JPH0681844A - Assembly method for supercondctive bearing device - Google Patents

Assembly method for supercondctive bearing device

Info

Publication number
JPH0681844A
JPH0681844A JP23451092A JP23451092A JPH0681844A JP H0681844 A JPH0681844 A JP H0681844A JP 23451092 A JP23451092 A JP 23451092A JP 23451092 A JP23451092 A JP 23451092A JP H0681844 A JPH0681844 A JP H0681844A
Authority
JP
Japan
Prior art keywords
superconductor
permanent magnet
rotating body
center
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23451092A
Other languages
Japanese (ja)
Inventor
Ryoichi Takahata
良一 高畑
Hirotomo Kamiyama
拓知 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP23451092A priority Critical patent/JPH0681844A/en
Publication of JPH0681844A publication Critical patent/JPH0681844A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Abstract

PURPOSE:To carry out high speed rotation of a rotary unit by suppressing generation of deflection of the rotary unit, and stably supporting it in a noncontact condition, at the time of operating a built superconductive bearing device. CONSTITUTION:A circular hole 20 is concentrically formed with a permanent magnet 7 in a disk 5 of fixing the annular permanent magnet 7. The disk 5 is arranged relating to a superconductor part 3 with a space provided in its axial direction so that the circular hole 20 is placed concentrically to the superconductor part 3. A superconductor 10 of the annular superconductor part 3 is magnetic field-cooled by a magnetic field of the permanent magnet 7 and left as held in a superconductive condition. Under this condition, the disk 5 is rotated about the center of the superconductor part 3. Deflection in a radial direction in an internal peripheral surface of the circular hole 20, at the time of rotating the disk 5, is measured to find out the center of its rotation. A rotary unit insertion hole 23, having a diameter larger than the circular hole 20 and including it, is formed with this center of rotation serving as the center. A rotary unit is inserted and fixed to the disk 5 so as to be concentrical with the rotary unit insertion hole 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば高速回転を
必要とする流体機械や工作機械、ジャイロスコープ、ま
たは余剰電力をフライホイールの運動エネルギに変換し
て貯蔵する電力貯蔵装置などに適用される超電導軸受装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, a fluid machine or a machine tool requiring high speed rotation, a gyroscope, or an electric power storage device for converting surplus electric power into kinetic energy of a flywheel for storage. The present invention relates to a superconducting bearing device.

【0002】[0002]

【従来の技術】近年、固定部に対して回転体を非接触状
態で支持しうる超電導軸受装置が開発されている。
2. Description of the Related Art In recent years, a superconducting bearing device has been developed which can support a rotating body in a non-contact state with a fixed portion.

【0003】この種超電導軸受装置として、軸状の回転
体に同心状に設けられた環状永久磁石部と、この永久磁
石部の回転軸心方向の端面に対して回転体の回転軸心方
向に間隔をおいて対向するように配置された環状超電導
体部とを備えており、永久磁石部が、回転体に固定状に
かつ同心状に設けられるとともに超電導体部に対向する
面に環状の凹溝が形成された円板と、凹溝に嵌められ回
転体と同心状となされた環状永久磁石とよりなり、超電
導体部が、円板と、円板に周方向に等間隔をおいて近接
するように設けられた複数の超電導体とよりなるものが
考えられている。
As a superconducting bearing device of this kind, an annular permanent magnet portion concentrically provided on a shaft-like rotating body and an end face in the rotating shaft center direction of this permanent magnet portion are arranged in the rotating shaft center direction of the rotating body. An annular superconductor portion arranged so as to face each other with a space, and the permanent magnet portion is fixedly and concentrically provided on the rotating body and has an annular concave portion on the surface facing the superconductor portion. It consists of a disk with a groove and an annular permanent magnet fitted into the groove and concentric with the rotating body.The superconductor part is close to the disk at equal intervals in the circumferential direction. A plurality of superconductors provided in such a manner is considered.

【0004】この超電導軸受装置では、作動時には、ま
ず回転体と固定部に配置された環状超電導体部の中心を
合わせておき、さらに回転体と固定部とを軸方向に離隔
させた状態で超電導体を冷却して超電導状態に保持する
ことにより永久磁石部から発生する磁束を超電導体の内
部に侵入させて拘束し、その結果いわゆるピン止め力に
よって、回転体を、固定部に対してアキシアル方向およ
びラジアル方向に非接触状態で支持するようになってい
る。そして、たとえば回転体の周囲に配置された高周波
電動機により回転体を回転させるようになっている。
In this superconducting bearing device, during operation, first, the center of the annular superconductor portion arranged in the rotating body and the fixed portion are aligned with each other, and further, the rotating body and the fixed portion are axially separated from each other. By cooling the body and holding it in a superconducting state, the magnetic flux generated from the permanent magnet part is allowed to enter the inside of the superconductor to be restrained, and as a result, the so-called pinning force causes the rotating body to move in the axial direction relative to the fixed part. And it is designed to be supported in a non-contact state in the radial direction. Then, the rotating body is rotated by, for example, a high frequency electric motor arranged around the rotating body.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、環状永
久磁石の超電導体部と対向する面の表面磁束密度に周方
向のばらつきが生じることは避けられず、このばらつき
を考慮した磁場の中心が永久磁石の中心からずれること
になる。その結果、回転体を回転させたさいにラジアル
方向のふれが発生し、回転体を非接触状態で安定的に支
持できないという問題がある。しかも、回転体を非接触
状態で安定的に支持できないために回転体の高速回転が
不可能になるという問題がある。
However, it is unavoidable that the surface magnetic flux density of the surface of the annular permanent magnet facing the superconductor portion varies in the circumferential direction, and the center of the magnetic field in consideration of this variation is the permanent magnet. It will deviate from the center of. As a result, when rotating the rotating body, radial runout occurs, and there is a problem that the rotating body cannot be stably supported in a non-contact state. Moreover, there is a problem that the rotating body cannot be rotated at a high speed because the rotating body cannot be stably supported in a non-contact state.

【0006】この発明の目的は、上記の問題を解決した
超電導軸受装置の組立方法を提供することにある。
An object of the present invention is to provide a method of assembling a superconducting bearing device which solves the above problems.

【0007】[0007]

【課題を解決するための手段】この発明による超電導軸
受装置の組立方法は、回転体に固定状に設けられた環状
の永久磁石部と、この永久磁石部の端面に対して回転軸
心方向に間隔をおいて対向するように固定部に配置さ
れ、かつ超電導体を有する環状超電導体部とを備えてお
り、永久磁石部が、回転体の周囲に嵌め止められた磁石
支持体と、磁石支持体に固定された環状永久磁石とより
なる超電導軸受装置を組立てる方法であって、環状永久
磁石が固定された磁石支持体に、永久磁石と同心状に円
形穴を形成しておくこと、磁石支持体を、円形穴が超電
導体部と同心状となるように、超電導体部に対してその
軸方向に間隔をおいて配置するとともに、環状超電導体
部の超電導体を永久磁石の磁場により磁場冷却させて超
電導状態に保持しておくこと、磁石支持体を解放して磁
石支持体を磁気浮上させること、この状態で磁石支持体
を超電導体部の中心の周りに回転させること、磁石支持
体の回転時における円形穴の内周面のラジアル方向のふ
れを測定し、磁石支持体の回転中心を見出だすこと、こ
の回転中心を中心とし、円形穴よりも大径でかつこれを
含むような回転体挿通穴を形成すること、および回転体
挿通穴に、これと同心状となるように回転体を挿通して
磁石支持体に固定することを含むものである。
SUMMARY OF THE INVENTION A method of assembling a superconducting bearing device according to the present invention includes an annular permanent magnet portion fixedly provided on a rotating body and a rotation axis direction with respect to an end face of the permanent magnet portion. A ring-shaped superconductor portion having a superconductor arranged in the fixed portion so as to face each other with a gap, and the permanent magnet portion has a magnet support body fitted around the rotating body, and a magnet support body. A method of assembling a superconducting bearing device comprising an annular permanent magnet fixed to a body, comprising forming a circular hole concentrically with the permanent magnet in a magnet support to which the annular permanent magnet is fixed. Place the body so that the circular hole is concentric with the superconductor part, with a gap in the axial direction from the superconductor part, and cool the magnetic field of the superconductor part of the annular superconductor part with the magnetic field of the permanent magnet. And keep it in a superconducting state To release the magnet support to levitate the magnet support magnetically, to rotate the magnet support around the center of the superconductor part in this state, the inner circumference of the circular hole when the magnet support rotates. Measuring the radial deflection of the surface to find the center of rotation of the magnet support, and forming a rotor insertion hole that has a larger diameter than the circular hole and that includes this center of rotation. , And that the rotor is inserted through the rotor insertion hole so as to be concentric therewith, and is fixed to the magnet support.

【0008】上記において、環状超電導体部の超電導体
を永久磁石の磁場により磁場冷却させるということは、
予め永久磁石の磁場の中に超電導体を保持しておいて永
久磁石から発せられる磁束を超電導体に侵入させ、この
状態で超電導体を冷却して超電導状態にすることを意味
する。
In the above, cooling the magnetic field of the superconductor of the annular superconductor section by the magnetic field of the permanent magnet means
This means that the superconductor is held in advance in the magnetic field of the permanent magnet, the magnetic flux generated from the permanent magnet is allowed to enter the superconductor, and the superconductor is cooled in this state to be in the superconducting state.

【0009】[0009]

【作用】まず、環状永久磁石が固定された磁石支持体
に、永久磁石と同心状に円形穴を形成しておく。つい
で、磁石支持体を、円形穴が超電導体部と同心状となる
ように、超電導体部に対してその軸方向に間隔をおいて
配置し、環状超電導体部の超電導体を永久磁石の磁場に
より磁場冷却させて超電導状態に保持した後、磁石支持
体を解放して磁石支持体を磁気浮上させ、この状態で磁
石支持体を超電導体部の中心の周りに回転させると、環
状永久磁石の超電導体部と対向する面の表面磁束密度の
周方向のばらつきを考慮した磁場の中心が永久磁石の中
心からずれていることに起因して磁石支持体にラジアル
方向のふれが発生する。そこで、磁石支持体の回転時に
おける円形穴の内周面のラジアル方向のふれを測定し
て、磁石支持体の回転中心を見出だすと、この回転中心
が、環状永久磁石の超電導体部と対向する面の表面磁束
密度の周方向のばらつきを考慮した磁場の中心と一致す
ることになる。そして、この回転中心を中心として、円
形穴よりも大径でかつこれを含むような回転体挿通穴を
形成し、回転体挿通穴に、これと同心状となるように回
転体を挿通して磁石支持体に固定すると、永久磁石の上
記磁場の中心が、回転体の中心と一致することになる。
したがって、回転体のふれの発生を抑制できる。
First, a circular hole is formed concentrically with the permanent magnet in the magnet support to which the annular permanent magnet is fixed. Next, the magnet support is placed at a distance in the axial direction with respect to the superconductor part so that the circular hole is concentric with the superconductor part, and the superconductor in the annular superconductor part is placed in the magnetic field of the permanent magnet. After the magnetic field is cooled down by the magnetic field to keep it in the superconducting state, the magnet support is released to magnetically levitate the magnet support. Radial deflection occurs on the magnet support due to the center of the magnetic field deviating from the center of the permanent magnet in consideration of the circumferential variation in the surface magnetic flux density of the surface facing the superconductor portion. Therefore, when the radial deflection of the inner peripheral surface of the circular hole during the rotation of the magnet support is measured to find the center of rotation of the magnet support, this center of rotation corresponds to the superconductor part of the annular permanent magnet. It coincides with the center of the magnetic field in consideration of the circumferential variation of the surface magnetic flux density of the facing surface. Then, with this center of rotation as the center, a rotary body through hole having a diameter larger than and including the circular hole is formed, and the rotary body is inserted through the rotary body through hole so as to be concentric therewith. When fixed to the magnet support, the center of the magnetic field of the permanent magnet will coincide with the center of the rotating body.
Therefore, it is possible to suppress the wobbling of the rotating body.

【0010】[0010]

【実施例】以下、図面を参照して、この発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図3は超電導軸受装置の主要部の構成を概
略的に示す。
FIG. 3 schematically shows the structure of the main part of the superconducting bearing device.

【0012】図3において、超電導軸受装置は、垂直軸
状の回転体(1) を備えている。図示は省略したが、回転
体(1) は、回転体(1) にとりつけられたロータと、固定
部に取付けられてロータの周囲に配置されたステータと
よりなる駆動用高周波電動機で高速回転させられるよう
になっている。回転体(1) には水平円板状の永久磁石部
(2) が設けられ、永久磁石部(2) の下端面に対して回転
体(1) の回転軸心方向に間隔をおいて対向し、かつ回転
体(1) と同心状となるように、環状超電導体部(3) が固
定部(4) に配置されている。
In FIG. 3, the superconducting bearing device comprises a vertical shaft-shaped rotating body (1). Although illustration is omitted, the rotating body (1) is rotated at a high speed by a high-frequency driving electric motor including a rotor mounted on the rotating body (1) and a stator mounted on a fixed part and arranged around the rotor. It is designed to be used. The rotor (1) has a horizontal disk-shaped permanent magnet part.
(2) is provided so as to face the lower end surface of the permanent magnet part (2) with a space in the direction of the rotation axis of the rotating body (1) and to be concentric with the rotating body (1). The annular superconductor part (3) is arranged on the fixed part (4).

【0013】永久磁石部(2) は、回転体(1) の周囲に嵌
め止められた、たとえば銅あるいは非磁性ステンレス鋼
からなる水平円板(磁石支持体)(5) を備えている。円
板(5) の下面に環状の凹みぞ(6) が形成されており、凹
みぞ(6) 内に環状永久磁石(7) が嵌め止められている。
The permanent magnet part (2) is provided with a horizontal disk (magnet support) (5) which is fitted around the rotating body (1) and is made of, for example, copper or non-magnetic stainless steel. An annular groove (6) is formed on the lower surface of the disc (5), and an annular permanent magnet (7) is fitted in the groove (6).

【0014】超電導体部(3) は、たとえば銅あるいは非
磁性ステンレス鋼からなりかつ固定部(4) に固定された
回転体(1) と同心状の水平環状体(8) を備えている。環
状体(8) の中心にはこれを上下に貫通する穴(8a)が形成
され、この貫通穴(8a)に回転体(1) が隙間をおいて通さ
れている。環状体(8) 内に環状中空部(9) が形成され、
この中に、周方向に等間隔をおきかつ互いに近接するよ
うに、複数の円板状超電導体(10)が配置されている。環
状体(8) に、その内部の環状中空部(9) と連通するよう
に、冷却流体供給管(11)および同排出管(12)が配置され
ている。冷却流体供給管(11)および同排出管(12)は、図
示しない温度制御ユニットを介して冷却装置などに接続
されている。そして、冷却装置により冷却流体供給管(1
1)、環状中空部(9) および冷却流体排出管(12)を介して
冷却流体が循環させられ、中空部(9) 内に満たされる冷
却流体により超電導体(10)が冷却される。
The superconductor portion (3) is provided with a horizontal annular body (8) made of, for example, copper or non-magnetic stainless steel and concentric with the rotating body (1) fixed to the fixed portion (4). A hole (8a) is formed at the center of the annular body (8) so as to vertically pass therethrough, and the rotating body (1) is passed through the through hole (8a) with a gap. An annular hollow portion (9) is formed in the annular body (8),
In this, a plurality of disc-shaped superconductors (10) are arranged at equal intervals in the circumferential direction and close to each other. The cooling fluid supply pipe (11) and the discharge pipe (12) are arranged in the annular body (8) so as to communicate with the annular hollow portion (9) therein. The cooling fluid supply pipe (11) and the discharge pipe (12) are connected to a cooling device or the like via a temperature control unit (not shown). Then, the cooling fluid supply pipe (1
1), the cooling fluid is circulated through the annular hollow portion 9 and the cooling fluid discharge pipe 12, and the superconductor 10 is cooled by the cooling fluid filled in the hollow portion 9.

【0015】超電導体(10)は、第2種超電導体であり、
イットリウム系高温超電導体、たとえばYBaCu
からなるバルクの内部に常電導粒子(YBa
)を均一に混在させたものからなり、永久磁石部
(2) から発せられる磁束侵入を拘束する性質を持つもの
である。そして、超電導体(10)は、永久磁石部(2) の磁
束が所定量侵入する離間位置であってかつ上記回転体
(1) の回転によって侵入磁束の分布が変化しない位置に
配置されている。
The superconductor (10) is a type 2 superconductor,
Yttrium-based high temperature superconductor such as YBa 2 Cu 3
Consisting O x within the bulk normally conductive particles (Y 2 Ba 1 C
u 1 ) are mixed uniformly, and the permanent magnet part
It has the property of restraining the penetration of the magnetic flux emitted from (2). And, the superconductor (10) is at the separated position where the magnetic flux of the permanent magnet part (2) penetrates by a predetermined amount and at the same time as the rotating body.
It is placed at a position where the distribution of the magnetic flux penetrating does not change due to the rotation of (1).

【0016】図1および図2は超電導軸受装置を組立て
る方法を示す。
1 and 2 show a method of assembling a superconducting bearing device.

【0017】図1および図2において、まず円板(5) の
中心に、回転体(1) の外径よりも小さな円形穴(20)を形
成するとともに、その下面に環状凹みぞ(6) を同心状に
形成し、凹みぞ(6) 内に環状永久磁石(7) を嵌め止めて
おく。そして、環状永久磁石(7) の固定された円板(5)
を、超電導体部(3) と同心状となるように、超電導体部
(3) に対してその軸方向に間隔をおいて配置し、各超電
導体(10)を環状中空部(9) 内に循環させられる冷却流体
により冷却して第2種超電導状態に保持する。すなわ
ち、各超電導体(10)を、永久磁石(7) の磁場中で磁場冷
却させる。すると、永久磁石(7) から発せられる磁束の
多くが超電導体(10)の内部に侵入して拘束されることに
なる(ピンニング現象)。ここで、超電導体(10)はその
内部に常電導体粒子が均一に混在されているため、超電
導体(10)内部への侵入磁束の分布が一定となり、いわゆ
るピン止め力によって超電導体(10)に対して永久磁石
(7) が拘束される。したがって、円板(5) は、安定的に
浮上した状態で支持されることになる。このとき、超電
導体(10)に侵入した磁束は回転を妨げる抵抗とはならな
い。
In FIGS. 1 and 2, first, a circular hole (20) smaller than the outer diameter of the rotating body (1) is formed in the center of the disc (5), and an annular groove (6) is formed on the lower surface thereof. Are formed concentrically, and the annular permanent magnet (7) is fitted and retained in the groove (6). And the disk (5) to which the annular permanent magnet (7) is fixed
So that it is concentric with the superconductor part (3).
The superconductors (10) are arranged at intervals in the axial direction with respect to (3), and each superconductor (10) is cooled by a cooling fluid circulated in the annular hollow portion (9) to maintain the type 2 superconducting state. That is, each superconductor (10) is cooled in the magnetic field of the permanent magnet (7). Then, most of the magnetic flux generated from the permanent magnet (7) enters the inside of the superconductor (10) and is restricted (pinning phenomenon). Here, since the normal conductor particles are uniformly mixed in the superconductor (10), the distribution of the magnetic flux penetrating inside the superconductor (10) becomes constant, and the superconductor (10 ) Against a permanent magnet
(7) is bound. Therefore, the disk (5) is supported in a stable floating state. At this time, the magnetic flux that has entered the superconductor (10) does not become a resistance that prevents rotation.

【0018】ついで、適当な手段により円板(5) を超電
導体部(3) の中心軸の周りに回転させる。すると、永久
磁石(6) の超電導体部(3) と対向する面の表面磁束密度
の周方向のばらつきを考慮した磁場の中心が、環状永久
磁石(7) 、すなわち円板(5)の中心、および環状超電導
体部(3) の中心とずれていることに起因して、円板(5)
にラジアル方向のふれが発生する(図2の1点鎖線参
照)。そこで、電気マイクロメータ(21)の測定子(22)を
円板(5) の円形穴(20)の内周面に接触させ、円板(5) の
ラジアル方向のふれを測定して最大ふれ部分(A) を見出
だす。そして、最大ふれ部分(A) と円形穴(20)の中心
(O) とを結んだ直線(L) 上において、円形穴(20)の中心
(O) から最大ふれ部分(A) とは反対側の方向に最大ふれ
量(d) の1/2の距離(d/2) だけ偏位した点(O1)を求め
る。この点(O1)は、円板(5) の回転中心であり、この回
転中心は、環状永久磁石(7) の超電導体部(3) と対向す
る面の表面磁束密度の周方向のばらつきを考慮した磁場
の中心と一致することになる。ついで、円板(5) の回転
を停止させるとともに超電導体(10)の冷却を停止し、円
板(5) に、点(O1)を中心として、円形穴(20)よりも大径
でかつこれを含むような回転体挿通穴(23)を形成する
(図1および図2の2点鎖線参照)。最後に、回転体挿
通穴(23)に回転体(1) を同心状となるように挿通して固
定すると、永久磁石(7) の上記磁場の中心が、回転体
(1) の中心と一致することになる。最後に、ダイナミッ
クバランスをとる。こうして、超電導軸受装置が組立て
られる。
Then, the disc (5) is rotated around the central axis of the superconductor portion (3) by an appropriate means. Then, the center of the magnetic field in consideration of the circumferential variation of the surface magnetic flux density of the surface of the permanent magnet (6) facing the superconductor part (3) is the center of the annular permanent magnet (7), that is, the disk (5). , And due to the deviation from the center of the annular superconductor part (3), the disk (5)
Radial runout occurs in the vertical direction (see the alternate long and short dash line in FIG. 2). Therefore, the probe (22) of the electric micrometer (21) is brought into contact with the inner peripheral surface of the circular hole (20) of the disc (5), and the radial deflection of the disc (5) is measured to determine the maximum deflection. Find part (A). And the center of the maximum runout (A) and the circular hole (20)
The center of the circular hole (20) on the straight line (L) connecting (O) and
The point (O1) deviated from (O) by a distance (d / 2) that is ½ of the maximum deflection (d) in the direction opposite to the maximum deflection (A) is obtained. This point (O1) is the center of rotation of the disk (5), and this center of rotation is the variation in the circumferential direction of the surface magnetic flux density of the surface of the annular permanent magnet (7) facing the superconductor section (3). It will coincide with the center of the magnetic field considered. Then, the rotation of the disk (5) is stopped and the cooling of the superconductor (10) is stopped, and the disk (5) has a diameter larger than that of the circular hole (20) with the point (O1) as the center. A rotary body insertion hole (23) including this is formed (see the two-dot chain line in FIGS. 1 and 2). Finally, when the rotor (1) is inserted through the rotor insertion hole (23) so as to be concentric and fixed, the center of the magnetic field of the permanent magnet (7) becomes
It will coincide with the center of (1). Finally, take a dynamic balance. Thus, the superconducting bearing device is assembled.

【0019】超電導軸受装置を作動させる場合には、回
転体(1) と環状超電導体部(3) との相対的位置決めをし
た後、上記と同様にして超電導体(10)を冷却して第2種
超電導状態に保持する。すると、上記と同様にピン止め
力によって超電導体(10)に対して永久磁石部(2) ととも
に回転体(1) が拘束され、回転体(1) は、安定的に浮上
した状態で、アキシアル方向およびラジアル方向に支持
されることになる。そして、回転体(1) が高周波電動機
により回転させられる。このとき、回転体(1)のふれの
発生が抑制される。
When the superconducting bearing device is operated, after the relative positioning between the rotating body (1) and the annular superconductor portion (3), the superconductor (10) is cooled in the same manner as above. Hold in the state of type 2 superconductivity. Then, similarly to the above, the rotating body (1) is constrained to the superconductor (10) together with the permanent magnet part (2) by the pinning force, and the rotating body (1) is stably levitated and the axial body is axially moved. Direction and radial direction will be supported. Then, the rotating body (1) is rotated by the high frequency electric motor. At this time, the occurrence of runout of the rotating body (1) is suppressed.

【0020】[0020]

【発明の効果】この発明の超電導軸受装置の組立方法に
よれば、上述のように、組立てられた超電導軸受装置を
作動させた場合の回転体のふれの発生を抑制することが
できる。したがって、回転体を非接触状態で安定的に支
持することができ、その結果回転体の高速回転が可能と
なる。
As described above, according to the method of assembling the superconducting bearing device of the present invention, it is possible to suppress the occurrence of runout of the rotating body when the assembled superconducting bearing device is operated. Therefore, the rotating body can be stably supported in a non-contact state, and as a result, the rotating body can rotate at high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す円板の回転時における
円形穴の内周面のラジアル方向のふれを測定する状態を
示す概略縦断面図である。
FIG. 1 is a schematic vertical sectional view showing a state in which radial runout of an inner peripheral surface of a circular hole is measured during rotation of a disk according to an embodiment of the present invention.

【図2】同じく平面図である。FIG. 2 is a plan view of the same.

【図3】この発明により組立てられた超電導軸受装置の
主要部の概略縦断面図である。
FIG. 3 is a schematic vertical sectional view of a main part of a superconducting bearing device assembled according to the present invention.

【符号の説明】[Explanation of symbols]

1 回転体 2 環状永久磁石部 3 環状超電導体部 4 固定部 5 円板 7 環状永久磁石 20 円形穴 23 回転体挿通穴 O 円形穴の中心 1 Rotating Body 2 Annular Permanent Magnet Section 3 Annular Superconducting Section 4 Fixed Section 5 Disc 7 Annular Permanent Magnet 20 Circular Hole 23 Rotating Body Insertion Hole O Center of Circular Hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転体に固定状に設けられた環状の永久
磁石部と、この永久磁石部の端面に対して回転軸心方向
に間隔をおいて対向するように固定部に配置され、かつ
超電導体を有する環状超電導体部とを備えており、永久
磁石部が、回転体の周囲に嵌め止められた磁石支持体
と、磁石支持体に固定された環状永久磁石とよりなる超
電導軸受装置を組立てる方法であって、 環状永久磁石が固定された磁石支持体に、永久磁石と同
心状に円形穴を形成しておくこと、磁石支持体を、円形
穴が超電導体部と同心状となるように、超電導体部に対
してその軸方向に間隔をおいて配置するとともに、環状
超電導体部の超電導体を永久磁石の磁場により磁場冷却
させて超電導状態に保持しておくこと、磁石支持体を解
放して磁石支持体を磁気浮上させること、この状態で磁
石支持体を超電導体部の中心の周りに回転させること、
磁石支持体の回転時における円形穴の内周面のラジアル
方向のふれを測定し、磁石支持体の回転中心を見出だす
こと、この回転中心を中心とし、円形穴よりも大径でか
つこれを含むような回転体挿通穴を形成すること、およ
び回転体挿通穴に、これと同心状となるように回転体を
挿通して磁石支持体に固定することを含む超電導軸受装
置の組立方法。
1. An annular permanent magnet portion fixedly provided on a rotating body, and a fixed portion disposed so as to face an end surface of the permanent magnet portion with a gap in the direction of the rotation axis, and A superconducting bearing device comprising an annular superconductor portion having a superconductor, wherein the permanent magnet portion comprises a magnet support fitted around the rotating body and an annular permanent magnet fixed to the magnet support. A method of assembling, in which a circular hole is formed concentrically with the permanent magnet on the magnet support to which the annular permanent magnet is fixed, and the circular hole is made concentric with the superconductor part. In addition, it is arranged with a gap in the axial direction with respect to the superconductor portion, and the superconductor of the annular superconductor portion is magnetically cooled by the magnetic field of the permanent magnet and kept in a superconducting state. Release to magnetically levitate the magnet support When, to rotate the magnet support around a center of the superconductor portion in this state,
Measure the radial deflection of the inner surface of the circular hole when the magnet support rotates, and find the center of rotation of the magnet support. A method of assembling a superconducting bearing device, comprising: forming a rotating body insertion hole including a rotating body insertion hole; and inserting the rotating body so as to be concentric with the rotating body insertion hole and fixing the rotating body insertion hole to the magnet support.
JP23451092A 1992-09-02 1992-09-02 Assembly method for supercondctive bearing device Withdrawn JPH0681844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23451092A JPH0681844A (en) 1992-09-02 1992-09-02 Assembly method for supercondctive bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23451092A JPH0681844A (en) 1992-09-02 1992-09-02 Assembly method for supercondctive bearing device

Publications (1)

Publication Number Publication Date
JPH0681844A true JPH0681844A (en) 1994-03-22

Family

ID=16972160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23451092A Withdrawn JPH0681844A (en) 1992-09-02 1992-09-02 Assembly method for supercondctive bearing device

Country Status (1)

Country Link
JP (1) JPH0681844A (en)

Similar Documents

Publication Publication Date Title
EP0575619B1 (en) Superconductive bearing device
US5763971A (en) Superconducting bearing device
JP2547287B2 (en) Superconducting bearing device
US5739606A (en) Superconducting bearing device
JPH05180225A (en) Superconductive bearing device
JPH0681844A (en) Assembly method for supercondctive bearing device
JPH0681845A (en) Supercondctive bearing device
JP2799802B2 (en) Superconducting levitation type rotating device
JP3113920B2 (en) Superconducting bearing device
JPH0681843A (en) Supercondctive bearing device
JP3663470B2 (en) Superconducting bearing device
JPH0681842A (en) Superconductive bearing device
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JP3236925B2 (en) Superconducting bearing device
JP3577559B2 (en) Flywheel equipment
JP3477524B2 (en) Rotation loss measurement method for superconducting bearings
JPH05240246A (en) Method for assembling superconductive bearing device
JP3232463B2 (en) Superconducting bearing device
JPH10252754A (en) Superconductive bearing
JPH05306717A (en) Superconductive bearing device
JPH05180226A (en) Superconductive bearing device
JP3122772B2 (en) Superconducting bearing device
JP3270860B2 (en) Superconducting bearing device
JPH09205741A (en) Superconducting flywheel fixed shaft cooling method
JPH06295691A (en) Rotating anode type x-ray tube device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102