JP2003219581A - Superconducting flywheel power storage device - Google Patents

Superconducting flywheel power storage device

Info

Publication number
JP2003219581A
JP2003219581A JP2002015619A JP2002015619A JP2003219581A JP 2003219581 A JP2003219581 A JP 2003219581A JP 2002015619 A JP2002015619 A JP 2002015619A JP 2002015619 A JP2002015619 A JP 2002015619A JP 2003219581 A JP2003219581 A JP 2003219581A
Authority
JP
Japan
Prior art keywords
superconducting
flywheel
temperature
power storage
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002015619A
Other languages
Japanese (ja)
Inventor
Masaru Nagashima
賢 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2002015619A priority Critical patent/JP2003219581A/en
Publication of JP2003219581A publication Critical patent/JP2003219581A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/068Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track
    • F16C29/0692Ball or roller bearings in which the rolling bodies circulate partly without carrying load with the bearing body fully encircling the guide rail or track the bearing body encircles a guide rail or track of non-circular cross-section, e.g. with grooves or protrusions, i.e. the linear bearing is suited to transmit torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • F16C32/0482Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings with three electromagnets to control the two degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting flywheel power storage which is possible of further increase in the stored power and moreover is low to the utmost in energy loss. <P>SOLUTION: The superconducting flywheel power storage comprises an exhaust device (9), which has a cryogenic container 1 having accommodated a superconducting coil 3 arranged in fixed state, a superconducting bulk body 4 arranged in levitation state opposite to it, and a flywheel 5 rotating in a body with the superconducting bulk body in question, and evacuates the interior of the cryogenic vessel, heat conductive coolers (10 and 11) which cool the superconducting coil to its critical temperature or lower, and a clutch device (13') which performs connecting and break, between a rotary shaft 3 fixed to the flywheel and a generator-motor 12. As the clutch device, a noncontact type electromagnetic clutch is suitable. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、余剰電力をフラ
イホイ−ルの運動エネルギ−に変換して貯蔵すると共
に、必要時に前記フライホイ−ルに貯蔵されている運動
エネルギ−を電気エネルギ−に変換して取り出すため
の、超電導フライホイ−ル電力貯蔵装置に関するもので
ある。 【0002】例えば各種の風洞試験装置,核融合実験装
置等では試験時に大電力を必要とするが、これらの装置
等においては大電力は常時必要なわけではなく、電力の
必要時間が非常に短いという特徴がある。また、電力業
界においては、昼間及び夜間を通じて一日の電力需要を
標準化することが重要な課題となっているが、この課題
解決の前には様々な障害が立ち塞がっているのが現状で
ある。そのため、電力の余剰時には余剰電力を蓄えてお
き、電力需要の増大時に貯蔵電力を取り出して供給する
ための簡易な電力貯蔵装置の必要性が強く叫ばれてい
る。 【0003】 【従来の技術】電力貯蔵装置としては“揚水型水力発電
所”等といった大規模なものが知られているが、最近で
は余剰電力をフライホイ−ルの運動エネルギ−に変換し
て貯蔵する“フライホイ−ル電力貯蔵装置”が設備的に
簡便であるが故に注目され、一部では実用化されるに至
っている。中でも、最近、高温超電導磁気軸受の開発が
進んだことから、軸受摩擦損失を殆ど生じない超電導磁
気軸受をフライホイ−ルの軸受に適用した“超電導フラ
イホイ−ル電力貯蔵装置(高温超電導フライホイ−ル電
力貯蔵装置)”に研究の目が注がれるようになってき
た。 【0004】高温超電導磁気軸受は「高温超電導バルク
体の表面に永久磁石を対向させて近付けると永久磁石か
ら生じる磁束が対向する高温超電導バルク体内部に拘束
されて電磁力が生じ、 永久磁石をそれ以上に接近させよ
うとしても遠ざけようとしてもそれを妨げる力が発生す
る状態となって永久磁石が特定の間隔(空間)を保った
位置に浮揚状態で留まる」という現象を利用した非接触
型の軸受であるが、高温超電導フライホイ−ル電力貯蔵
装置は、この高温超電導磁気軸受の原理を応用しフライ
ホイ−ルを非接触の浮揚状態で支持することによってエ
ネルギ−損失の大部分を占める軸受部の摩擦を排除する
ようにしたものである。 【0005】図4は、これまでに公表された高温超電導
フライホイ−ル電力貯蔵装置の一例に係る説明図である
が、低温容器(真空容器)21内の底部にはY系銅酸化物
の高温超電導バルク体22が固定配置されると共に、この
高温超電導バルク体22の上面には回転軸23を有するフラ
イホイ−ル24の下面に固設されたネオジム系等の永久磁
石体25が対向配置されている。そして、フライホイ−ル
の回転軸23は発電・電動機26に接続されている。なお、
前記低温容器21は真空ポンプ27により真空状態に保たれ
ることで気体との摩擦によるフライホイ−ルの回転損失
が軽減されるように図られ、また低温容器内に固定配置
されている高温超電導バルク体22は液体窒素供給装置28
から供給される液体窒素によって超電導状態が得られる
臨界温度以下にまで冷却される。 【0006】この高温超電導フライホイ−ル電力貯蔵装
置において、余剰電力は発電・電動機26の電動機機能を
使うことによりフライホイ−ルの回転運動エネルギ−に
変換されて貯蔵され、また貯蔵電力の取り出しが必要と
なった時には発電・電動機26の発電機機能を用いること
によりフライホイ−ルの回転運動エネルギ−を電力に変
換して取り出す。 【0007】このように、従来の高温超電導フライホイ
−ル電力貯蔵装置は高温超電導バルク体に永久磁石を対
向させてフライホイ−ルを浮揚させる構成を採っている
が、これまでに知られている永久磁石は精々で1T(テスラ
-)程度の磁場が限界であったために載荷力(浮揚力)に
も限度があり、従ってフライホイ−ルを大型化(高重量
化)するとその浮揚支持が困難となるので電力貯蔵能力
が自ずと制限される結果となっていた。 【0008】その上、高温超電導バルク体に対向させる
永久磁石はその製造技術の面から単体の大型化に限界が
あり、高温超電導フライホイ−ル電力貯蔵装置に適用す
る永久磁石体を大型化するには永久磁石単体をレンガ組
みの要領で多数寄せ集めて結合配置しなければならない
が、永久磁石体をこのような構成にすると、永久磁石体
の表面部における磁場に部分的な不均一が生じ、そのた
め永久磁石体と一体に回転するフライホイ−ルの回転が
この磁場の不均一を拾って円滑とならずにエネルギ−ロ
ス(回転損失)をもたらすという事態が起きがちであっ
た。そして、これもフライホイ−ルの大型化を阻む原因
となっていた。 【0009】もっとも、磁石面上の磁場の均一性は磁石
面から離れれば離れるほど良好となることが知られてい
るが、これまでに知られている永久磁石では磁場の強さ
が不足するため高温超電導バルク体の表面からの距離
(間隔)を十分に保つことができず(精々10mm程度)、
フライホイ−ルを支持した状態で磁場が均一となる位置
にまで浮上することは困難であった。 【0010】 【発明が解決しようとする課題】このようなことから、
本発明が目的としたのは、貯蔵電力の更なる増大が可能
で、しかもエネルギ−ロスの極力少ない超電導フライホ
イ−ル電力貯蔵装置を提供することである。 【0011】 【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究を行ったが、この研究を通じて次の
知見を得ることができた。即ち、従来の高温超電導フラ
イホイ−ル電力貯蔵装置において、その永久磁石体の部
分を発生磁場の制限がない超電導コイルに代替させれ
ば、それによる載荷力(浮揚力)が著しく高まってフラ
イホイ−ルの重量を格段に増大させることができ、その
貯蔵エネルギ−(貯蔵電力)をも飛躍的に増大させるこ
とが可能となる。つまり、磁石体の載荷力(浮揚力)は
磁場の2乗に比例して増大するが、現在実用されている
Nb−Ti系超電導コイルでも5T程度までの磁場の発生は
比較的容易であるので、永久磁石(発生磁場は精々で1
T程度)を使用した従来の高温超電導フライホイ−ル電
力貯蔵装置に比べて25倍程度の載荷力(浮揚力)が得
られ、従ってフライホイ−ルの重量増を通じて貯蔵エネ
ルギ−は飛躍的に増大することになる。 【0012】しかも、超電導コイルの場合は、永久磁石
とは違って大型化が容易な上に、その形状(円形状)か
らしてフライホイ−ルの回転方向における磁場の均一性
を向上させることも容易である。そして、これらの点も
フライホイ−ルの一層の大型化(重量増)を可能にする
要因となる。更に、超電導コイルの場合には、磁場が強
いので相手部材(高温超電導バルク体)を遠くへ離すこ
と(即ち超電導コイルと高温超電導バルク体との空隙を
例えば 100mm程度と大きくすること)が可能であり、そ
のため均一な磁場となる“表面からある程度離れた部
位”に相手部材が位置するように両者を非接触で対峙さ
せることができるので、超電導コイル自体の形状に若干
の歪み等があったとしても回転体の円滑回転を維持する
ことができ、磁場の不均一に起因したエネルギ−ロスの
原因を無くすることができる。 【0013】ところで、高温超電導フライホイ−ル電力
貯蔵装置において、固定した高温超電導バルク体に対向
させる“永久磁石回転体”に代え、高い磁場を発生させ
ることが可能な超電導コイル(例えばNb−Ti系超電導コ
イル)を用いることは、単なる概念としては考えられる
かも知れない。しかし、実際上、固定状態の高温超電導
バルク体を超電導状態が得られる温度(臨界温度以下)
にまで冷却することは容易であったとしても、回転体
を、しかも臨界温度がより低いNb−Ti系等の超電導コイ
ルから成る回転体を臨界温度以下(例えば液体He温度)
に冷却することは困難である。 【0014】ところが、高温超電導バルク体をフライホ
イ−ルと一体に回転する回転体とすると共に、この高温
超電導バルク体と対向させる超電導コイルを固定部材と
することにより、上記問題が氷解することを見出した。 【0015】なぜなら、まず、高温超電導フライホイ−
ル電力貯蔵装置の低温容器(クライオスタットと呼ばれ
ていて通常は二重壁とされている)内に超電導コイルを
固定状態で収納することにより、He冷凍機等による超電
導コイルの熱伝導型冷却が可能となって臨界温度以下
(例えば液体He温度)への冷却を十分に行うことができ
るようになる。一方、超電導コイルに対向させて配置す
る高温超電導バルク体は、気体との摩擦による回転損失
の軽減と対流による熱侵入を防止するために“真空排気
された低温容器”内に非接触状態で浮上保持されること
となるので臨界温度以下(液体窒素温度程度)への冷却
が困難であると考えられたが、次の理由により、前記状
態に置かれた高温超電導バルク体の冷却が十分に可能で
あることを確認した。 【0016】即ち、真空内であっても僅かではあるが熱
放射(熱線の輻射)によって熱が伝わり、この伝熱量は
熱放射物体面の面積に比例する。また、現在では高温超
電導バルク体を比較的大きなサイズのもの(例えば直
径:100mmを超えるもの)を製作する技術が確立し、特性
も向上してきており、高温超電導フライホイ−ル電力貯
蔵装置の高温超電導バルク体部材として良質なものを適
用することができる。その上、高温超電導バルク体に対
向配置される超電導コイルに対して高温超電導バルク体
の臨界温度よりも低い温度への冷却が施されることか
ら、高温超電導フライホイ−ル電力貯蔵装置の低温容器
の内壁自体も極めて低い温度となり、従って“真空排気
された低温容器”内に非接触状態で浮上保持された高温
超電導バルク体であっても大きな熱放射面積でその周囲
(特に極低温に冷却される超電導コイル側)へ熱を放射
して低温容器外へ逸散させ得るので、超電導バルク体自
体を超電導状態が得られる温度にまで冷却することは十
分可能となる。しかも、上記装置構成であれば、回転体
である超電導バルク体として臨界温度が更に低い Nb3Sn
系超電導バルク体 (臨界温度:18K程度)を適用した
場合でもそれの臨界温度以下への冷却が可能であり、超
電導フライホイ−ル電力貯蔵装置に望まれる性能を十分
に確保することができる。 【0017】本発明は、上記知見事項等を基に完成され
たものであって、次の超電導フライホイ−ル電力貯蔵装
置を提供するものである。即ち、超電導フライホイ−ル
電力貯蔵装置であって、固定状態で配置される超電導コ
イルと、これと対向させて浮上状態に配置される超電導
バルク体と、当該超電導バルク体と一体に回転するフラ
イホイ−ルとを収納した低温容器を有し、かつ低温容器
内を真空排気するための排気装置と、前記超電導コイル
をその臨界温度以下に冷却するための熱伝導型の冷却装
置と、フライホイ−ルに固設された回転軸と発電・電動
機との接続・遮断を行うためのクラッチ装置とを有して
成ることを特徴とする超電導フライホイ−ル電力貯蔵装
置。 【0018】 【発明の実施の形態】以下、本発明を実施形態例を示す
図面によって説明する。図1は、本発明に係る超電導フ
ライホイ−ル電力貯蔵装置の一例を示す概念図である。
図1において、符号1で示されるのは超電導フライホイ
−ル電力貯蔵装置の低温容器(真空容器)であり、この
低温容器1は冷却板2から成る仕切り壁を有した二重壁
構造となっている。なお、前記冷却板2は適宜の荷重支
持材によって支持されていることは言うまでもないが、
この荷重支持材には熱侵入が極力防止される材質,形態
が選ばれる。 【0019】そして、低温容器1を構成する冷却板2の
内底面には超電導コイル3が固定状態で配置される。こ
の超電導コイル3は、例えば図2で示したように磁極が
半径方向にN,S,・・・となるように配列されるが、
その材質が問われるものではなく、Nb−Ti系超電導材,
ビスマス系高温超電導材等の何れを適用しても構わな
い。 【0020】超電導コイル3の対向位置には超電導バル
ク体4が浮上状態となるように配置されるが、この例に
おいては超電導バルク体4はフライホイ−ル5と一体化
されており、またフライホイ−ル5には回転軸6が固設
されているので、これらは一体となって超電導コイル3
の上方位置にて非接触状態で回転することになる。超電
導バルク体の材質も限定されるものではないが、製造実
績の高い高温超電導体であるY系超電導材を適用するの
が一般的であると言える。勿論、超電導バルク体として
臨界温度の低い Nb3Sn系等の超電導バルク体を適用して
も良いことは言うまでもない。なお、符号7及び8は、
それぞれ案内用超電導コイルと案内用超電導バルク体を
示しており、回転軸6の変位を非接触で防止するための
ものである。 【0021】低温容器1には、当該低温容器内を真空排
気して回転体と気体との摩擦による回転損失の軽減と対
流による熱侵入を防止するための真空ポンプ(排気装
置)9が設置されると共に、冷却板2を介して超電導コ
イル3及び7をその臨界温度以下に冷却するための熱伝
導型の冷却装置(即ち例えばHe圧縮機10とHe冷却器等の
極低温冷却器11)が取付けられている。また、フライホ
イ−ル部と発電・電動機部分とを常時接続させおくと、
発電・電動機部分の回転抵抗のためにエネルギ−ロスが
大きいので、この装置では回転軸6と発電・電動機12と
の間の適宜個所にクラッチ装置13が設置されており、回
転軸6と発電・電動機12との接続・遮断が行われる。な
お、クラッチ装置13は、回転軸6を伝っての外部からの
熱侵入を防止するために非接触式の電磁クラッチ装置と
するのが好ましい。 【0022】さて、図1に示される超電導フライホイ−
ル電力貯蔵装置において、余剰電力は発電・電動機12の
電動機機能によりフライホイ−ル5の回転運動エネルギ
−に変換されて貯蔵され、また貯蔵電力の取り出し時に
は発電・電動機12の発電機機能によりフライホイ−ル5
の回転運動エネルギ−を電力に変換して取り出される
が、フライホイ−ル5の非接触浮揚支持が発生磁場の高
い超電導コイル3と超電導バルク体4との磁気反発によ
ってなされるので浮揚力が増し、従ってフライホイ−ル
の重量増を図ることができて貯蔵エネルギ−(貯蔵電
力)の著しい増大が可能となる。 【0023】更に、超電導コイル3によると、発生磁場
をフライホイ−ル5の回転方向において均一化すること
が容易である上、強い磁場を発生させて超電導バルク体
4との間隔を均一磁場となる部位に保持することができ
るので、磁場の不均一に起因したフライホイ−ル5の回
転ブレを防止しこれに起因したエネルギ−ロスを無くす
ることが可能になる。 【0024】なお、図3は、本発明に係る超電導フライ
ホイ−ル電力貯蔵装置の別例を示す概念図であり、超電
導バルク体(高温超電導バルク体4′)の冷却効率を更
に高めた装置構成を採用したものである。即ち、この装
置では、高温超電導バルク体4′とフライホイ−ル5と
を別体にしてそれぞれを回転軸6に固設すると共に、二
重壁構造とされた低温容器1の内壁(冷却板2)の内側
には高温超電導バルク体4′の部位のみが収納され、フ
ライホイ−ル5の部位は低温容器内壁(冷却板2)の外
側に配置されている。なお、冷却板2は系外からの熱侵
入が極力抑えられる材質,形態の荷重支持材によって支
持される。従って、高温超電導バルク体4′からの熱放
散は当該バルク体の全表面からより広くなされることと
なるので、高温超電導バルク体4′の冷却効率が一層向
上する。 【0025】また、本装置では、発電・電動機12の回転
エネルギ−をフライホイ−ル5に伝達したりあるいはフ
ライホイ−ル5の回転エネルギ−を発電・電動機12に伝
達する回転軸6を発電・電動機側に長く延びる長尺部材
とし、この長尺部分も低温容器1の内部に収納されて冷
却される構造が採られている。これにより、回転軸6を
伝達媒体とした外部からの熱侵入が抑えられ、高温超電
導バルク体4′の冷却効率がより一層向上する。 【0026】更に、この例に係る超電導フライホイ−ル
電力貯蔵装置では、回転軸6と発電・電動機12の間に非
接触式(空隙式)の電磁クラッチ装置13′を配置し、両
者間に非接触で回転が伝達されるように図られている。 【0027】このように非接触式の電磁クラッチ装置を
適用することによって、クラッチ装置を有する先の別例
に係る超電導フライホイ−ル電力貯蔵装置の場合と同
様、発電・電動機の回転軸を常に回転させる必要がなく
なり、発電・電動機のロ−タが常時高速で回転すること
に伴う渦電流損失や発電・電動機部分のベアリングの回
転損失等の“発電・電動機での損失”を防ぐことがで
き、超電導フライホイ−ル電力貯蔵装置の効率を向上さ
せることができる。更に、非接触式の電磁クラッチ装置
を適用すれば、上述のように回転軸6と発電・電動機12
の部分を熱的に絶縁することができるので、発電・電動
機側から回転軸を介して侵入する熱を遮断することがで
きる。また、非接触式の電磁クラッチはクラッチ片部材
の間に板状部材を介在させたとしてもそれが非磁性でか
つ非導電性の材料であればクラッチ片部材両者間の回転
伝達がなされるので、低温容器1の電磁クラッチ配設部
位の材質を非磁性でかつ非導電性の材料とすることによ
り低温容器の密閉性が一段と改善され、従って外部から
の低温容器内への熱侵入を防止する効果は更に向上する
上、低温容器1の真空密閉対策も一層完全になる。 【0028】なお、この例に係る超電導フライホイ−ル
電力貯蔵装置(高温超電導フライホイ−ル電力貯蔵装
置)においても、高温超電導バルク体4′に代えて Nb3
Sn系等の臨界温度がより低い超電導バルク体を適用し得
ることは勿論である。また、上記非接触式(空隙式)の
電磁クラッチ装置13′としては、発電・電動機側のクラ
ッチ片部材を永久磁石で、そして回転軸側(フライホイ
−ル側)のクラッチ片部材を高温超電導バルク体等の超
電導バルク体で構成したものが推奨される。これにより
回転エネルギ−の伝達効率が更に向上する。 【0029】 【発明の効果】以上に説明した如く、この発明によれ
ば、フライホイ−ルを大型化(重量化)して貯蔵電力の
更なる増大が可能な上に、エネルギ−ロスの極力少ない
超電導フライホイ−ル電力貯蔵装置を提供することがで
き、電力エネルギ−の有効活用に大きく貢献できるな
ど、産業上有用な効果がもたらされる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention converts surplus electric power into kinetic energy of a flywheel and stores the kinetic energy, and stores the electric power in the flywheel when necessary. The present invention relates to a superconducting flywheel power storage device for converting kinetic energy into electric energy and extracting it. For example, various types of wind tunnel test equipment, nuclear fusion test equipment, and the like require large power at the time of the test. However, these equipments do not always require large power, and the power required time is very short. There is a feature. Also, in the electric power industry, it is important to standardize the daily power demand throughout the day and night, but various obstacles are standing before the solution of this problem. . Therefore, there is a strong demand for a simple power storage device for storing surplus power when power surplus and extracting and supplying the stored power when power demand increases. [0003] Large-scale power storage devices such as "pumped-type hydroelectric power plants" are known as power storage devices, but recently, surplus power is converted into kinetic energy of a flywheel and stored. The "flywheel power storage device" has attracted attention because of its simple facility, and has been put to practical use in part. In particular, since the development of high-temperature superconducting magnetic bearings has recently been advanced, superconducting magnetic bearings that cause almost no bearing friction loss have been applied to flywheel bearings. Storage devices) ”. [0004] A high-temperature superconducting magnetic bearing is described as follows. When a permanent magnet is brought close to the surface of a high-temperature superconducting bulk body, a magnetic flux generated from the permanent magnet is restrained inside the facing high-temperature superconducting bulk body to generate an electromagnetic force. A non-contact type using the phenomenon that a force that hinders attempts to approach or move away from above is generated, and the permanent magnet stays in a floating state at a position maintaining a specific space (space) ” As a bearing, the high-temperature superconducting flywheel power storage device applies the principle of the high-temperature superconducting magnetic bearing to support the flywheel in a non-contact floating state by supporting the flywheel in a non-contact floating state. This is to eliminate friction. FIG. 4 is an explanatory view showing an example of a high-temperature superconducting flywheel power storage device disclosed so far. The bottom of a low-temperature vessel (vacuum vessel) 21 has a high-temperature Y-based copper oxide. A superconducting bulk body 22 is fixedly disposed, and a permanent magnet body 25 of neodymium or the like fixed to the lower surface of a flywheel 24 having a rotating shaft 23 is disposed on the upper surface of the high-temperature superconducting bulk body 22 so as to face the same. I have. The rotary shaft 23 of the flywheel is connected to a generator / motor 26. In addition,
The low-temperature container 21 is maintained in a vacuum state by a vacuum pump 27 so that the rotational loss of the flywheel due to friction with gas is reduced, and the high-temperature superconducting bulk fixedly disposed in the low-temperature container. The body 22 is a liquid nitrogen supply device 28
Is cooled to below the critical temperature at which the superconducting state can be obtained by the liquid nitrogen supplied from. In this high-temperature superconducting flywheel power storage device, surplus power is converted into rotational kinetic energy of the flywheel by using the motor function of the generator / motor 26 and stored, and it is necessary to extract the stored power. In this case, the rotary kinetic energy of the flywheel is converted into electric power and taken out by using the generator function of the electric generator / motor 26. As described above, the conventional high-temperature superconducting flywheel power storage device employs a configuration in which a flywheel is levitated by facing a permanent magnet to a high-temperature superconducting bulk body. The magnet is at best 1T (Tesla
-) Because the magnetic field of the limit was limited, the loading force (levitation force) was also limited. Therefore, if the flywheel was made larger (heavy weight), it became difficult to support the levitation, so the power storage capacity was naturally limited. Was the result. In addition, the size of the permanent magnet facing the high-temperature superconducting bulk body is limited from the viewpoint of manufacturing technology, and the size of the permanent magnet applied to the high-temperature superconducting flywheel power storage device is limited. It is necessary to gather and combine a large number of permanent magnets in the manner of a brick assembly, but if the permanent magnet body is configured as such, a partial non-uniformity occurs in the magnetic field on the surface of the permanent magnet body, Therefore, the rotation of the flywheel, which rotates integrally with the permanent magnet, tends to cause energy loss (rotation loss) without smoothing out the unevenness of the magnetic field. This also prevented the flywheel from becoming larger. Although it is known that the uniformity of the magnetic field on the magnet surface increases as the distance from the magnet surface increases, the magnetic field strength is insufficient with conventionally known permanent magnets. The distance (interval) from the surface of the high-temperature superconducting bulk material cannot be sufficiently maintained (at most 10 mm),
It was difficult to levitate to a position where the magnetic field became uniform while supporting the flywheel. [0010] In view of the above,
SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting flywheel power storage device capable of further increasing stored power and having as little energy loss as possible. The inventor of the present invention has conducted intensive studies to achieve the above object, and has obtained the following findings through this research. That is, in the conventional high-temperature superconducting flywheel power storage device, if the permanent magnet portion is replaced with a superconducting coil having no restriction on the generated magnetic field, the loading force (levitation force) due to this is significantly increased, and the flywheel is increased. Can be significantly increased, and its stored energy (storage power) can be dramatically increased. That is, the loading force (levitation force) of the magnet body increases in proportion to the square of the magnetic field, but is currently in practical use.
Since it is relatively easy to generate a magnetic field up to about 5T even with an Nb-Ti-based superconducting coil, a permanent magnet (the generated magnetic field is at most
(Approximately T) using a conventional high-temperature superconducting flywheel power storage device using a power storage device (lifting force) that is about 25 times that of a conventional high-temperature superconducting flywheel power storage device. Will be. Further, in the case of a superconducting coil, unlike a permanent magnet, it is easy to increase the size, and its shape (circular shape) can improve the uniformity of the magnetic field in the direction of rotation of the flywheel. Easy. These points are also factors that enable the flywheel to be further enlarged (increased in weight). Further, in the case of a superconducting coil, since the magnetic field is strong, it is possible to separate a partner member (high-temperature superconducting bulk body) farther (that is, to increase the gap between the superconducting coil and the high-temperature superconducting bulk body to, for example, about 100 mm). There is a uniform magnetic field, so that the two members can face each other in a non-contact manner so that the mating member is located at "a part away from the surface", so if the shape of the superconducting coil itself is slightly distorted, etc. Can also maintain the smooth rotation of the rotating body, and can eliminate the cause of energy loss due to the non-uniformity of the magnetic field. In a high-temperature superconducting flywheel power storage device, a superconducting coil (for example, an Nb-Ti system) capable of generating a high magnetic field is used instead of a "permanent magnet rotating body" opposed to a fixed high-temperature superconducting bulk body. The use of a superconducting coil) may be considered as a mere concept. However, in practice, the temperature at which the high-temperature superconducting bulk body in the fixed state can be obtained in the superconducting state (critical temperature or lower)
Even if it is easy to cool down to, the rotating body, and the rotating body composed of a superconducting coil such as Nb-Ti with a lower critical temperature, should be below the critical temperature (for example, liquid He temperature).
It is difficult to cool down. However, it has been found that the above problem is solved by using a high-temperature superconducting bulk body as a rotating body that rotates integrally with a flywheel and using a superconducting coil facing the high-temperature superconducting bulk body as a fixing member. Was. First, a high-temperature superconducting flywheel
By storing the superconducting coil in a fixed state in a low-temperature container (called a cryostat and usually having a double wall) of the power storage device, heat conduction cooling of the superconducting coil by a He refrigerator or the like can be performed. As a result, cooling to a critical temperature or lower (for example, liquid He temperature) can be sufficiently performed. On the other hand, the high-temperature superconducting bulk placed opposite to the superconducting coil floats in a non-contact state in a “vacuum-exhausted low-temperature container” to reduce rotational loss due to friction with gas and prevent heat from entering by convection. It was considered that it was difficult to cool below the critical temperature (about the temperature of liquid nitrogen) because it would be maintained, but it was possible to sufficiently cool the high-temperature superconducting bulk material placed in this state for the following reasons: Was confirmed. That is, even in a vacuum, heat is transmitted by heat radiation (radiation of heat rays), albeit slightly, and the amount of heat transfer is proportional to the area of the heat radiation object surface. In addition, at present, technology has been established for manufacturing high-temperature superconducting bulk materials of relatively large size (for example, those having a diameter of more than 100 mm), and the characteristics have been improved. As a result, high-temperature superconductivity of high-temperature superconducting flywheel power storage devices has been improved. Good quality bulk material can be applied. In addition, since the superconducting coil disposed opposite to the high-temperature superconducting bulk is cooled to a temperature lower than the critical temperature of the high-temperature superconducting bulk, the low-temperature container of the high-temperature superconducting flywheel power storage device is The inner wall itself also has a very low temperature, so even a high-temperature superconducting bulk body which is levitated and held in a non-contact state in an "evacuated cryogenic vessel" has a large heat radiation area around it (especially cooled to a very low temperature). Since heat can be radiated to the superconducting coil side and dissipated outside the low-temperature container, it is sufficiently possible to cool the superconducting bulk body itself to a temperature at which a superconducting state can be obtained. In addition, with the above-described device configuration, the critical temperature of the superconducting bulk body as a rotating body is lower than that of Nb 3 Sn.
Even when a system-based superconducting bulk material (critical temperature: about 18K) is applied, it can be cooled to the critical temperature or lower, and the performance desired for a superconducting flywheel power storage device can be sufficiently ensured. The present invention has been completed based on the above findings and the like and provides the following superconducting flywheel power storage device. That is, a superconducting flywheel power storage device, comprising a superconducting coil arranged in a fixed state, a superconducting bulk body arranged in a floating state opposed to the coil, and a flywheel rotating integrally with the superconducting bulk body. A low-temperature container having a low-temperature container therein, and a vacuum device for evacuating the low-temperature container, a heat conduction type cooling device for cooling the superconducting coil to a temperature below its critical temperature, and a flywheel. A superconducting flywheel power storage device comprising: a clutch device for connecting / disconnecting a fixed rotating shaft and a generator / motor. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing an embodiment. FIG. 1 is a conceptual diagram showing an example of a superconducting flywheel power storage device according to the present invention.
In FIG. 1, reference numeral 1 denotes a low-temperature container (vacuum container) of a superconducting flywheel power storage device, and the low-temperature container 1 has a double-wall structure having a partition wall composed of a cooling plate 2. I have. Needless to say, the cooling plate 2 is supported by an appropriate load supporting member,
The material and form of the load supporting member are selected so as to prevent heat penetration as much as possible. A superconducting coil 3 is fixedly disposed on the inner bottom surface of the cooling plate 2 constituting the low-temperature container 1. The superconducting coils 3 are arranged such that the magnetic poles are N, S,... In the radial direction as shown in FIG.
The material is not limited, and Nb-Ti based superconducting material,
Any of a bismuth-based high-temperature superconducting material and the like may be applied. The superconducting bulk body 4 is arranged at a position facing the superconducting coil 3 so as to be in a floating state. In this example, the superconducting bulk body 4 is integrated with the flywheel 5, and the flywheel 5 is integrated. Since the rotary shaft 6 is fixedly mounted on the coil 5, these are integrated into a superconducting coil 3
In a non-contact state above the position. The material of the superconducting bulk body is not limited, but it can be generally said that a Y-based superconducting material, which is a high-temperature superconductor with a high production track record, is applied. Of course, it goes without saying that a superconducting bulk body such as an Nb 3 Sn-based material having a low critical temperature may be used as the superconducting bulk body. Note that reference numerals 7 and 8 are
The figure shows a superconducting coil for guidance and a bulk superconducting body for guidance, respectively, for preventing displacement of the rotating shaft 6 in a non-contact manner. The low-temperature container 1 is provided with a vacuum pump (exhaust device) 9 for evacuating the low-temperature container to reduce rotation loss due to friction between the rotating body and gas and to prevent heat from entering by convection. In addition, a cooling device of a heat conduction type (ie, a He compressor 10 and a cryogenic cooler 11 such as a He cooler, etc.) for cooling the superconducting coils 3 and 7 to below the critical temperature via the cooling plate 2 is provided. Installed. Also, if the flywheel unit and the generator / motor unit are always connected,
Since the energy loss is large due to the rotational resistance of the generator / motor, a clutch device 13 is provided at an appropriate position between the rotating shaft 6 and the generator / motor 12 in this device. The connection to and disconnection from the electric motor 12 is performed. Preferably, the clutch device 13 is a non-contact type electromagnetic clutch device in order to prevent heat from entering from outside through the rotating shaft 6. Now, the superconducting flywheel shown in FIG.
In the power storage device, surplus power is converted into rotational kinetic energy of the flywheel 5 by the motor function of the generator / motor 12 and stored, and when the stored power is taken out, the flywheel is generated by the generator function of the generator / motor 12. Le 5
The rotary kinetic energy is converted into electric power and is taken out. The non-contact levitation support of the flywheel 5 is performed by the magnetic repulsion between the superconducting coil 3 and the superconducting bulk body 4 having a high generated magnetic field, so that the levitation force increases. Therefore, the weight of the flywheel can be increased, and the stored energy (storage power) can be significantly increased. Further, according to the superconducting coil 3, it is easy to make the generated magnetic field uniform in the rotation direction of the flywheel 5, and also to generate a strong magnetic field to make the distance from the superconducting bulk body 4 uniform. Since the flywheel 5 can be held at the site, it is possible to prevent the rotational vibration of the flywheel 5 due to the non-uniformity of the magnetic field, and to eliminate the energy loss due to this. FIG. 3 is a conceptual diagram showing another example of the superconducting flywheel power storage device according to the present invention, and the device configuration in which the cooling efficiency of the superconducting bulk body (high-temperature superconducting bulk body 4 ') is further enhanced. Is adopted. That is, in this apparatus, the high-temperature superconducting bulk body 4 'and the flywheel 5 are separately provided and fixed to the rotating shaft 6, respectively, and the inner wall (cooling plate 2) of the low-temperature vessel 1 having a double-wall structure is provided. Only the portion of the high-temperature superconducting bulk body 4 'is accommodated inside the parentheses, and the portion of the flywheel 5 is disposed outside the inner wall of the low-temperature vessel (cooling plate 2). The cooling plate 2 is supported by a load supporting material of a material and form that minimizes heat intrusion from outside the system. Therefore, the heat dissipation from the high-temperature superconducting bulk body 4 'is made wider from the entire surface of the bulk body, and the cooling efficiency of the high-temperature superconducting bulk body 4' is further improved. Further, in the present apparatus, the rotating shaft 6 for transmitting the rotational energy of the generator / motor 12 to the flywheel 5 or transmitting the rotational energy of the flywheel 5 to the generator / motor 12 is connected to the generator / motor. A long member extending long to the side is adopted, and the long portion is also accommodated in the low-temperature container 1 and cooled. Thereby, heat intrusion from the outside using the rotating shaft 6 as a transmission medium is suppressed, and the cooling efficiency of the high-temperature superconducting bulk body 4 'is further improved. Further, in the superconducting flywheel power storage device according to this embodiment, a non-contact type (gap type) electromagnetic clutch device 13 'is arranged between the rotating shaft 6 and the generator / motor 12, and a non-contact type electromagnetic clutch device 13' is provided between the two. The rotation is transmitted by contact. As described above, by applying the non-contact type electromagnetic clutch device, the rotating shaft of the generator / motor is always rotated as in the case of the superconducting flywheel power storage device according to the other example having the clutch device. It is no longer necessary to prevent the loss of the generator / motor, such as the eddy current loss caused by the rotor of the generator / motor always rotating at high speed and the rotation loss of the bearings of the generator / motor, and the like. The efficiency of the superconducting flywheel power storage device can be improved. Furthermore, if a non-contact type electromagnetic clutch device is applied, as described above, the rotating shaft 6 and the generator / motor 12
Can be thermally insulated, so that heat entering from the generator / motor side via the rotating shaft can be cut off. In addition, in a non-contact type electromagnetic clutch, even if a plate-like member is interposed between clutch member members, if it is a non-magnetic and non-conductive material, rotation transmission between both clutch member members is performed. By using a non-magnetic and non-conductive material for the portion of the low-temperature container 1 where the electromagnetic clutch is provided, the hermeticity of the low-temperature container is further improved, so that heat can be prevented from entering the low-temperature container from the outside. The effect is further improved, and the measures for vacuum sealing of the low-temperature container 1 are more complete. In the superconducting flywheel power storage device (high-temperature superconducting flywheel power storage device) according to this example, Nb 3 is used instead of the high-temperature superconducting bulk body 4 ′.
It goes without saying that a superconducting bulk body having a lower critical temperature, such as a Sn-based material, can be applied. In the non-contact type (gap type) electromagnetic clutch device 13 ', the clutch piece member on the generator / motor side is made of a permanent magnet, and the clutch piece member on the rotating shaft side (flywheel side) is made of a high-temperature superconducting bulk. It is recommended to use a superconducting bulk body such as a body. Thereby, the transmission efficiency of the rotational energy is further improved. As described above, according to the present invention, the flywheel can be increased in size (weight) to further increase the stored power, and the energy loss can be minimized. A superconducting flywheel power storage device can be provided, which contributes to the effective use of electric power energy, and has industrially useful effects.

【図面の簡単な説明】 【図1】本発明に係る超電導フライホイ−ル電力貯蔵装
置の一例を示す概念図である。 【図2】超電導フライホイ−ル電力貯蔵装置における超
電導コイルの配列状態を説明した概念図である。 【図3】本発明に係る超電導フライホイ−ル電力貯蔵装
置の別例を示す概念図である。 【図4】公表されている超電導フライホイ−ル電力貯蔵
装置(高温超電導フライホイ−ル電力貯蔵装置)の一例
に係る説明図である。 【符号の説明】 1 低温容器(真空容器) 2 冷却板 3 超電導コイル 4 超電導バルク体 4′高温超電導バルク体 5 フライホイ−ル 6 回転軸 7 案内用超電導コイル 8 案内用超電導バルク体 9 真空ポンプ(排気装置) 10 He圧縮機 11 極低温冷却器 12 発電・電動機 13 クラッチ装置 13′非接触式の電磁クラッチ装置 21 低温容器(真空容器) 22 高温超電導バルク体 23 回転軸 24 フライホイ−ル 25 永久磁石体 26 発電・電動機 27 真空ポンプ 28 液体窒素供給装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram showing an example of a superconducting flywheel power storage device according to the present invention. FIG. 2 is a conceptual diagram illustrating an arrangement state of superconducting coils in a superconducting flywheel power storage device. FIG. 3 is a conceptual diagram showing another example of a superconducting flywheel power storage device according to the present invention. FIG. 4 is a diagram illustrating an example of a published superconducting flywheel power storage device (high-temperature superconducting flywheel power storage device). [Description of Signs] 1 Low temperature vessel (vacuum vessel) 2 Cooling plate 3 Superconducting coil 4 Superconducting bulk 4 ′ High temperature superconducting bulk 5 Flywheel 6 Rotating shaft 7 Guide superconducting coil 8 Guide superconducting bulk 9 Vacuum pump ( Exhaust device) 10 He compressor 11 Cryogenic cooler 12 Generator / motor 13 Clutch device 13 'Non-contact electromagnetic clutch device 21 Cryogenic container (vacuum container) 22 High temperature superconducting bulk body 23 Rotating shaft 24 Flywheel 25 Permanent magnet Body 26 Generator / motor 27 Vacuum pump 28 Liquid nitrogen supply device

Claims (1)

【特許請求の範囲】 【請求項1】 超電導フライホイ−ル電力貯蔵装置であ
って、固定状態で配置される超電導コイルと、これと対
向させて浮上状態に配置される超電導バルク体と、当該
超電導バルク体と一体に回転するフライホイ−ルとを収
納した低温容器を有し、かつ低温容器内を真空排気する
ための排気装置と、前記超電導コイルをその臨界温度以
下に冷却するための熱伝導型の冷却装置と、フライホイ
−ルに固設された回転軸と発電・電動機との接続・遮断
を行うためのクラッチ装置とを有して成ることを特徴と
する超電導フライホイ−ル電力貯蔵装置。
Claims 1. A superconducting flywheel power storage device, comprising: a superconducting coil arranged in a fixed state; a superconducting bulk body arranged in a floating state in opposition to the coil; An exhaust device for evacuating the inside of the low-temperature container having a low-temperature container accommodating a flywheel rotating integrally with the bulk body, and a heat conduction type for cooling the superconducting coil below its critical temperature; A superconducting flywheel power storage device comprising: a cooling device according to (1), and a clutch device for connecting / disconnecting a rotating shaft fixed to the flywheel and a generator / motor.
JP2002015619A 2002-01-24 2002-01-24 Superconducting flywheel power storage device Pending JP2003219581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015619A JP2003219581A (en) 2002-01-24 2002-01-24 Superconducting flywheel power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015619A JP2003219581A (en) 2002-01-24 2002-01-24 Superconducting flywheel power storage device

Publications (1)

Publication Number Publication Date
JP2003219581A true JP2003219581A (en) 2003-07-31

Family

ID=27651960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015619A Pending JP2003219581A (en) 2002-01-24 2002-01-24 Superconducting flywheel power storage device

Country Status (1)

Country Link
JP (1) JP2003219581A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174749A (en) * 2005-12-20 2007-07-05 Railway Technical Res Inst Electromagnetic force support device using superconducting magnet device
JP2007189796A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Superconducting magnet device capable of supporting heavy objects
KR100805011B1 (en) 2005-11-30 2008-02-20 가부시끼가이샤 브이에스디 Fly wheel generator
JP2008228535A (en) * 2007-03-15 2008-09-25 Railway Technical Res Inst Flywheel power storage device for power storage
JP2008235355A (en) * 2007-03-16 2008-10-02 Railway Technical Res Inst Vacuum insulated container for rotating bodies using magnetic levitation using high-temperature superconducting bulk material
JP2008249130A (en) * 2007-03-08 2008-10-16 Railway Technical Res Inst Stabilizing method of magnetic bearing using high temperature superconducting bulk body and magnetic bearing thereof
JP2009264495A (en) * 2008-04-25 2009-11-12 Railway Technical Res Inst Non-contact part cooling device
KR100940693B1 (en) 2007-01-26 2010-02-08 가부시끼가이샤 브이에스디 Fly wheel generator
JP2010081701A (en) * 2008-09-25 2010-04-08 Railway Technical Res Inst Magnetically supporting device and method for designing this magnetically supporting device
JP2010239796A (en) * 2009-03-31 2010-10-21 Railway Technical Res Inst Superconducting flywheel power storage device
CN102687375A (en) * 2009-12-15 2012-09-19 英派尔科技开发有限公司 Magnetically suspended flywheel energy storage system with magnetic drive
WO2013149625A1 (en) * 2012-04-03 2013-10-10 Babcock Noell Gmbh Device for producing, improving, and stabilizing the vacuum in the housing of a flywheel mass
WO2014020593A1 (en) * 2012-07-30 2014-02-06 Chakratec Ltd. Magnetically coupled flywheel
CN104734414A (en) * 2015-03-26 2015-06-24 中国科学院电工研究所 High-temperature superconductive flywheel energy storage system based on permanent magnetic drive
JP2015215000A (en) * 2014-05-08 2015-12-03 公益財団法人鉄道総合技術研究所 Cooling device for floating body made of superconducting material
KR101604637B1 (en) * 2014-08-18 2016-03-21 안종석 Vaccum motor with generator
JP2016133187A (en) * 2015-01-21 2016-07-25 公益財団法人鉄道総合技術研究所 Superconducting magnetic bearing
CN110748563A (en) * 2019-09-29 2020-02-04 肇庆市衡艺实业有限公司 Magnetic suspension device and rotary lifting mechanism thereof
CN111679703A (en) * 2020-07-07 2020-09-18 中国空气动力研究与发展中心超高速空气动力研究所 Temperature protection control system of centrifugal vacuum pump and control method thereof
WO2023110340A1 (en) * 2021-12-14 2023-06-22 Festo Se & Co. Kg Superconductor system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805011B1 (en) 2005-11-30 2008-02-20 가부시끼가이샤 브이에스디 Fly wheel generator
JP2007174749A (en) * 2005-12-20 2007-07-05 Railway Technical Res Inst Electromagnetic force support device using superconducting magnet device
JP2007189796A (en) * 2006-01-12 2007-07-26 Railway Technical Res Inst Superconducting magnet device capable of supporting heavy objects
KR100940693B1 (en) 2007-01-26 2010-02-08 가부시끼가이샤 브이에스디 Fly wheel generator
JP2008249130A (en) * 2007-03-08 2008-10-16 Railway Technical Res Inst Stabilizing method of magnetic bearing using high temperature superconducting bulk body and magnetic bearing thereof
JP2008228535A (en) * 2007-03-15 2008-09-25 Railway Technical Res Inst Flywheel power storage device for power storage
JP2008235355A (en) * 2007-03-16 2008-10-02 Railway Technical Res Inst Vacuum insulated container for rotating bodies using magnetic levitation using high-temperature superconducting bulk material
JP2009264495A (en) * 2008-04-25 2009-11-12 Railway Technical Res Inst Non-contact part cooling device
JP2010081701A (en) * 2008-09-25 2010-04-08 Railway Technical Res Inst Magnetically supporting device and method for designing this magnetically supporting device
JP2010239796A (en) * 2009-03-31 2010-10-21 Railway Technical Res Inst Superconducting flywheel power storage device
CN102687375A (en) * 2009-12-15 2012-09-19 英派尔科技开发有限公司 Magnetically suspended flywheel energy storage system with magnetic drive
JP2013514054A (en) * 2009-12-15 2013-04-22 エンパイア テクノロジー ディベロップメント エルエルシー Magnetic levitation flywheel energy storage system with magnetic drive
WO2013149625A1 (en) * 2012-04-03 2013-10-10 Babcock Noell Gmbh Device for producing, improving, and stabilizing the vacuum in the housing of a flywheel mass
WO2014020593A1 (en) * 2012-07-30 2014-02-06 Chakratec Ltd. Magnetically coupled flywheel
US9667117B2 (en) 2012-07-30 2017-05-30 Chakratec Ltd. Magnetically coupled flywheel
JP2015215000A (en) * 2014-05-08 2015-12-03 公益財団法人鉄道総合技術研究所 Cooling device for floating body made of superconducting material
KR101604637B1 (en) * 2014-08-18 2016-03-21 안종석 Vaccum motor with generator
JP2016133187A (en) * 2015-01-21 2016-07-25 公益財団法人鉄道総合技術研究所 Superconducting magnetic bearing
CN104734414A (en) * 2015-03-26 2015-06-24 中国科学院电工研究所 High-temperature superconductive flywheel energy storage system based on permanent magnetic drive
CN104734414B (en) * 2015-03-26 2017-03-01 中国科学院电工研究所 A kind of high temperature superconductive flywheel energy storage system of permanent magnetic drive
CN110748563A (en) * 2019-09-29 2020-02-04 肇庆市衡艺实业有限公司 Magnetic suspension device and rotary lifting mechanism thereof
CN111679703A (en) * 2020-07-07 2020-09-18 中国空气动力研究与发展中心超高速空气动力研究所 Temperature protection control system of centrifugal vacuum pump and control method thereof
WO2023110340A1 (en) * 2021-12-14 2023-06-22 Festo Se & Co. Kg Superconductor system

Similar Documents

Publication Publication Date Title
JP2003219581A (en) Superconducting flywheel power storage device
JP7093758B2 (en) How to store and release the energy of a flywheel assembly
Miyazaki et al. Development of superconducting magnetic bearing for flywheel energy storage system
US6762522B2 (en) Magnetic bearing for suspending a rotating shaft using high Tc superconducting material
JP6461385B2 (en) Superconducting motor and generator
US9641051B2 (en) Electromechanical flywheel cooling system
US5540116A (en) Low-loss, high-speed, high-TC superconducting bearings
US20140300227A1 (en) Electromechanical flywheels
US9899894B2 (en) Scalable device and arrangement for storing and releasing energy
US6369476B1 (en) High temperature superconductor bearings
EP2487695B1 (en) System and method for magnetization of rare-earth permanent magnets
JP2004023921A (en) Motive power or electric power generator
CN117394586A (en) A flywheel energy storage system containing permanent magnet-superconducting magnetic levitation bearings
JP3337440B2 (en) High temperature superconducting magnetic bearing device and high temperature superconducting flywheel device
Werfel et al. Encapsulated HTS bearings: Technical and cost considerations
KR101091180B1 (en) Cooling structure of the superconducting rotator
JP2001343020A (en) Superconducting magnetic bearing and superconducting flywheel device
Hull et al. Magnetically confined kinetic-energy storage ring: A new fundamental energy-storage concept
KR101181932B1 (en) Wire insulated superconductor bearing
JP2000240650A (en) Superconductive magnetic bearing
JP2000060033A (en) Superconducting energy storage system
Hull et al. Magnetically confined kinetic-energy storage ring using attractive levitation
JP2003074553A (en) Support device for material to be cooled

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060614

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128