605200B2 (en) 1992-03-10 1992-03-10 Superconducting bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4051403A JP2605200B2 (en) 1992-03-10 1992-03-10 Superconducting bearing device

Publications (2)

Publication Number Publication Date
JPH0735138A JPH0735138A (en) 1995-02-03
JP2605200B2 true JP2605200B2 (en) 1997-04-30

Family

ID=12885973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4051403A Expired - Fee Related JP2605200B2 (en) 1992-03-10 1992-03-10 Superconducting bearing device

Country Status (1)

Country Link
JP (1) JP2605200B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387564B (en) * 2017-09-11 2020-05-08 上海浩灵磁电器件有限公司 Horizontal permanent magnet suspension bearing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144221U (en) * 1983-03-18 1984-09-27 日産自動車株式会社 magnetic bearing
JPS6149125U (en) * 1984-09-04 1986-04-02
JPH01100924U (en) * 1987-09-26 1989-07-06
JPH01104430U (en) * 1988-01-05 1989-07-14

Also Published As

Publication number Publication date
JPH0735138A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
JP2547287B2 (en) Superconducting bearing device
US5831362A (en) Magnet-superconductor flywheel and levitation systems
US5801469A (en) Superconducting bearing device
EP0887569A2 (en) Method for setting up a superconducting bearing device
US5739606A (en) Superconducting bearing device
US5763971A (en) Superconducting bearing device
US3673444A (en) Rotary electric machine
Ma et al. Hybrid high Tc superconducting magnetic bearings for flywheel energy storage system
JP2605200B2 (en) Superconducting bearing device
US5517071A (en) Superconducting levitating bearing
JPH04282050A (en) Electric power storage device
JPH08296648A (en) Bearing device and its starting method
JPH0681845A (en) Supercondctive bearing device
Rastogi et al. Axial and journal bearings for superconducting flywheel systems
JP3271330B2 (en) Magnet magnetizing device
JP3232463B2 (en) Superconducting bearing device
JP3328073B2 (en) Magnetic levitation device with damping function
JP3177847B2 (en) Superconducting bearing device
JP3616856B2 (en) Bearing device
JPH062646A (en) Superconductive floating type turning gear
JP3270860B2 (en) Superconducting bearing device
JPH05180226A (en) Superconductive bearing device
JPH07327338A (en) Superconducting levitation rotary system
Hull et al. High levitation pressures with cage-cooled superconductors
JPH05240246A (en) Method for assembling superconductive bearing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees