JPH05240246A - Method for assembling superconductive bearing device - Google Patents

Method for assembling superconductive bearing device

Info

Publication number
JPH05240246A
JPH05240246A JP5143191A JP5143191A JPH05240246A JP H05240246 A JPH05240246 A JP H05240246A JP 5143191 A JP5143191 A JP 5143191A JP 5143191 A JP5143191 A JP 5143191A JP H05240246 A JPH05240246 A JP H05240246A
Authority
JP
Japan
Prior art keywords
superconductor
rotating body
permanent magnet
bearing device
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5143191A
Other languages
Japanese (ja)
Other versions
JPH0742983B2 (en
Inventor
Ryoichi Takahata
良一 高畑
Muneaki Shibayama
宗昭 芝山
Susumu Okada
岡田  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Shikoku Research Institute Inc
Original Assignee
Koyo Seiko Co Ltd
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, Shikoku Research Institute Inc filed Critical Koyo Seiko Co Ltd
Priority to JP3051431A priority Critical patent/JPH0742983B2/en
Publication of JPH05240246A publication Critical patent/JPH05240246A/en
Publication of JPH0742983B2 publication Critical patent/JPH0742983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To improve rigidity and load capacity, prevent the shaft deflection of a rotating body and stably support the rotating body in non-contact state. CONSTITUTION:A superconductor 17 is preliminarily cooled and held in superconductive state. A vertical shaft-like rotating body 2 and the superconductor 17 are arranged in such a manner that a ring permanent magnet part 9 provided concentrically and firmly to the vertical shaft-like rotating body 2 in this state is opposed to the superconductor 17 with a vertical space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば高速回転を
必要とする流体機械や工作機械、または余剰電力をフラ
イホイールの運動エネルギに変換して貯蔵する電力貯蔵
装置に適用される超電導軸受装置の組立方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting bearing device which is applied to, for example, a fluid machine or a machine tool which requires high-speed rotation, or an electric power storage device for converting surplus electric power into kinetic energy of a flywheel and storing it. Assembling method

【0002】[0002]

【従来の技術と発明の課題】近年、回転体の高速回転と
高剛性を可能にした軸受装置として、非接触状態で回転
体を支持しうる超電導軸受装置が開発されている。
2. Description of the Related Art In recent years, a superconducting bearing device capable of supporting a rotating body in a non-contact state has been developed as a bearing device capable of high-speed rotation and high rigidity of the rotating body.

【0003】この種超電導軸受装置として、本出願人
は、たとえば回転体に同心状にかつ固定状に設けられた
環状永久磁石部と、この永久磁石部の端面に対して回転
体の回転軸心方向に間隔をおいて対向するように配置さ
れた環状超電導体とを備えているものを開発してきた。
As a superconducting bearing device of this type, the applicant of the present invention has, for example, an annular permanent magnet portion concentrically and fixedly provided on a rotating body, and an axis of rotation of the rotating body with respect to an end face of the permanent magnet portion. We have developed one that has annular superconductors that are arranged so as to face each other at intervals in the direction.

【0004】この超電導軸受装置は、永久磁石部が設け
られた回転体および環状超電導体を所定位置に配置した
後、超電導体を冷却して超電導状態に保持し、運転する
ようになっている。
[0004] This superconducting bearing device is designed to operate after the rotating body provided with the permanent magnet portion and the annular superconductor are arranged at predetermined positions, and then the superconductor is cooled to be kept in the superconducting state.

【0005】ところが、上記のようにして超電導軸受装
置を運転する場合には、回転軸心方向の剛性および負荷
容量が不足するという問題がある。しかも、剛性が不足
するため回転体の軸ぶれが生じ、回転体を非接触状態で
安定的に支持することができないという問題がある。
However, when the superconducting bearing device is operated as described above, there is a problem that rigidity and load capacity in the direction of the rotation axis are insufficient. In addition, there is a problem in that the rigidity of the rotating body causes axial deviation of the rotating body, which makes it impossible to stably support the rotating body in a non-contact state.

【0006】このような問題の生じる理由は次の通りで
あると考えられる。すなわち、永久磁石の磁界の強さH
および磁束密度Bは、永久磁石との距離に反比例して距
離が大きくなるほど小さくなる。そして、超電導体と永
久磁石の間の距離をZ、超電導体の発する見かけの磁化
率をM、永久磁石の磁界の強さをH、永久磁石の磁束密
度をBとした場合、超電導体と永久磁石との間の磁気反
発力は、磁化率Mと磁界の強さの勾配dH/dZとの
積、あるいは磁化率Mと磁束密度の勾配dB/dZとの
積に比例する値であり、剛性は、磁化率Mとd2 B/d
2 の積に比例するが、上記のようにして運転した場
合、環状永久磁石の磁界の強さの勾配dH/dZ、ある
いは磁束密度の勾配dB/dZが十分に大きくはなら
ず、したがって負荷容量および剛性が不足すると考えら
れる。
The reason why such a problem occurs is considered as follows. That is, the magnetic field strength H of the permanent magnet
And the magnetic flux density B decreases in inverse proportion to the distance to the permanent magnet as the distance increases. When the distance between the superconductor and the permanent magnet is Z, the apparent magnetic susceptibility generated by the superconductor is M, the magnetic field strength of the permanent magnet is H, and the magnetic flux density of the permanent magnet is B, the superconductor and the permanent magnet are The magnetic repulsive force between the magnet and the magnet is a value proportional to the product of the magnetic susceptibility M and the gradient dH / dZ of the magnetic field strength or the product of the magnetic susceptibility M and the gradient dB / dZ of the magnetic flux density. Is the magnetic susceptibility M and d 2 B / d
Although proportional to the product of Z 2 , when operated as described above, the gradient dH / dZ of the magnetic field strength of the annular permanent magnet or the gradient dB / dZ of the magnetic flux density does not become sufficiently large, and therefore the load It is considered that the capacity and rigidity are insufficient.

【0007】この発明の目的は、上記の問題を解決した
超電導軸受装置の組立方法を提供することにある。
An object of the present invention is to provide a method of assembling a superconducting bearing device which solves the above problems.

【0008】[0008]

【課題を解決するための手段】この発明による超電導軸
受装置の組立方法は、回転体に同心状にかつ固定状に設
けられた環状の永久磁石部と、この永久磁石部に対して
間隔をおいて対向するように配置された超電導体とを備
えた超電導軸受装置の組立方法であって、予め超電導体
を冷却して超電導状態に保持しておき、この状態で永久
磁石部と超電導体とが間隔をおいて対向するように、回
転体および超電導体を配置することを特徴とするもので
ある。
A method of assembling a superconducting bearing device according to the present invention includes an annular permanent magnet portion concentrically and fixedly provided on a rotating body, and an interval between the permanent magnet portion and the permanent magnet portion. A method for assembling a superconducting bearing device comprising a superconductor arranged so as to face each other, wherein the superconductor is cooled in advance and held in a superconducting state, and in this state, the permanent magnet portion and the superconductor are The rotating body and the superconductor are arranged so as to face each other with a space.

【0009】[0009]

【作用】予め超電導体を冷却して超電導状態に保持して
おき、この状態で永久磁石部と超電導体とが間隔をおい
て対向するように、回転体および超電導体を配置する
と、永久磁石部の磁束が永久磁石部と超電導体との間で
圧縮され、磁束密度の勾配dB/dzが大きくなるとと
もに、d2 B/dZ2 が大きくなる。このため、負荷容
量および剛性が向上する。
When the rotating body and the superconductor are arranged such that the superconductor is cooled and held in the superconducting state in advance and the permanent magnet portion and the superconductor are opposed to each other with a gap in this state. Is compressed between the permanent magnet portion and the superconductor, and the gradient of magnetic flux density dB / dz increases and d 2 B / dZ 2 increases. Therefore, load capacity and rigidity are improved.

【0010】[0010]

【実施例】以下、図面を参照して、この発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は超電導軸受装置の構成を概略的に示
している。
FIG. 1 schematically shows the structure of a superconducting bearing device.

【0012】超電導軸受装置は、垂直に配置されるハウ
ジング(1) と、ハウジング(1) 内の中心に非接触状態に
支持される垂直な軸状の回転体(2) とを備えている。
The superconducting bearing device comprises a housing (1) arranged vertically and a vertical shaft-shaped rotating body (2) supported in a non-contact state at the center of the housing (1).

【0013】ハウジング(1) の上方に回転体(2) を高速
回転させるための高周波電動機(3)が設けられ、ハウジ
ング(1) 内に回転体(2) を非接触状態に支持するための
超電導軸受(4) が設けられている。
A high-frequency motor (3) for rotating the rotating body (2) at a high speed is provided above the housing (1) to support the rotating body (2) in the housing (1) in a non-contact state. A superconducting bearing (4) is provided.

【0014】ハウジング(1) は筒状であり、その周壁に
は冷却剤(C) を循環させるための中空部(6) が全周にわ
たって形成されている。図示は省略したが、ハウジング
(1)の中空部(6) には、温度制御ユニットを介して冷凍
機が接続されている。
The housing (1) has a cylindrical shape, and a hollow portion (6) for circulating the coolant (C) is formed on the entire peripheral wall of the housing (1). Although not shown, the housing
A refrigerator is connected to the hollow portion (6) of (1) through a temperature control unit.

【0015】電動機(3) は、回転体(2) に取付けられた
ロータ(7) と、ロータ(7) の周囲に配置されたステータ
(8) とから構成されている。
The electric motor (3) comprises a rotor (7) attached to the rotating body (2) and a stator arranged around the rotor (7).
It consists of (8) and.

【0016】超電導軸受(4) は、次のように構成されて
いる。ハウジング(1) 内の上下の中央部において、回転
体(2) に水平円板状永久磁石部(9) が同心状に設けられ
ている。永久磁石部(9) は、回転体(2) に固定状に設け
られた、たとえば銅からなる水平円板(10)を備えてい
る。円板(10)の上下両面にそれぞれ回転体(2) と同心状
に環状凹みぞ(11)が形成されており、これらの凹みぞ(1
1)内にそれぞれ環状永久磁石(12)が嵌められて固定され
ている。永久磁石(12)は、回転体(2) の回転軸心の周囲
の磁束分布が回転によって変化しないように設けられて
いる。
The superconducting bearing (4) is constructed as follows. A horizontal disk-shaped permanent magnet portion (9) is concentrically provided on the rotating body (2) at the upper and lower central portions in the housing (1). The permanent magnet part (9) includes a horizontal disc (10) fixedly provided on the rotating body (2) and made of, for example, copper. An annular groove (11) is formed concentrically with the rotating body (2) on each of the upper and lower surfaces of the disc (10).
An annular permanent magnet (12) is fitted and fixed in each of (1). The permanent magnet (12) is provided so that the magnetic flux distribution around the rotation axis of the rotating body (2) does not change due to rotation.

【0017】ハウジング(1) 内の上下両端部に水平環状
超電導体部(13)(14)が配置されている。両超電導体部超
電導体(13)(14)は、それぞれたとえば銅からなる穴あき
水平円板(15)(16)と、穴あき円板(15)(16)の穴(15a)(16
a)の周囲の環状部分の永久磁石部(9) と対向する面に、
周方向に互いに近接して埋設されている複数の円板状超
電導体(17)とよりなる。そして、穴(15a)(16a)に回転体
(2) が隙間をあけて通されている。上下両側の超電導体
部(13)(14)の円板(15)(16)の外周面にはそれぞれねじ(1
5b)(16b)が形成されており、これらのねじ(15b)(16b)を
ハウジング(1)内周面の上下両端部に形成されたねじ(1
a)(1b)にねじ合わせることによってハウジング(1) に取
付けられている。両超電導体部(13)(14)の全ての円板状
超電導体(17)の体積は等しくなっている。
Horizontal annular superconductor parts (13) and (14) are arranged at the upper and lower ends of the housing (1). Both superconductor parts (13) and (14) are made of, for example, copper perforated horizontal discs (15) and (16) and perforated discs (15) (16) holes (15a) (16).
On the surface facing the permanent magnet part (9) of the annular part around a),
It is composed of a plurality of disc-shaped superconductors (17) embedded in the circumferential direction so as to be close to each other. And in the holes (15a) (16a) the rotating body
(2) is passed through with a gap. Screws (1) are attached to the outer peripheral surfaces of the disks (15) (16) of the upper and lower superconductors (13) (14), respectively.
5b) and (16b) are formed, and these screws (15b) and (16b) are attached to the upper and lower ends of the inner peripheral surface of the housing (1).
It is mounted on the housing (1) by screwing it onto a) (1b). All the disc-shaped superconductors (17) of both superconductor parts (13) and (14) have the same volume.

【0018】超電導体(17)は、イットリウム系高温超電
導体、たとえばYBaCuからなる基板の内部
に常電導粒子(YBaCu)を均一に混在させた
ものからなり、永久磁石部(9) から発せられる侵入磁束
を拘束する性質を持つものである。そして、超電導体(1
7)は、永久磁石部(9) の磁束が所定量侵入する離間位置
であってかつ上記回転体(2) の回転によって侵入磁束の
分布が変化しない位置に配置されている。
The superconductor (17) is composed of a yttrium-based high-temperature superconductor, for example, a YBa 2 Cu 3 O x substrate in which normal conductive particles (Y 2 Ba 1 Cu 1 ) are uniformly mixed. It has the property of restraining the magnetic flux penetrating from the permanent magnet section (9). Then, the superconductor (1
7) is arranged at a separated position where the magnetic flux of the permanent magnet portion 9 invades a predetermined amount and at a position where the distribution of the invading magnetic flux does not change due to the rotation of the rotating body 2.

【0019】図2〜図5は超電導軸受装置を組立てる方
法を段階的に示している。
2 to 5 show step by step a method of assembling the superconducting bearing device.

【0020】まず、ハウジング(1) を組立スタンド(20)
に取付け、中空部(6) 内に液体窒素などの冷却剤(C) を
循環させてハウジング(1) を冷却しておく(図2参
照)。一方、環状超電導体部(13)(14)を液体窒素などの
冷却剤中に浸漬して冷却し、超電導体(17)を超電導状態
に保持しておく。ついで、下側の環状超電導体部(14)を
ハウジング(1) 内にねじ嵌めた後(図3参照)、永久磁
石部(9) が設けられた回転体(2) をハウジング(1) 内に
通し、その下端部に形成されたねじ(2a)を、組立スタン
ド(20)に形成されたねじ穴(21)にねじ嵌める(図4参
照)。その後、上側の環状超導電体部(13)をハウジング
(1) にねじ嵌める(図5参照)。
First, the housing (1) is assembled into a stand (20).
Then, cool the housing (1) by circulating a coolant (C) such as liquid nitrogen in the hollow part (6) (see Fig. 2). On the other hand, the annular superconductor parts (13) and (14) are immersed in a coolant such as liquid nitrogen to be cooled, and the superconductor (17) is kept in a superconducting state. Then, after the lower annular superconductor part (14) is screwed into the housing (1) (see Fig. 3), the rotating body (2) provided with the permanent magnet part (9) is placed in the housing (1). Through, and the screw (2a) formed at the lower end thereof is screwed into the screw hole (21) formed in the assembly stand (20) (see FIG. 4). After that, the upper annular superconductor part (13) is
Screw it into (1) (see Fig. 5).

【0021】このとき、回転体(2) の永久磁石部(9) か
ら発せられる磁束の多くが、超導電体部(13)(14)との間
で圧縮されるとともに、その一部分が超電導体(17)の内
部に侵入して拘束されることになる(ピンニング現
象)。ここで、超電導体(17)はその内部に常電導体粒子
が均一に混在されているため、超電導体(17)内部への侵
入磁束の分布が一定となり、そのため、あたかも超電導
体(17)に立設した仮想ピンに回転体(2) の永久磁石部
(9) が貫かれたようになり、超電導体(17)に対して永久
磁石部(9) とともに回転体(2) が拘束される。そのた
め、回転体(2) は、きわめて安定的に浮上した状態で、
アキシアル方向およびラジアル方向に支持されることに
なる。
At this time, most of the magnetic flux generated from the permanent magnet portion (9) of the rotating body (2) is compressed between the superconductor portion (13) and (14), and a part thereof is superconductor. It will enter the inside of (17) and be restrained (pinning phenomenon). Here, since the superconductor (17) has the normal conductor particles uniformly mixed therein, the distribution of the magnetic flux penetrating into the inside of the superconductor (17) becomes constant, and therefore, as if the superconductor (17) The permanent magnet part of the rotating body (2) is attached to the erected virtual pin.
(9) seems to be penetrated, and the rotating body (2) is restrained together with the permanent magnet part (9) with respect to the superconductor (17). Therefore, the rotating body (2) is very stably levitated,
It will be supported in the axial and radial directions.

【0022】最後に、回転体(2) の上端部に形成された
ねじ(2b)に高周波電動機(3) のロータ(7) を取付けると
ともに、その周囲にステータ(8) を配置し、さらに組立
スタンド(20)を取り外す。こうして、超電導軸受装置が
組み立てられて回転体(2) が非接触状態で支持され、高
周波電動機(3) により回転体(2) が高速回転させられて
運転が開始される。
Finally, the rotor (7) of the high-frequency electric motor (3) is attached to the screw (2b) formed on the upper end of the rotating body (2), and the stator (8) is arranged around the rotor (7), and further assembled. Remove the stand (20). In this way, the superconducting bearing device is assembled to support the rotating body (2) in a non-contact state, and the high frequency motor (3) rotates the rotating body (2) at a high speed to start the operation.

【0023】永久磁石部(9) から発せられる磁束が超導
電体部(13)(14)との間で圧縮されるので、磁束密度の勾
配dB/dZおよびd2 B/dZ2 が、永久磁石部(9)
および超電導体部(13)(14)を配置した後超電導体(17)を
冷却して超電導状態とする場合に比べて大きくなる。こ
のため、永久磁石部(9) と超電導体(17)の間の磁気反発
力が大きくなる。しかも、永久磁石部(9) と超電導体(1
7)との間隔が、磁気反発力とピン止め力とが釣り合って
いる距離から回転軸心方向にわずかに大きくなるだけ
で、両者間に大きな磁気吸引力が作用する。逆に、上記
間隔が、上記釣り合い距離よりもわずかに小さくなるだ
けで、両者間に大きな磁気反発力が作用する。したがっ
て、負荷容量および剛性が向上する。
Since the magnetic flux generated from the permanent magnet portion (9) is compressed between the permanent magnet portion (13) and the superconductor portion (14), the magnetic flux density gradients dB / dZ and d 2 B / dZ 2 are Magnet part (9)
Also, the size becomes larger than that in the case where the superconductor (17) is cooled after the superconductor parts (13) and (14) are arranged to be in the superconducting state. Therefore, the magnetic repulsive force between the permanent magnet part (9) and the superconductor (17) becomes large. Moreover, the permanent magnet part (9) and the superconductor (1
A large magnetic attraction force acts between them and 7) only by slightly increasing in the direction of the axis of rotation from the distance where the magnetic repulsive force and the pinning force are balanced. On the contrary, when the distance is slightly smaller than the balance distance, a large magnetic repulsive force acts between them. Therefore, load capacity and rigidity are improved.

【0024】この実施例において、超電導体として、第
1種超電導体すなわち磁束侵入を完全に阻止する超電導
体を用いてもよい。この場合、回転体(2) は、超電導体
の完全反磁性現象を利用して回転体(2) がアキシアル方
向に非接触状態で支持される。なお、この場合に、回転
体(2) をラジアル方向に支持するために、適当な位置に
超電導軸受を設けておくのがよい。
In this embodiment, as the superconductor, a type 1 superconductor, that is, a superconductor which completely blocks the penetration of magnetic flux may be used. In this case, the rotating body (2) is supported in the axial direction in a non-contact state by utilizing the perfect diamagnetic phenomenon of the superconductor. In this case, in order to support the rotating body (2) in the radial direction, it is preferable to provide a superconducting bearing at an appropriate position.

【0025】[0025]

【具体的実験例】この実験例は、図1の装置を用いて行
ったものである。
[Specific Experimental Example] This experimental example was carried out using the apparatus shown in FIG.

【0026】永久磁石部(9) の円板(10)として銅から形
成されたものを使用し、環状永久磁石(12)として、外径
90mm、内径68mm、軸線方向の長さ12mm、表
面磁束4000ガウスの環状の希土類磁石を使用し、超
電導体(17)として、直径28mm、厚さ12mmのもの
を使用した。
The disk (10) of the permanent magnet part (9) is made of copper, and the annular permanent magnet (12) has an outer diameter of 90 mm, an inner diameter of 68 mm, an axial length of 12 mm, and a surface magnetic flux. An annular rare earth magnet of 4000 gauss was used, and a superconductor (17) having a diameter of 28 mm and a thickness of 12 mm was used.

【0027】そして、上述のようにして、装置を組み立
てた。その後、引張り圧縮試験機を用いて永久磁石部
(9) と超電導体部(13)(14)とを相対的に0.5mm接
近、あるいは離間させ、それに必要な荷重を測定した。
その結果を図6に示す。剛性は8kgf/mmであった。
Then, the apparatus was assembled as described above. Then, using a tensile compression tester,
(9) and the superconductor parts (13) and (14) were relatively moved closer to or apart from each other by 0.5 mm, and the load required for them was measured.
The result is shown in FIG. The rigidity was 8 kgf / mm.

【0028】比較のために、永久磁石部および超電導体
部を配置した後超電導体部を冷却して超電導状態とし、
上記と同様にして永久磁石部と超電導体部とを相対的に
0.5mm接近、あるいは離間させ、それに必要な荷重
を測定した。その結果を図7に示す。このときの剛性は
4kgf/mmであった。
For comparison, after arranging the permanent magnet part and the superconductor part, the superconductor part is cooled to be in a superconducting state,
In the same manner as above, the permanent magnet portion and the superconductor portion were relatively moved toward or away from each other by 0.5 mm, and the load required for them was measured. The result is shown in FIG. 7. The rigidity at this time was 4 kgf / mm.

【0029】[0029]

【発明の効果】この発明の超電導装置の組立方法によれ
ば、上述のように、磁束密度の勾配dB/dZが大きく
なるとともに、d2 B/dZ2 が大きくなる。このた
め、負荷容量および剛性が向上し、回転体の軸ぶれを防
止して回転体を非接触状態で安定的に支持できる。
According to the method of assembling the superconducting device of the present invention, as described above, the gradient dB / dZ of the magnetic flux density becomes large and the d 2 B / dZ 2 becomes large. Therefore, the load capacity and the rigidity are improved, the shaft deviation of the rotating body can be prevented, and the rotating body can be stably supported in a non-contact state.

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導軸受装置主要部の概略縦断面図である。FIG. 1 is a schematic vertical sectional view of a main part of a superconducting bearing device.

【図2】ハウジングを組立スタンドに取付けた状態を示
す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a state in which a housing is attached to an assembly stand.

【図3】ハウジング内に下側の超電導体部を取付けた状
態を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a state in which a lower superconductor portion is attached inside a housing.

【図4】ハウジング内に回転体を通した状態を示す縦断
面図である。
FIG. 4 is a vertical cross-sectional view showing a state in which a rotating body is passed through a housing.

【図5】ハウジング内に上側の超電導体部を取付けた状
態を示す縦断面図である。
FIG. 5 is a vertical cross-sectional view showing a state in which an upper superconductor portion is attached inside a housing.

【図6】この発明の組立方法で行った実験の結果を示す
グラフである。
FIG. 6 is a graph showing a result of an experiment conducted by the assembling method of the present invention.

【図7】従来の組立方法で行った実験の結果を示すグラ
フである。
FIG. 7 is a graph showing a result of an experiment conducted by a conventional assembling method.

【符号の説明】[Explanation of symbols]

2 回転体 9 永久磁石部 17 超電導体 2 Rotating body 9 Permanent magnet part 17 Superconductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転体に同心状にかつ固定状に設けられ
た環状の永久磁石部と、この永久磁石部に対して間隔を
おいて対向するように配置された超電導体とを備えた超
電導軸受装置の組立方法であって、 予め超電導体を冷却して超電導状態に保持しておき、こ
の状態で永久磁石部と超電導体とが間隔をおいて対向す
るように、回転体および超電導体を配置することを特徴
とする超電導軸受装置の組立方法。
1. A superconductor comprising an annular permanent magnet portion concentrically and fixedly provided on a rotating body, and a superconductor arranged so as to face the permanent magnet portion with a gap. A method of assembling a bearing device, wherein the superconductor is cooled in advance and kept in a superconducting state, and in this state, the rotating body and the superconductor are arranged so that the permanent magnet section and the superconductor face each other with a gap. A method for assembling a superconducting bearing device, characterized by arranging.
JP3051431A 1991-03-15 1991-03-15 Assembling method of superconducting bearing device Expired - Fee Related JPH0742983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3051431A JPH0742983B2 (en) 1991-03-15 1991-03-15 Assembling method of superconducting bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3051431A JPH0742983B2 (en) 1991-03-15 1991-03-15 Assembling method of superconducting bearing device

Publications (2)

Publication Number Publication Date
JPH05240246A true JPH05240246A (en) 1993-09-17
JPH0742983B2 JPH0742983B2 (en) 1995-05-15

Family

ID=12886743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3051431A Expired - Fee Related JPH0742983B2 (en) 1991-03-15 1991-03-15 Assembling method of superconducting bearing device

Country Status (1)

Country Link
JP (1) JPH0742983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236669A (en) * 2021-05-26 2021-08-10 天津大学 Superconducting magnetic suspension bearing mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163513A (en) * 1988-12-15 1990-06-22 Koyo Seiko Co Ltd Magnetic thrust bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163513A (en) * 1988-12-15 1990-06-22 Koyo Seiko Co Ltd Magnetic thrust bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113236669A (en) * 2021-05-26 2021-08-10 天津大学 Superconducting magnetic suspension bearing mechanism

Also Published As

Publication number Publication date
JPH0742983B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
US5831362A (en) Magnet-superconductor flywheel and levitation systems
JP2547287B2 (en) Superconducting bearing device
JPH05240249A (en) Superconductive bearing device
US5801469A (en) Superconducting bearing device
JPH05240246A (en) Method for assembling superconductive bearing device
JPH04165119A (en) Superconductive bearing device
JP3577559B2 (en) Flywheel equipment
JP3232463B2 (en) Superconducting bearing device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3113920B2 (en) Superconducting bearing device
JP3616856B2 (en) Bearing device
JP2605200B2 (en) Superconducting bearing device
JP3174876B2 (en) Superconducting bearing device
JP3122772B2 (en) Superconducting bearing device
JPH05306717A (en) Superconductive bearing device
JPH0681843A (en) Supercondctive bearing device
JP3044614B2 (en) Starting method of superconducting bearing in superconducting bearing device
JP2000120682A (en) Superconductive magnetic bearing device
JP3174877B2 (en) Superconducting bearing device
JPH05180226A (en) Superconductive bearing device
Fukuyama et al. Static and dynamic characteristics of superconducting magnetic bearings using MPMG Y-Ba-Cu-O
JP3174865B2 (en) Superconducting bearing device and start-up method thereof
JPH0886703A (en) Rotational loss measuring device of superconducting bearing part
JPH0681844A (en) Assembly method for supercondctive bearing device
JPH0650335A (en) Superconductive bearing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees