JP3174865B2 - Superconducting bearing device and start-up method thereof - Google Patents

Superconducting bearing device and start-up method thereof

Info

Publication number
JP3174865B2
JP3174865B2 JP14439492A JP14439492A JP3174865B2 JP 3174865 B2 JP3174865 B2 JP 3174865B2 JP 14439492 A JP14439492 A JP 14439492A JP 14439492 A JP14439492 A JP 14439492A JP 3174865 B2 JP3174865 B2 JP 3174865B2
Authority
JP
Japan
Prior art keywords
rotating shaft
permanent magnet
magnetic flux
superconductor
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14439492A
Other languages
Japanese (ja)
Other versions
JPH05332362A (en
Inventor
良一 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP14439492A priority Critical patent/JP3174865B2/en
Publication of JPH05332362A publication Critical patent/JPH05332362A/en
Application granted granted Critical
Publication of JP3174865B2 publication Critical patent/JP3174865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、磁束侵入を許容する
超伝導体を用いた超伝導軸受装置およびその起動方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting bearing device using a superconductor permitting magnetic flux penetration and a method of starting the same.

【0002】[0002]

【従来の技術】超伝導軸受として、たとえば、特開昭6
3−243523号公報に示すようなものが知られてい
る。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open No.
The thing as shown in 3-243523 is known.

【0003】この超伝導軸受は、第1種超伝導体すなわ
ち磁束侵入を完全に阻止する超伝導体を用いており、超
伝導体の完全反磁性現象を利用したものである。この超
伝導軸受は、超伝導体からなる回転軸の両端を、それぞ
れ一方磁極の磁気を帯びた磁性体からなる1対の支持部
材の凹みにそれぞれ入れ、回転軸をアキシアル方向に非
接触支持するように構成されている。
[0003] This superconducting bearing uses a first-class superconductor, that is, a superconductor that completely blocks the intrusion of magnetic flux, and utilizes the complete diamagnetic phenomenon of the superconductor. In this superconducting bearing, both ends of a rotating shaft made of a superconductor are respectively inserted into recesses of a pair of supporting members made of a magnetic material having a magnetic pole, and the rotating shaft is supported in a non-contact manner in an axial direction. It is configured as follows.

【0004】ところで、この従来の超伝導軸受では、上
述したように、完全反磁性の性質を利用して非接触支持
を行なうものゆえ、反発方向と直交する方向が不安定と
なるため、回転軸の両端を支持する支持部材について、
回転軸の両端を包み込む形状に加工する必要があるとと
もに、回転軸の両端と支持部材との間でアキシアル方向
およびラジアル方向で対向する部分を、磁化させる必要
があり、製作、設計が面倒なものであった。
In this conventional superconducting bearing, as described above, non-contact support is performed utilizing the property of complete diamagnetism, so that the direction orthogonal to the direction of repulsion becomes unstable. About the support member that supports both ends of
It is necessary to process both ends of the rotating shaft into a shape that wraps around the both ends, and it is necessary to magnetize the axially and radially opposed parts between both ends of the rotating shaft and the support member, which is cumbersome to manufacture and design. Met.

【0005】そこで、本出願人は、簡単な構成で安定的
に回転の支持が行なえる超伝導軸受として、回転軸に取
付けられた永久磁石と、これに対向するように配置され
る超伝導体とからなり、上記永久磁石が、上記回転軸の
回転軸心の周囲の磁束分布が回転によって変化しないよ
うに上記回転軸に取付けられたものであり、上記超伝導
体が、上記永久磁石の磁束侵入を許容するもので、上記
永久磁石の磁束が所定量侵入する離間位置であってかつ
上記回転軸の回転によって侵入磁束の分布が変化しない
位置に配置されるものである超伝導軸受を提案した(特
願平2−188693号参照)。この超伝導軸受では、
回転軸の永久磁石から発せられる磁束が超伝導体の内部
に侵入して拘束され、この磁束の拘束作用でもって永久
磁石と超伝導体とが所定の間隔をあけて対向した状態で
保持される。
Therefore, the applicant of the present invention has proposed a superconducting bearing which can stably support rotation with a simple structure, and a permanent magnet attached to a rotating shaft and a superconductor arranged to face the permanent magnet. Wherein the permanent magnet is mounted on the rotating shaft so that the magnetic flux distribution around the rotating shaft center of the rotating shaft does not change by rotation, and the superconductor has a magnetic flux of the permanent magnet. A superconducting bearing which allows penetration and is arranged at a separated position where the magnetic flux of the permanent magnet penetrates by a predetermined amount and at a position where the distribution of the penetrating magnetic flux does not change due to the rotation of the rotating shaft has been proposed. (See Japanese Patent Application No. 2-188693). In this superconducting bearing,
The magnetic flux emitted from the permanent magnet of the rotating shaft penetrates into the inside of the superconductor and is constrained, and the permanent magnet and the superconductor are held in a state of facing each other at a predetermined distance by the action of the magnetic flux. .

【0006】[0006]

【発明が解決しようとする課題】上記のような超伝導軸
受はたとえば高真空ポンプの軸受装置などに適用できる
が、この場合、超伝導軸受の運転を開始する前に、超伝
導体と永久磁石の相対位置を決定する機構がないため、
超伝導軸受の運転効率が悪いという問題がある。また、
回転軸の回転中に、超伝導体に侵入した磁束のうちの拘
束力の弱いものが超伝導体から外れるフラックスクリー
プ現象などが生じ、これによって回転軸の支持力が低下
するとともに不安定になり、回転軸の回転が不安定にな
る。
The superconducting bearing as described above can be applied to, for example, a bearing device of a high vacuum pump. In this case, before starting the operation of the superconducting bearing, the superconductor and the permanent magnet are required. Because there is no mechanism to determine the relative position of
There is a problem that the operation efficiency of the superconducting bearing is poor. Also,
During the rotation of the rotating shaft, the flux creep phenomenon, in which the weaker binding force of the magnetic flux that has entered the superconductor comes off the superconductor, etc., causes the supporting force of the rotating shaft to decrease and becomes unstable. The rotation of the rotating shaft becomes unstable.

【0007】この発明の目的は、上記の問題を解決した
超伝導軸受装置を提供することにある。
An object of the present invention is to provide a superconducting bearing device which solves the above problems.

【0008】[0008]

【課題を解決するための手段】この発明による超伝導軸
受装置は、ケーシングの内側に軸方向および半径方向の
移動ならびに回転ができるように配置された回転軸が、
超伝導軸受により非接触状態に回転支持されるようにな
されており、上記超伝導軸受が、上記回転軸に取付けら
れた永久磁石と、これに対向するように上記ケーシング
に取付けられた超伝導体とからなり、上記永久磁石が、
上記回転軸の回転軸心の周囲の磁束分布が回転によって
変化しないように上記回転軸に取付けられたものであ
り、上記超伝導体が、上記永久磁石の磁束侵入を許容す
るもので、上記永久磁石の磁束が所定量侵入する離間位
置であってかつ上記回転軸の回転によって侵入磁束の分
布が変化しない位置にくるようにケーシングに取付けら
れている超伝導軸受装置であって、上記ケーシングに、
上記回転軸を上下から挟んで位置決めする上下の昇降部
材を備えた初期位置決め機構が設けられていることを特
徴とするものである。
SUMMARY OF THE INVENTION A superconducting bearing device according to the present invention comprises a rotating shaft disposed inside a casing so as to be capable of axial and radial movement and rotation.
The superconducting bearing is rotatably supported in a non-contact state. The superconducting bearing includes a permanent magnet attached to the rotating shaft and a superconductor attached to the casing so as to face the permanent magnet. And the permanent magnet is
The superconductor is attached to the rotating shaft so that the magnetic flux distribution around the rotating shaft center of the rotating shaft does not change due to rotation, and the superconductor allows magnetic flux to enter the permanent magnet. A superconducting bearing device which is attached to a casing so as to be located at a separated position where a magnetic flux of a magnet enters by a predetermined amount and a position where a distribution of an intruding magnetic flux does not change due to rotation of the rotating shaft, wherein the casing has
An initial positioning mechanism having upper and lower elevating members for positioning the rotary shaft with the rotary shaft sandwiched from above and below is provided.

【0009】この発明による超伝導軸受装置の起動方法
は、ケーシングの内側に軸方向および半径方向の移動な
らびに回転ができるように配置された回転軸が、超伝導
軸受により非接触状態に回転支持されるようになされて
おり、上記超伝導軸受が、上記回転軸に取付けられた永
久磁石と、これに対向するように上記ケーシングに取付
けられた超伝導体とからなり、上記永久磁石が、上記回
転軸の回転軸心の周囲の磁束分布が回転によって変化し
ないように上記回転軸に取付けられたものであり、上記
超伝導体が、上記永久磁石の磁束侵入を許容するもの
で、上記永久磁石の磁束が所定量侵入する離間位置であ
ってかつ上記回転軸の回転によって侵入磁束の分布が変
化しない位置にくるようにケーシングに取付けられてい
る超伝導軸受装置において、上下の昇降部材により上記
回転軸を上下から挟んで支持し、昇降部材を昇降させる
ことによって回転軸を位置決めし、超伝導体を冷却し
て、永久磁石から発せられる磁束を超伝導体に侵入させ
て拘束させ、下側の昇降部材を下降させて、回転軸の支
持をなくし、上側の昇降部材を下降させて、回転軸を下
方に押すことにより、回転軸に負荷をかけ、上側の昇降
部材を上昇させて、回転軸から離し、回転軸の回転を開
始することを特徴とするものである。
In the method for starting a superconducting bearing device according to the present invention, a rotating shaft arranged inside a casing so as to be able to move and rotate in the axial and radial directions is rotatably supported by a superconducting bearing in a non-contact state. Wherein the superconducting bearing comprises a permanent magnet attached to the rotating shaft and a superconductor attached to the casing so as to face the permanent magnet, and the permanent magnet is The superconductor is attached to the rotating shaft so that the magnetic flux distribution around the axis of rotation of the shaft does not change due to rotation, and the superconductor allows magnetic flux to enter the permanent magnet. The superconducting bearing device mounted on the casing is located at a separated position where a predetermined amount of magnetic flux enters and at a position where the distribution of the entering magnetic flux does not change due to the rotation of the rotating shaft. The upper and lower elevating members support the rotating shaft from above and below, and the elevating member is moved up and down to position the rotating shaft, cool the superconductor, and apply the magnetic flux emitted from the permanent magnet to the superconductor. Penetrating and restraining, lowering the lower elevating member, lowering the support of the rotating shaft, lowering the upper elevating member, pushing the rotating shaft downward, applying a load to the rotating shaft, The lifting member is lifted and separated from the rotating shaft to start rotating the rotating shaft.

【0010】[0010]

【作用】超伝導軸受の超伝導体に侵入した永久磁石の磁
束による拘束作用でもって、永久磁石と超伝導体とが所
定の間隔をあけて対向した状態で保持される。この状態
においては、永久磁石を備える回転軸をその軸心まわり
に回転させることが可能である。このとき、超伝導体に
侵入した磁束は、磁束分布が回転軸心に対して均一で不
変である限り、回転を妨げる抵抗とはならない。したが
って、超伝導体に対して所定の位置に回転軸に備える永
久磁石を相対位置させるだけで、アキシアル方向および
ラジアル方向に非接触で支持することができる。
According to the present invention, the permanent magnet and the superconductor are held in a state of facing each other at a predetermined distance by the restraining action of the magnetic flux of the permanent magnet that has entered the superconductor of the superconducting bearing. In this state, it is possible to rotate the rotation shaft including the permanent magnet around its axis. At this time, the magnetic flux that has entered the superconductor does not become a resistance that hinders rotation as long as the magnetic flux distribution is uniform and invariant with respect to the rotation axis. Therefore, it is possible to support the superconductor in a non-contact manner in the axial direction and the radial direction only by positioning the permanent magnet provided on the rotation shaft at a predetermined position relative to the superconductor.

【0011】この発明の超伝導軸受装置によれば、超伝
導軸受の運転を開始する前に、初期位置決め機構によ
り、ケーシングに対して回転軸を位置決めすることがで
き、これによってケーシングの超伝導体と回転軸の永久
磁石の相対位置を設定することができる。そして、回転
軸を挟んだ上下の昇降部材を上下に移動させることによ
って、回転軸を任意の位置に位置決めすることができ
る。その結果、超伝導体と永久磁石の相対位置を任意に
設定することができ、この相対位置を任意に設定するこ
とにより、超伝導軸受の効率の良い運転が可能になる。
According to the superconducting bearing device of the present invention, the rotation shaft can be positioned with respect to the casing by the initial positioning mechanism before the operation of the superconducting bearing is started. And the relative position of the permanent magnet of the rotating shaft can be set. Then, by moving the vertically moving member up and down with the rotating shaft interposed therebetween, the rotating shaft can be positioned at an arbitrary position. As a result, the relative position between the superconductor and the permanent magnet can be arbitrarily set, and by setting the relative position arbitrarily, efficient operation of the superconducting bearing becomes possible.

【0012】この発明の超伝導軸受装置の起動方法によ
れば、回転軸を上下の昇降部材で挟んで昇降させること
により、回転軸を任意の位置に位置決めさせることがで
き、その結果、超伝導体と永久磁石の相対位置を任意に
設定することができる。また、超伝導体を冷却して、永
久磁石から発せられる磁束を超伝導体に侵入させて拘束
させた状態で、上側の昇降部材で回転軸を下方に押し
て、これに負荷をかけることにより、運転中のフラック
スクリープが軽減される。
According to the starting method of the superconducting bearing device of the present invention, the rotating shaft can be positioned at an arbitrary position by sandwiching the rotating shaft between the upper and lower elevating members, thereby positioning the rotating shaft at an arbitrary position. The relative position between the body and the permanent magnet can be set arbitrarily. In addition, by cooling the superconductor, in a state where the magnetic flux generated from the permanent magnet is penetrated into the superconductor and restrained, the rotating shaft is pushed downward by the upper elevating member, and a load is applied to this. Flux creep during operation is reduced.

【0013】[0013]

【実施例】以下、図面を参照して、この発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図面は超伝導軸受装置の全体構成を概略的
に示しており、この軸受装置は、垂直に配置されるケー
シング(1) と、ケーシング(1) 内の中心に非接触状態に
回転支持される垂直な回転軸(2) とを備えている。
The drawings schematically show the overall structure of a superconducting bearing device, which comprises a vertically arranged casing (1) and a rotatably supported non-contacting center in the casing (1). A vertical axis of rotation (2).

【0015】ケーシング(1) は、複数の部品から構成さ
れており、全体として上下両端が開口した厚肉円筒状を
なす。ケーシング(1) 内の上下中央部に回転軸(2) を高
速回転させるための高周波モータ(3) が設けられ、その
上下に回転軸(2) を非接触状態に支持するための超伝導
軸受(4)(5)が設けられている。
The casing (1) is composed of a plurality of components, and has a thick cylindrical shape having upper and lower ends opened as a whole. A high-frequency motor (3) for rotating the rotating shaft (2) at high speed is provided in the upper and lower central part of the casing (1), and a superconducting bearing for supporting the rotating shaft (2) in a non-contact state above and below it. (4) and (5) are provided.

【0016】モータ(3) は、ケーシング(1) に設けられ
たステータ(6) と、回転軸(2) に設けられたロータ(7)
とから構成されている。
The motor (3) comprises a stator (6) provided on a casing (1) and a rotor (7) provided on a rotating shaft (2).
It is composed of

【0017】上部超伝導軸受(4) は、次のように構成さ
れている。ケーシング(1) 内に、環状で中空の冷却剤ケ
ース(8) が固定されている。ケース(8) の中心にはこれ
を上下に貫通する貫通穴(9) が形成され、この穴(9) に
回転軸(2) が隙間をあけて通されている。ケース(8) の
穴(9) の部分の内周壁の上下中央部に環状凹みぞ(10)が
形成され、このみぞ(10)の底の部分の内径が穴(9) の内
径よりかなり大きくなっている。穴あき円板状の永久磁
石(11)が回転軸(2) に固定され、ケース(8) のみぞ(9)
に隙間をあけてはまるようになっている。この磁石(11)
は、上端に一方磁極(例えばN極)の磁気を、下端に他
方磁極の磁気(例えばS極)をそれぞれ帯びたものであ
り、回転軸(2) の回転軸心の周囲の磁束分布が回転によ
って変化しないように回転軸(2) に取付けられている。
ケース(8) 内のみぞ(9) の上側の壁の上面に、環状の上
部超伝導体(12)が固定されている。ケース(8) 内のみぞ
(9) の下側の壁の下面に、環状の下部超伝導体(13)が固
定されている。これらの超伝導体(12)(13)は、イットリ
ウム系高温超伝導体、たとえばYBa2 Cu3 xから
なる基板の内部に常伝導粒子(Y2 Ba1 Cu1 )を均
一に混在させたものからなり、永久磁石(11)から発せら
れる磁束侵入を拘束する性質を持つものである。そし
て、超伝導体(12)(13)は、永久磁石(11)の磁束が所定量
侵入する離間位置であって、回転軸(2) の回転によって
侵入磁束の分布が変化しない位置にくるようにケース
(8) に取付けられている。なお、ケース(8) の少なくと
もみぞ(9)の部分の壁とその上下の超伝導体(12)(13)に
対応する内周壁の部分は、非磁性体より構成されてい
る。
The upper superconducting bearing (4) is constructed as follows. An annular hollow coolant case (8) is fixed in the casing (1). A through hole (9) is formed in the center of the case (8) and penetrates it vertically, and the rotating shaft (2) is passed through the hole (9) with a gap. An annular groove (10) is formed in the center of the inner peripheral wall of the hole (9) of the case (8), and the inside diameter of the bottom of this groove (10) is considerably larger than the inside diameter of the hole (9). Has become. A perforated disk-shaped permanent magnet (11) is fixed to the rotating shaft (2), and only the case (8)
With a gap. This magnet (11)
Has a magnetic pole of one magnetic pole (for example, N pole) at the upper end and a magnetic pole of the other magnetic pole (for example, S pole) at the lower end, and the magnetic flux distribution around the rotation axis of the rotation shaft (2) rotates. It is attached to the rotating shaft (2) so that it does not change due to
An annular upper superconductor (12) is fixed to the upper surface of the upper wall of the groove (9) in the case (8). Only in case (8)
An annular lower superconductor (13) is fixed to the lower surface of the lower wall of (9). These superconductors (12) (13), yttrium-based high temperature superconductor, for example, YBa 2 Cu 3 O x and an internal in the normal conducting particles of the substrate (Y 2 Ba 1 Cu 1) uniformly mix And has the property of restricting the intrusion of the magnetic flux emitted from the permanent magnet (11). The superconductors (12) and (13) are located at separated positions where the magnetic flux of the permanent magnet (11) enters by a predetermined amount, and are located at positions where the distribution of the entering magnetic flux does not change due to the rotation of the rotating shaft (2). To case
(8) Installed. At least the wall of the groove (9) of the case (8) and the inner peripheral wall corresponding to the superconductors (12) and (13) above and below it are made of a non-magnetic material.

【0018】下部超伝導軸受(5) の構成は上部超伝導軸
受(4) と同様であり、同じ部分には同一の符号を付して
いる。
The structure of the lower superconducting bearing (5) is the same as that of the upper superconducting bearing (4), and the same parts are denoted by the same reference numerals.

【0019】上下の超伝導軸受(4)(5)のケース(8) は、
ケーシング(1) 内に通された連通管(14)によって連通さ
せられている。上部のケース(8) にはケーシング(1) を
貫通して外部にのびる冷却剤導入管(15)が、下部のケー
ス(8) には同様の冷却剤排出管(16)がそれぞれ接続され
ている。上部のケース(8) の冷却剤導入管(15)は冷凍機
などを備えた冷却装置(18)の冷却剤往き管(吐出管)(1
9)に、下部のケース(8) は冷却装置(18)の冷却剤戻り管
(吸込管)(20)にそれぞれ接続されている。そして、冷
却装置(18)により、たとえば液体窒素などの冷却剤が往
き管(19)、導入管(15)、上部のケース(8) 、連通管(1
4)、下部のケース(8) 、排出管(16)および戻り管(20)を
通して循環させられ、ケース(8) 内に満たされる冷却剤
によって超伝導体(12)(13)が冷却される。このため、超
伝導体(12)(13)が超伝導状態になって、回転軸(2) の永
久磁石(11)から発せられる磁束の多くが超伝導体(12)(1
3)の内部に侵入して拘束されることになる(トラップ現
象)。ここで、超伝導体(12)(13)はその内部に常伝導粒
子が均一に混在されているため、超伝導体(12)(13)内部
への侵入磁束の分布が一定となり、そのため、あたかも
超伝導体(12)(13)に立設した仮想ピンに回転軸(2) の永
久磁石(11)が貫かれたようになり、超伝導体(12)(13)に
対して回転軸(2) が拘束される。そのため、回転軸(2)
は、きわめて安定的に浮上した状態で、アキシアル方向
およびラジアル方向に支持されることになる。
The case (8) of the upper and lower superconducting bearings (4) (5)
They are communicated by a communication pipe (14) passed through the casing (1). The upper case (8) is connected to a coolant introduction pipe (15) that extends through the casing (1) and extends to the outside, and the lower case (8) is connected to a similar coolant discharge pipe (16). I have. The coolant inlet pipe (15) of the upper case (8) is connected to the coolant outlet pipe (discharge pipe) (1) of the cooling device (18) equipped with a refrigerator or the like.
9), the lower case (8) is connected to a coolant return pipe (suction pipe) (20) of the cooling device (18). Then, the cooling device (18) supplies a coolant such as liquid nitrogen to the access pipe (19), the introduction pipe (15), the upper case (8), and the communication pipe (1).
4), circulated through the lower case (8), the discharge pipe (16) and the return pipe (20), and the superconductors (12) and (13) are cooled by the coolant filled in the case (8). . As a result, the superconductors (12) and (13) enter a superconducting state, and most of the magnetic flux generated from the permanent magnet (11) of the rotating shaft (2) is superconductor (12) (1).
Intrusion into 3) will be restrained (trap phenomenon). Here, since the superconductors (12) and (13) have normal particles uniformly mixed therein, the distribution of the magnetic flux penetrating into the superconductors (12) and (13) becomes constant. As if the permanent magnet (11) of the rotating shaft (2) penetrated the virtual pin set up on the superconductors (12) and (13), the rotating shaft was moved with respect to the superconductors (12) and (13). (2) is bound. Therefore, the rotating shaft (2)
Will be supported in the axial and radial directions in a very stable floating state.

【0020】ケーシング(1) 内の上部および下部に環状
の保護部材(21)(22)が固定され、これらに対応して、回
転軸(2) の上部および下部に1対のセラミック転がり軸
受よりなるタッチダウン軸受(23)(24)がそれぞれ設けら
れている。保護部材(21)(22)の内周面に浅い環状みぞ(2
5)(26)が形成されており、このみぞ(25)(26)の内側の部
分にタッチダウン軸受(23)(24)が隙間をあけて配置され
ている。タッチダウン軸受(23)(24)は、ラジアル荷重と
アキシアル荷重を受けられるものであり、たとえば正面
組合せまたは背面組合せの1対のアンギュラ玉軸受より
なる。
Ring-shaped protective members (21) and (22) are fixed to the upper and lower parts of the casing (1). Correspondingly, a pair of ceramic rolling bearings are mounted on the upper and lower parts of the rotating shaft (2). Touch-down bearings (23) and (24) are provided. A shallow annular groove (2) is formed on the inner peripheral surface of the protection members (21) and (22).
5) and (26) are formed, and touch-down bearings (23) and (24) are arranged with a gap inside the grooves (25) and (26). The touch-down bearings (23) and (24) are capable of receiving a radial load and an axial load, and include, for example, a pair of angular ball bearings in a front combination or a back combination.

【0021】運転中に、万一、超伝導軸受(4)(5)の超伝
導体(12)(13)が常伝導化して支持力がなくなったような
場合、上下のタッチダウン軸受(23)(24)がケーシング
(1) の保護部材(21)(22)に接触し、これによって回転軸
(2) が回転支持される。このため、回転軸(2) およびそ
のまわりの部品の破損が防止される。
During operation, if the superconductors (12) and (13) of the superconducting bearings (4) and (5) become normal conductive and lose their supporting force, the upper and lower touch-down bearings (23) ) (24) is the casing
(1) comes into contact with the protection members (21) and (22), thereby
(2) is rotatably supported. For this reason, damage to the rotating shaft (2) and components around it is prevented.

【0022】上記の超伝導軸受装置には、次のように、
運転前にケーシング(1) と回転軸(2) の上下相対位置す
なわち超伝導体(12)(13)と永久磁石(11)の上下相対位置
を設定するための初期位置決め装置(27)が設けられてい
る。
The above superconducting bearing device has the following features:
Before the operation, an initial positioning device (27) is provided to set the vertical relative position of the casing (1) and the rotating shaft (2), that is, the vertical position of the superconductors (12) (13) and the permanent magnet (11). Have been.

【0023】ケーシング(1) の下部開口端部に、公知の
適宜な手段により昇降させられる下側昇降部材(28)が設
けられている。昇降部材(28)の上端面に円錐状の突起(2
9)が設けられ、これに対向する回転軸(2) の下端面にこ
の突起(29)がはまる円錐穴(30)が形成されている。ま
た、ケーシング(1) の上部開口端部に、上記同様の上側
昇降部材(33)が設けられている。上側昇降部材(33)の中
心にこれを上下に貫通する穴(32)が形成され、回転軸
(2) の上端にこの穴(32)を通って上方に突出した連結部
材(31)が設けられている。穴(32)の下端部に、下側が広
がったテーパ部(32a) が形成されている。連結部材(31)
の下部に、穴(32)のテーパ部(32a) に対応して、下側が
広がったテーパ部(31a) が形成されており、連結部材(3
1)のテーパ部(31a) より上側の外径の小さくなったスト
レート部分が、穴(32)のテーパ部(32a) より上側の内径
の小さくなったストレート部分に隙間をあけて通されて
いる。
At the lower opening end of the casing (1), there is provided a lower elevating member (28) which can be raised and lowered by known suitable means. Conical projections (2
A conical hole (30) into which the projection (29) fits is formed on the lower end surface of the rotating shaft (2) opposed to this. Further, an upper elevating member (33) similar to the above is provided at an upper opening end of the casing (1). A hole (32) is formed in the center of the upper elevating member (33) so as to penetrate it vertically, and
At the upper end of (2), a connecting member (31) protruding upward through the hole (32) is provided. The lower end of the hole (32) is formed with a tapered portion (32a) whose lower side is widened. Connecting member (31)
A lower portion of the connecting member (3a) is formed at the lower portion of the connecting member (31a), the lower portion of which is widened corresponding to the tapering portion (32a) of the hole (32).
The straight portion having a smaller outer diameter above the tapered portion (31a) of 1) is passed through a gap between the straight portion having a smaller inner diameter above the tapered portion (32a) of the hole (32). .

【0024】運転時には、下側昇降部材(28)は下方の運
転位置まで下降し、上側昇降部材(33)は上方の運転位置
まで上昇しており、前記のように超伝導軸受(4)(5)によ
って回転軸(2) が支持されることにより、下側昇降部材
(28)の突起(29)が回転軸(2)の円錐穴(30)の壁から離れ
るとともに、回転軸(2) のテーパ部(31a) が上側昇降部
材(33)のテーパ部(32a) から離れている。また、通常、
回転軸(2) はケーシング(1) のほぼ中心に支持された状
態で回転し、永久磁石(11)はケース(8) のみぞ(9) 内の
ほぼ上下中央に支持されている。
In operation, the lower lifting member (28) is lowered to the lower operating position, and the upper lifting member (33) is raised to the upper operating position, and as described above, the superconducting bearing (4) ( The rotating shaft (2) is supported by 5) so that the lower lifting member
The protrusion (29) of (28) moves away from the wall of the conical hole (30) of the rotating shaft (2), and the tapered portion (31a) of the rotating shaft (2) is tapered (32a) of the upper lifting member (33). Away from Also, usually
The rotating shaft (2) rotates while being supported substantially at the center of the casing (1), and the permanent magnet (11) is supported substantially at the vertical center of the case (8) in the case (8).

【0025】停止時には、通常、冷却装置(18)からの冷
却剤の供給も停止している。このため、超伝導体(12)(1
3)は常伝導状態になり、支持力がなくなっている。この
ため、回転軸(2) は、タッチダウン軸受(23)(24)を介し
てケーシング(1) に支持された状態で停止している。
At the time of the stop, the supply of the coolant from the cooling device (18) is usually stopped. Therefore, the superconductor (12) (1
3) is in the normal conduction state and has lost its bearing capacity. Therefore, the rotating shaft (2) is stopped while being supported by the casing (1) via the touchdown bearings (23) and (24).

【0026】このような停止状態の軸受装置は、たとえ
ば次のようにして起動される。
Such a stopped bearing device is started, for example, as follows.

【0027】まず、上側昇降部材(33)を運転位置から適
当な位置まで下降させ、下側昇降部材(28)を運転位置か
ら適当な位置まで上昇させる。下側昇降部材(28)が上昇
すると、まず、昇降部材(28)の突起(29)が回転軸(2) の
円錐穴(30)に密接して、回転軸(2) が上に持ち上げら
れ、回転軸(2) のテーパ部(31a) が上側昇降部材(33)の
テーパ部(32a) に密接して、回転軸(2) および下側昇降
部材(28)が停止する。これによって回転軸(2) が上下の
昇降部材(33)(28)に挟まれた状態で支持され、下側昇降
部材(28)の円錐状の突起(29)が回転軸(2) の円錐穴(30)
にはまるとともに、回転軸(2) のテーパ部(31a) が上側
昇降部材(33)のテーパ部(32a) に密接することにより、
回転軸(2) がケーシング(1) の中心に位置決めされる。
そして、このように回転軸(2) を挟んで支持した状態
で、上下の昇降部材(33)(28)を同期させて昇降させ、回
転軸(2) を任意の位置に位置決めする。通常は、永久磁
石(11)がケース(8) のみぞ(9) の上側の壁に接近し、こ
の壁から永久磁石(11)の上面までの距離がみぞ(9) の下
側の壁から永久磁石(11)の下面までの距離より小さくな
るようにする。このように回転軸(2) が位置決めされた
ならば、冷却装置(18)により超伝導軸受(4)(5)に冷却剤
を循環させて、超伝導体(12)(13)を冷却する。超伝導体
(12)(13)が冷却されて超伝導状態になると、前述のよう
に支持力が発生するので、まず、下側昇降部材(28)を運
転位置まで下降させて、これによる支持をなくす。下側
昇降部材(28)による支持力がなくなると、回転軸(2) は
自重で若干下降して、超伝導軸受(4)(5)の磁気反発力お
よびピン止め力と釣合う位置に停止する。通常は、永久
磁石(11)がケース(8) のみぞ(9) 内のほぼ上下中央にく
るような位置に回転軸(2) が停止する。次に、上側昇降
部材(33)を下降させ、回転軸(2) を少し下方に押して、
これに負荷をかけた後、上側昇降部材(33)を運転位置ま
で上昇させて、回転軸(2) から離す。これにより、回転
軸(2) は少し上昇して、ほぼ元の位置に戻り、前述のよ
うに非接触状態に支持されるので、モータ(3)により回
転軸(2) を回転させて、運転を開始する。
First, the upper lifting member (33) is lowered from the operating position to an appropriate position, and the lower lifting member (28) is raised from the operating position to an appropriate position. When the lower elevating member (28) rises, first, the protrusion (29) of the elevating member (28) comes into close contact with the conical hole (30) of the rotating shaft (2), and the rotating shaft (2) is lifted upward. Then, the tapered portion (31a) of the rotating shaft (2) comes into close contact with the tapered portion (32a) of the upper lifting member (33), and the rotating shaft (2) and the lower lifting member (28) stop. As a result, the rotating shaft (2) is supported in a state sandwiched between the upper and lower elevating members (33) and (28), and the conical protrusion (29) of the lower elevating member (28) is conical with the rotating shaft (2). Hole (30)
And the tapered portion (31a) of the rotating shaft (2) comes into close contact with the tapered portion (32a) of the upper lifting member (33).
The rotating shaft (2) is positioned at the center of the casing (1).
Then, with the rotating shaft (2) supported in this manner, the upper and lower elevating members (33) and (28) are moved up and down synchronously to position the rotating shaft (2) at an arbitrary position. Normally, the permanent magnet (11) approaches the upper wall of the groove (9) of the case (8), and the distance from this wall to the upper surface of the permanent magnet (11) is higher than the lower wall of the groove (9). It should be smaller than the distance to the lower surface of the permanent magnet (11). When the rotating shaft (2) is positioned in this way, the coolant is circulated through the superconducting bearings (4) and (5) by the cooling device (18) to cool the superconductors (12) and (13). . Superconductor
(12) When the (13) is cooled and enters the superconducting state, the supporting force is generated as described above. First, the lower elevating member (28) is lowered to the operating position, and the supporting by this is eliminated. When the supporting force of the lower elevating member (28) is lost, the rotating shaft (2) slightly descends by its own weight and stops at a position that balances the magnetic repulsive force and pinning force of the superconducting bearings (4) (5). I do. Normally, the rotary shaft (2) stops at a position where the permanent magnet (11) is located substantially in the vertical center of the case (8). Next, lower the upper elevating member (33) and push the rotating shaft (2) slightly downward,
After applying a load, the upper lifting member (33) is raised to the operating position and separated from the rotating shaft (2). As a result, the rotating shaft (2) slightly rises and returns to almost its original position, and is supported in a non-contact state as described above. To start.

【0028】上記のように超伝導軸受(4)(5)により非接
触状態に支持された回転前の回転軸(2) を上側昇降部材
(33)で下方に押して負荷をかけることにより、回転中の
フラックスクリープを軽減させることができ、その結
果、回転軸(2) を安定良く回転させることができるよう
になる。
The rotating shaft (2) before rotation, which is supported by the superconducting bearings (4) and (5) in a non-contact state as described above, is moved upward and downward.
By applying a load by pushing downward in (33), flux creep during rotation can be reduced, and as a result, the rotating shaft (2) can be rotated stably.

【0029】超伝導軸受(4)(5)の構成などは、上記実施
例のものに限らず、適宜変更可能である。超伝導軸受に
は、回転軸の外周に円筒状の永久磁石が取付けられて、
その一端に一方磁極の磁気を、他端に他方磁極の磁気を
それぞれ帯びており、この永久磁石の周囲に円筒状、部
分円筒状または板状の超伝導体が配置される形式のもの
もあるが、このような超伝導軸受を使用した超伝導軸受
装置にもこの発明は適用できる。
The configuration of the superconducting bearings (4) and (5) is not limited to that of the above embodiment, but can be changed as appropriate. In the superconducting bearing, a cylindrical permanent magnet is attached to the outer circumference of the rotating shaft,
One type has magnetism of one magnetic pole at one end and magnetism of the other magnetic pole at the other end, and there is also a type in which a cylindrical, partially cylindrical or plate-like superconductor is arranged around this permanent magnet. However, the present invention is also applicable to a superconducting bearing device using such a superconducting bearing.

【0030】[0030]

【発明の効果】この発明の超伝導軸受装置によれば、上
述のように、簡単な構造の超伝導軸受で回転軸を安定的
に支持することができるとともに、運転前に、ケーシン
グに対して回転軸を任意の位置に位置決めして、ケーシ
ングと回転軸の相対位置を任意に設定することができ、
したがって、効率の良い運転をすることができる。
According to the superconducting bearing device of the present invention, as described above, the rotating shaft can be stably supported by the superconducting bearing having a simple structure, and the rotating shaft can be fixed to the casing before operation. The rotating shaft can be positioned at any position, and the relative position between the casing and the rotating shaft can be set arbitrarily.
Therefore, efficient driving can be performed.

【0031】この発明の超伝導軸受装置の起動方法によ
れば、ケーシングに対して回転軸を任意の位置に位置決
めすることにより、ケーシングと回転軸の相対位置を任
意に設定して、効率の良い運転をすることができ、しか
も回転中のフレックスクリープを軽減させて、回転軸を
安定良く回転させることができる。
According to the method of starting a superconducting bearing device of the present invention, the relative position between the casing and the rotating shaft is set arbitrarily by positioning the rotating shaft at an arbitrary position with respect to the casing, thereby improving the efficiency. Driving can be performed, and flex creep during rotation can be reduced, and the rotating shaft can be rotated stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す超伝導軸受装置の概略
縦断面図である。
FIG. 1 is a schematic vertical sectional view of a superconducting bearing device showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) ケーシング (2) 回転軸 (4)(5) 超伝導軸受 (11) 永久磁石 (12)(13) 超伝導体 (27) 初期位置決め装置。 (28) 下側昇降部材 (33) 上側昇降部材 (1) Casing (2) Rotary shaft (4) (5) Superconducting bearing (11) Permanent magnet (12) (13) Superconductor (27) Initial positioning device. (28) Lower lifting member (33) Upper lifting member

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ケーシングの内側に軸方向および半径方向
の移動ならびに回転ができるように配置された回転軸
が、超伝導軸受により非接触状態に回転支持されるよう
になされており、上記超伝導軸受が、上記回転軸に取付
けられた永久磁石と、これに対向するように上記ケーシ
ングに取付けられた超伝導体とからなり、上記永久磁石
が、上記回転軸の回転軸心の周囲の磁束分布が回転によ
って変化しないように上記回転軸に取付けられたもので
あり、上記超伝導体が、上記永久磁石の磁束侵入を許容
するもので、上記永久磁石の磁束が所定量侵入する離間
位置であってかつ上記回転軸の回転によって侵入磁束の
分布が変化しない位置にくるようにケーシングに取付け
られている超伝導軸受装置であって、 上記ケーシングに、上記回転軸を上下から挟んで位置決
めする上下の昇降部材を備えた初期位置決め機構が設け
られていることを特徴とする超伝導軸受装置。
A rotating shaft disposed inside a casing so as to be able to move and rotate in an axial direction and a radial direction is rotatably supported in a non-contact state by a superconducting bearing. A bearing is composed of a permanent magnet attached to the rotating shaft and a superconductor attached to the casing so as to face the permanent magnet, and the permanent magnet is provided with a magnetic flux distribution around a rotating axis of the rotating shaft. Are attached to the rotating shaft so as not to be changed by rotation, and the superconductor allows the magnetic flux of the permanent magnet to enter, and is a separated position where the magnetic flux of the permanent magnet enters by a predetermined amount. And a superconducting bearing device mounted on a casing such that the distribution of the invading magnetic flux does not change due to rotation of the rotating shaft. A superconducting bearing device, comprising: an initial positioning mechanism provided with upper and lower elevating members for positioning by sandwiching between them.
【請求項2】ケーシングの内側に軸方向および半径方向
の移動ならびに回転ができるように配置された回転軸
が、超伝導軸受により非接触状態に回転支持されるよう
になされており、上記超伝導軸受が、上記回転軸に取付
けられた永久磁石と、これに対向するように上記ケーシ
ングに取付けられた超伝導体とからなり、上記永久磁石
が、上記回転軸の回転軸心の周囲の磁束分布が回転によ
って変化しないように上記回転軸に取付けられたもので
あり、上記超伝導体が、上記永久磁石の磁束侵入を許容
するもので、上記永久磁石の磁束が所定量侵入する離間
位置であってかつ上記回転軸の回転によって侵入磁束の
分布が変化しない位置にくるようにケーシングに取付け
られている超伝導軸受装置において、 上下の昇降部材により上記回転軸を上下から挟んで支持
し、昇降部材を昇降させることによって回転軸を位置決
めし、超伝導体を冷却して、永久磁石から発せられる磁
束を超伝導体に侵入させて拘束させ、下側の昇降部材を
下降させて、回転軸の支持をなくし、上側の昇降部材を
下降させて、回転軸を下方に押すことにより、回転軸に
負荷をかけ、上側の昇降部材を上昇させて、回転軸から
離し、回転軸の回転を開始することを特徴とする超伝導
軸受装置の起動方法。
2. A rotating shaft arranged inside the casing so as to be capable of axial and radial movement and rotation, is rotatably supported in a non-contact state by a superconducting bearing. A bearing is composed of a permanent magnet attached to the rotating shaft and a superconductor attached to the casing so as to face the permanent magnet, and the permanent magnet is provided with a magnetic flux distribution around a rotating axis of the rotating shaft. Are attached to the rotating shaft so as not to be changed by rotation, and the superconductor allows the magnetic flux of the permanent magnet to enter, and is a separated position where the magnetic flux of the permanent magnet enters by a predetermined amount. And a superconducting bearing device attached to the casing such that the distribution of the invading magnetic flux does not change due to the rotation of the rotating shaft. Supporting from below, the rotating shaft is positioned by raising and lowering the elevating member, cooling the superconductor, allowing the magnetic flux emitted from the permanent magnet to enter the superconductor and restraining it, and the lower elevating member To remove the support of the rotating shaft, lower the upper elevating member, and push down the rotating shaft to apply a load to the rotating shaft, raise the upper elevating member, and separate from the rotating shaft. And starting the rotation of the rotating shaft.
JP14439492A 1992-06-04 1992-06-04 Superconducting bearing device and start-up method thereof Expired - Fee Related JP3174865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14439492A JP3174865B2 (en) 1992-06-04 1992-06-04 Superconducting bearing device and start-up method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14439492A JP3174865B2 (en) 1992-06-04 1992-06-04 Superconducting bearing device and start-up method thereof

Publications (2)

Publication Number Publication Date
JPH05332362A JPH05332362A (en) 1993-12-14
JP3174865B2 true JP3174865B2 (en) 2001-06-11

Family

ID=15361136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14439492A Expired - Fee Related JP3174865B2 (en) 1992-06-04 1992-06-04 Superconducting bearing device and start-up method thereof

Country Status (1)

Country Link
JP (1) JP3174865B2 (en)

Also Published As

Publication number Publication date
JPH05332362A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JPH05240249A (en) Superconductive bearing device
US5438038A (en) Superconducting bearing device stabilized by trapped flux
JP2547287B2 (en) Superconducting bearing device
JPH0587142A (en) Superconductive bearing device and operation thereof
JP3069745B2 (en) Superconducting bearing device
JP3174865B2 (en) Superconducting bearing device and start-up method thereof
JP3069744B2 (en) High vacuum pump
JP3044614B2 (en) Starting method of superconducting bearing in superconducting bearing device
JP3174877B2 (en) Superconducting bearing device
JP3174876B2 (en) Superconducting bearing device
JP3551537B2 (en) Flywheel equipment
JPH08296648A (en) Bearing device and its starting method
US5633548A (en) Method for setting up a superconducting bearing device
JP3113920B2 (en) Superconducting bearing device
JP3577559B2 (en) Flywheel equipment
JP3236925B2 (en) Superconducting bearing device
JP3477524B2 (en) Rotation loss measurement method for superconducting bearings
JP3122772B2 (en) Superconducting bearing device
JPH08121480A (en) Superconducting bearing device
JPH08296646A (en) Bearing device
JP3232463B2 (en) Superconducting bearing device
JP3622041B2 (en) Superconducting bearing device
JPH05240246A (en) Method for assembling superconductive bearing device
JPH0544728A (en) Drive device
JPH05180226A (en) Superconductive bearing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees