JPS6326312B2 - - Google Patents
Info
- Publication number
- JPS6326312B2 JPS6326312B2 JP23895984A JP23895984A JPS6326312B2 JP S6326312 B2 JPS6326312 B2 JP S6326312B2 JP 23895984 A JP23895984 A JP 23895984A JP 23895984 A JP23895984 A JP 23895984A JP S6326312 B2 JPS6326312 B2 JP S6326312B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- temperature
- low temperature
- magnetic material
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 52
- 230000007704 transition Effects 0.000 claims description 10
- 239000002470 thermal conductor Substances 0.000 claims description 7
- 239000000696 magnetic material Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000748 Gd alloy Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0021—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
Landscapes
- Control Of Combustion (AREA)
- Developing Agents For Electrophotography (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Soft Magnetic Materials (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は磁気低温生成装置に係り、回転磁場内
に配列された磁性体により低温を生成する装置に
関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a magnetic low temperature generation device, and more particularly to a device that generates low temperature using magnetic bodies arranged in a rotating magnetic field.
(従来の技術)
従来の低温生成装置は、一般に気体の圧縮膨張
過程を利用したものであり、高圧ガス安全対策の
必要性、圧縮機の小型軽量化の困難性、運転時の
振動騒音など種々の問題点があり、更には到達温
度の低冷化とともに効率が著しく低下する等の問
題点があつた。また磁気的に低温を生成する磁気
低温生成方法もすでに提案されている。(Prior technology) Conventional low-temperature generators generally utilize the compression-expansion process of gas, and there are various problems such as the need for high-pressure gas safety measures, the difficulty of reducing the size and weight of the compressor, and vibration and noise during operation. In addition, there were other problems such as a significant drop in efficiency as the temperature reached was lowered. Furthermore, a magnetic low temperature generation method for magnetically generating low temperature has already been proposed.
(発明が解決しようとする問題点)
しかしながら従来の磁気低温生成方法は数テス
ラーの強力な磁場を必要とし、そのため大型電磁
石などの磁場印加装置を設置して磁化放熱や消磁
熱吸収操作時には磁性体を移動させるか、または
別機構によつて駆動される複雑な熱スイツチ構造
を使用せねばならず、そのため連続作動および低
温利用に多大の不便や損失があり、いずれも実験
装置の域を出ず、実用化し難いものであつた。(Problem to be solved by the invention) However, the conventional magnetic low temperature generation method requires a strong magnetic field of several Tesla, and therefore, a magnetic field application device such as a large electromagnet is installed, and during magnetization heat dissipation and demagnetization heat absorption operations, magnetic material or use a complicated thermal switch structure driven by a separate mechanism, which causes great inconvenience and loss in continuous operation and low-temperature applications, and both are no more than experimental equipment. , it was difficult to put it into practical use.
したがつて本発明は簡単な構成により磁性体を
使用して効率よく低温を生成しうる装置を提供す
ることを目的とする。 Therefore, an object of the present invention is to provide a device that can efficiently generate low temperature using a magnetic material with a simple configuration.
(問題点を解決するための手段)
本発明は、磁気転移温度の異なる複数の磁性体
を磁気転移温度の順に一方向熱伝導体により連結
し、各磁性体を回転磁場内に配列するとともに、
上記各磁性体のうち磁気転移温度の低い磁性体を
低温部に連結したものである。(Means for Solving the Problems) The present invention connects a plurality of magnetic bodies with different magnetic transition temperatures in the order of their magnetic transition temperatures by a unidirectional thermal conductor, arranges each magnetic body in a rotating magnetic field, and
Among the above-mentioned magnetic materials, a magnetic material having a low magnetic transition temperature is connected to a low temperature section.
(作用効果)
上記構成において、熱は磁性体や一方向熱伝導
体等に沿つて一方向に移動し、最終的に磁性体間
に大きな温度差を生じさせて低温部を低冷化させ
るものであり、きわめて簡単な構成により、効率
よく磁気的に低温を生成することができる。(Function and effect) In the above configuration, heat moves in one direction along the magnetic material, one-way heat conductor, etc., and ultimately creates a large temperature difference between the magnetic materials and cools the low-temperature part. With an extremely simple configuration, it is possible to efficiently generate low temperature magnetically.
(実施例)
以下、図面を参照しながら本発明の実施例の説
明を行う。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明に係る磁気低温生成装置の平面
図、第2図は側面図であつて、1は筒状容器であ
り、その内部は熱漏洩を少なくするために断熱空
間である真空状態に保持されている。A1〜A5
は容器1内に上下方向に等間隔にて積層して固定
された略リング状固定板であつて、各固定板A1
〜A5には磁性体a1〜a6,a7〜a12……
an―5〜anがそれぞれ6個づつ同一円周上に等
間隔にて取り付けられており、各固定板A1〜A
5の始端部の磁性体と終端部の磁性体の間には切
れ目Pが形成されて不連続となつている。このよ
うにすれば、多数の磁性体a1〜anを狭い空間
に配列よく配設できる。各磁性体a1〜anの磁
気転移温度(常磁性体から強磁性体に変化する境
界温度であつて、この付近において磁性体の冷却
効果は最大となる)はa1,a2,a3,……
an―1,anの順に低く、したがつて全体として
最上段にある始端部の磁性体a1から最下段にあ
る終端部の磁性体anへ向かつて順に低くなつて
いる。磁性体a1〜anとしては、ガドリニウム
Gd、テルビウムTb、ホロニウムHo、デイスプ
ロシウムDy、エルビユームErなどの希土類元素
を含む合金、金属間化合物または磁性塩などが適
しており、これらの元素および組成を選択するこ
とにより、上記磁気転移温度を高温(室温)から
低温まで広範に変化させることができる。 Fig. 1 is a plan view of the magnetic low temperature generation device according to the present invention, and Fig. 2 is a side view, in which 1 is a cylindrical container, the inside of which is in a vacuum state with an adiabatic space to reduce heat leakage. is maintained. A1-A5
are substantially ring-shaped fixing plates that are stacked and fixed in the container 1 at equal intervals in the vertical direction, and each fixing plate A1
~A5 has magnetic bodies a1 to a6, a7 to a12...
6 each of an-5 to an are installed at equal intervals on the same circumference, and each fixed plate A1 to A
A cut P is formed between the magnetic material at the starting end and the magnetic material at the terminal end of 5, making it discontinuous. In this way, a large number of magnetic bodies a1 to an can be arranged in a narrow space in a well-aligned manner. The magnetic transition temperatures (the boundary temperature at which a paramagnetic material changes to a ferromagnetic material, and the cooling effect of the magnetic material is maximum around this temperature) of each magnetic material a1 to an are a1, a2, a3,...
An-1 and an are lower in this order, and thus the overall value is lower in order from the magnetic body a1 at the starting end at the top to the magnetic body an at the end at the bottom. As the magnetic substances a1 to an, gadolinium
Alloys, intermetallic compounds, or magnetic salts containing rare earth elements such as Gd, terbium Tb, holonium Ho, disprosium Dy, and erbium Er are suitable, and by selecting these elements and compositions, the above magnetic transition temperature can be achieved. can be varied over a wide range from high temperature (room temperature) to low temperature.
各固定板A1〜A5にそれぞれ取り付けられた
各磁性体a1〜a6,a7〜a12……an―5
〜anは、互いに一方向熱伝導体2により連結さ
れている。熱伝導体2は、熱を一方向(本実施例
では反時計方向Y)に流すものである。またより
上段の固定板の終端部の磁性体と、その下段の固
定板の始端部の磁性体(例えば磁性体a6と磁性
体a7、磁性体a12と磁性体a13……磁性体
an―6と磁性体an―5)は、それぞれ熱伝導体
3により連結されている。したがつて上記各磁性
体a1〜anは、各熱伝導体2や熱伝導体3によ
り全体として数珠つなぎにらせん状に連結されて
いる。 Each magnetic body a1 to a6, a7 to a12...an-5 attached to each fixed plate A1 to A5, respectively
~an are connected to each other by a one-way heat conductor 2. The thermal conductor 2 allows heat to flow in one direction (counterclockwise direction Y in this embodiment). Furthermore, the magnetic material at the end of the upper fixed plate and the magnetic material at the starting end of the lower fixed plate (for example, magnetic material a6 and magnetic material a7, magnetic material a12 and magnetic material a13...magnetic material
an-6 and magnetic material an-5) are connected by a thermal conductor 3, respectively. Therefore, each of the magnetic bodies a1 to an is connected in a spiral shape as a whole by each of the thermal conductors 2 and 3.
4は上記容器1の外方に配設された放熱部とし
ての熱交換器であつて、最上段始端部にあつて最
も磁気転移温度の高い磁性体a1はこの熱交換器
6に連結されている。この熱交換器4は、熱を容
器1外において放熱させるものである。なお熱伝
導体2や熱伝導体3としては、
(1) 磁性体の左右両側部に、断面積または不純物
濃度の異なる金属板を重ね合わせたもの
(2) 外磁場によつて熱伝導度が変化する物質(例
えば50K以下ではベリリウムBe、ガリウムGa
などの金属)を用いると共に、回転永久磁石片
の辺縁部形状を工夫して左右の周辺磁場分布を
非対称にして、中心磁場による磁性体磁化時に
左右で異なる熱伝導を実現したもの
などが適用できる。 Reference numeral 4 denotes a heat exchanger as a heat dissipation section disposed outside the container 1, and the magnetic material a1 at the starting end of the uppermost stage and having the highest magnetic transition temperature is connected to this heat exchanger 6. There is. This heat exchanger 4 radiates heat outside the container 1. The thermal conductor 2 and the thermal conductor 3 are: (1) metal plates with different cross-sectional areas or impurity concentrations stacked on the left and right sides of a magnetic body; (2) thermal conductivity changes depending on the external magnetic field; Substances that change (e.g. beryllium Be, gallium Ga below 50K)
In addition to using metals such as metals such as metals such as can.
B1〜B6は回転部材であつて、上記容器1の
中央に立設された回転軸5に上下方向に等間隙に
て取り付けられており、各回転部材B1〜B6の
間に上記各固定板A1〜A5は挟まれている。b
1〜bmは回転部材B1〜B6の同一円周上に配
列して取り付けられた永久磁石であつて、上記各
磁性体a1〜anの一つおきの位置に対応してそ
の上下に反対磁極が面して相対するように各回転
部材B1〜B6上に配置されている。 Reference numerals B1 to B6 are rotating members, which are attached to a rotating shaft 5 erected in the center of the container 1 at equal intervals in the vertical direction. ~A5 is sandwiched. b
1 to bm are permanent magnets arranged and attached on the same circumference of the rotating members B1 to B6, and have opposite magnetic poles above and below corresponding to every other position of each of the magnetic bodies a1 to an. They are arranged on each of the rotating members B1 to B6 so as to face each other.
6は上記容器1の上部に配設されたモータであ
つて、上記回転軸5は該モータ6により駆動さ
れ、上記各永久磁石b1〜bmは上記各磁性体a
1〜anに近接して反時計方向Yに回転する。K
は永久磁石b1〜bmの回転磁場である。なお永
久磁石b1〜bmとしては、例えば希土類コバル
ト磁石(残留磁束密度0.8〜1.1T)を用いる。こ
れにより0.2〜0.3Kg程度の小型磁石対で0.2〜0.6T
の磁場を30mm空隙×15mm径の空間に発生できるの
で、小容量のモータで多数磁石対を移動させて回
転磁場を発生させうる。 6 is a motor disposed on the upper part of the container 1, the rotating shaft 5 is driven by the motor 6, and each of the permanent magnets b1 to bm is connected to each of the magnetic bodies a.
Rotate counterclockwise Y in proximity to 1 to an. K
is the rotating magnetic field of the permanent magnets b1 to bm. As the permanent magnets b1 to bm, for example, rare earth cobalt magnets (residual magnetic flux density 0.8 to 1.1T) are used. As a result, a small magnet pair of about 0.2 to 0.3Kg can handle 0.2 to 0.6T.
can be generated in a space of 30 mm gap x 15 mm diameter, so a rotating magnetic field can be generated by moving multiple magnet pairs using a small-capacity motor.
7は冷却すべき低温部であつて、上記容器12
の外部に配設されたボツクス8内に収納されてお
り、最下段終端部にあつて最も磁気転移温度の低
い磁性体anは、この低温部7に連結されている。
9は温度計であつて、低温部7の他、容器1内の
適所に配設される。 7 is a low temperature section to be cooled, and the container 12
The magnetic material an, which is housed in a box 8 disposed outside of the box 8 and has the lowest magnetic transition temperature at the end of the lowermost stage, is connected to the low temperature section 7.
Reference numeral 9 denotes a thermometer, which is disposed at a suitable location in the container 1 in addition to the low temperature section 7.
本装置は上記のような構成より成り、モータ6
を駆動して各回転部材B1〜B6を回転させる
と、永久磁石b1〜bmの磁力線Hは磁性体a1
〜anを上下方向に貫きながら回転磁場は時計方
向Xに回転し、各磁性体a1〜anは磁化、消磁
が反覆されて熱は反時計方向Yに順次移動し、熱
は低温部7から熱交換器4へ定常的に汲み上げら
れ、低温部7は次第に低冷化する。実際の運転に
あたつては、回転部材B1〜B6の回転速度は磁
性体a1〜an内のスピン―格子熱緩和時間、お
よび磁性体a1〜an、熱伝導対2等の熱伝導度
を考慮して決められるが、これらのパラメータは
温度の関数でもあるので、装置始動から低温到達
定常状態まで最短時間で達成するために、或いは
また低温部の任意温度点における最大熱除去効率
を得るために、運転時においては各部に付設した
温度計9からの信号をもとに制御回路でモータ6
の回転速度を最適制御する。 This device consists of the above-mentioned configuration, and includes a motor 6.
When the rotating members B1 to B6 are rotated, the lines of magnetic force H of the permanent magnets b1 to bm are aligned with the magnetic body a1.
The rotating magnetic field rotates in the clockwise direction X while penetrating ~an in the vertical direction, and each magnetic body a1~an is repeatedly magnetized and demagnetized, and the heat sequentially moves in the counterclockwise direction Y, and the heat is transferred from the low temperature part 7. It is constantly pumped up to the exchanger 4, and the low temperature section 7 gradually becomes colder. During actual operation, the rotational speed of the rotating members B1 to B6 takes into account the spin-lattice thermal relaxation time in the magnetic bodies a1 to an, and the thermal conductivity of the magnetic bodies a1 to an, thermal conduction pair 2, etc. However, since these parameters are also a function of temperature, they can be used to achieve the shortest possible time from start-up to low-temperature steady state, or to obtain the maximum heat removal efficiency at any temperature point in the low-temperature section. During operation, the control circuit controls the motor 6 based on signals from the thermometers 9 attached to each part.
Optimal control of rotation speed.
低温においてスピン―格子熱緩和時間が増大す
る場合には、回転部材B1〜B6の回転を磁性体
位置に合せて断続的に行うなどして熱移動の効率
を上げてもよい。また固定板A1〜A5への回転
磁場の掃引速度を別々に設定することも考えられ
る。その場合には各固定板A1〜A5に2枚の円
板を挿入し、各固定板A1〜A5をはさむ一対の
円板を結合して各々独立の回転機構で駆動する。 When the spin-lattice thermal relaxation time increases at low temperatures, the efficiency of heat transfer may be increased by rotating the rotating members B1 to B6 intermittently in accordance with the position of the magnetic body. It is also conceivable to set the sweep speeds of the rotating magnetic field to the fixed plates A1 to A5 separately. In that case, two discs are inserted into each of the fixed plates A1 to A5, and the pair of discs sandwiching each of the fixed plates A1 to A5 are combined and driven by independent rotation mechanisms.
図は本発明の実施例を示すものであつて、第1
図は平面図、第2図は側面図である。
a1〜an……磁性体、K……回転磁場、2…
…一方向熱伝導体、7……低温部。
The figure shows an embodiment of the present invention.
The figure is a plan view, and FIG. 2 is a side view. a1~an...magnetic material, K...rotating magnetic field, 2...
...One-way heat conductor, 7...Low temperature section.
Claims (1)
移温度の順に一方向熱伝導体により連結し、上記
各磁性体を回転磁場内に配列するとともに、上記
各磁性体のうち磁気転移温度の低い磁性体を低温
部に連結したことを特徴とする磁気低温生成装
置。1 A plurality of magnetic bodies having different magnetic transition temperatures are connected in the order of their magnetic transition temperatures by a unidirectional thermal conductor, and each of the magnetic bodies is arranged in a rotating magnetic field, and among the magnetic bodies, the magnetic body with the lowest magnetic transition temperature is A magnetic low-temperature generation device characterized by having a body connected to a low-temperature part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23895984A JPS60117066A (en) | 1984-11-13 | 1984-11-13 | Magnetic low-temperature generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23895984A JPS60117066A (en) | 1984-11-13 | 1984-11-13 | Magnetic low-temperature generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60117066A JPS60117066A (en) | 1985-06-24 |
JPS6326312B2 true JPS6326312B2 (en) | 1988-05-28 |
Family
ID=17037839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23895984A Granted JPS60117066A (en) | 1984-11-13 | 1984-11-13 | Magnetic low-temperature generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60117066A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013533456A (en) * | 2010-08-09 | 2013-08-22 | クールテック アプリケーションズ エス.エー.エス. | Heat generator with magnetocaloric material |
JP2020169806A (en) * | 2019-04-04 | 2020-10-15 | 香取 健二 | Energy conversion element and temperature regulator using the same |
WO2022158282A1 (en) * | 2021-01-19 | 2022-07-28 | 健二 香取 | Energy conversion element and temperature control device using same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008527301A (en) * | 2005-01-12 | 2008-07-24 | ザ テクニカル ユニヴァーシティー オブ デンマーク | Magnetic regenerator, method of manufacturing magnetic regenerator, method of manufacturing active magnetic refrigerator, and active magnetic refrigerator |
JP4557874B2 (en) * | 2005-11-30 | 2010-10-06 | 株式会社東芝 | Magnetic refrigerator |
JP4643668B2 (en) * | 2008-03-03 | 2011-03-02 | 株式会社東芝 | Magnetic refrigeration device and magnetic refrigeration system |
JP5602482B2 (en) * | 2010-04-22 | 2014-10-08 | 公益財団法人鉄道総合技術研究所 | Magnetic refrigeration equipment |
JP5729050B2 (en) * | 2011-03-17 | 2015-06-03 | 日産自動車株式会社 | Magnetic refrigerator and magnetic refrigeration method |
EP2706309B1 (en) * | 2011-05-02 | 2019-12-04 | Nissan Motor Co., Ltd | Magnetic refrigerator |
JP5760976B2 (en) | 2011-11-24 | 2015-08-12 | 日産自動車株式会社 | Magnetic air conditioner |
JP5906834B2 (en) * | 2012-03-09 | 2016-04-20 | 日産自動車株式会社 | Magnetic air conditioner |
JP6212955B2 (en) * | 2013-05-23 | 2017-10-18 | 日産自動車株式会社 | Magnetic air conditioner |
-
1984
- 1984-11-13 JP JP23895984A patent/JPS60117066A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013533456A (en) * | 2010-08-09 | 2013-08-22 | クールテック アプリケーションズ エス.エー.エス. | Heat generator with magnetocaloric material |
JP2020169806A (en) * | 2019-04-04 | 2020-10-15 | 香取 健二 | Energy conversion element and temperature regulator using the same |
WO2022158282A1 (en) * | 2021-01-19 | 2022-07-28 | 健二 香取 | Energy conversion element and temperature control device using same |
JP2022111021A (en) * | 2021-01-19 | 2022-07-29 | 健二 香取 | Energy conversion element and temperature regulator using the same |
Also Published As
Publication number | Publication date |
---|---|
JPS60117066A (en) | 1985-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4033734A (en) | Continuous, noncyclic magnetic refrigerator and method | |
US4956976A (en) | Magnetic refrigeration apparatus for He II production | |
EP0496530B1 (en) | A static magnetic refrigerator | |
Sahashi et al. | New magnetic material R 3 T system with extremely large heat capacities used as heat regenerators | |
JPS6326312B2 (en) | ||
US4916907A (en) | Magnetocaloric monostable and bistable inductors for electrical energy and refrigeration | |
Hashimoto et al. | Investigations on the possibility of the RAl 2 system as a refrigerant in an ericsson type magnetic refrigerator | |
EP0170364A1 (en) | Magnetic refrigerator | |
JP2008082663A (en) | Magnetic refrigerating device and magnetic refrigerating method | |
WO1999004477A2 (en) | Trapped field internal dipole superconducting motor generator | |
Coey | Intrinsic magnetic properties of compounds with the Nd2Fe14B structure | |
CN105190200A (en) | Use of a rotating magnetic shielding system for a magnetic cooling device | |
GB2179729A (en) | A method of magnetic refrigeration and a magnetic refrigerating apparatus | |
JP2002208512A (en) | High-temperature superconducting coil cooling method and cooling structure | |
Watasaki et al. | Stability model of bulk HTS field pole of a synchronous rotating machine under load conditions | |
Serlemitsos et al. | Design of a spaceworthy adiabatic demagnetization refrigerator | |
CN109385577A (en) | A kind of technique preparing permanent-magnet material and magneto | |
Lee et al. | Design of permanent-magnet field source for rotary-magnetic refrigeration systems | |
WO2022190586A1 (en) | Rotating magnetic field generation device, magnetic refrigeration device, and hydrogen liquefaction device | |
Wallace | The quest for high energy magnets: The coercivity issue | |
JP3631399B2 (en) | Superconducting magnetizer | |
JPH0545663B2 (en) | ||
Oka et al. | Construction of strong magnetic field generators by high T/sub c/bulk superconductors and its applications | |
JP3648868B2 (en) | Magnetization method of superconductor and superconducting magnet device | |
JPH0422009B2 (en) |