JP2020169806A - Energy conversion element and temperature regulator using the same - Google Patents

Energy conversion element and temperature regulator using the same Download PDF

Info

Publication number
JP2020169806A
JP2020169806A JP2020041197A JP2020041197A JP2020169806A JP 2020169806 A JP2020169806 A JP 2020169806A JP 2020041197 A JP2020041197 A JP 2020041197A JP 2020041197 A JP2020041197 A JP 2020041197A JP 2020169806 A JP2020169806 A JP 2020169806A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
energy conversion
conversion element
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020041197A
Other languages
Japanese (ja)
Other versions
JP6960492B2 (en
Inventor
香取 健二
Kenji Katori
健二 香取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2020169806A publication Critical patent/JP2020169806A/en
Application granted granted Critical
Publication of JP6960492B2 publication Critical patent/JP6960492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

To provide an energy conversion element from kinetic energy to temperature difference energy which does not cause noise and vibration and has a simple structure, and to provide a temperature regulator by using such an energy conversion element.SOLUTION: Rotary disc-shaped magnetic working substance and a portion to which a magnetic field is applied are thermally joined by using magnetic fluid, and heat quantity generated by the magnetic field is induced to a permanent magnet portion. Further, a cold state portion is also thermally connected with a low temperature output terminal by the magnetic fluid. Thereby, a high temperature portion and a low temperature portion can be taken out by rotation of the disc-shaped magnetic working substance. By connecting elements in series, a temperature difference between high temperature and low temperature can be increased as necessary. A temperature regulator can be constructed by energy conversion element assembly.SELECTED DRAWING: Figure 1

Description

本開示は、運動エネルギーから温度差エネルギーへ変換するエネルギー変換素子構造及び構成材料及びこれを用いた温度調節装置に関する。 The present disclosure relates to an energy conversion element structure and constituent materials for converting kinetic energy to temperature difference energy, and a temperature control device using the same.

室温よりも低い低温を生み出す手法として、気体の冷媒を圧縮しこれを蒸発させる際に低温を生じさせる蒸気圧縮冷凍機が知られており冷蔵庫、エアコン等に広く普及している。また冷媒を気化させる手法として、吸収力の高い液体に別の冷媒を吸収させる際に生じる低圧を用いる吸収式冷凍機も知られている。
さらに、電気エネルギーから直接的に温度差エネルギーを生じさせるペルチェ素子も開発され実用化されている。
また、磁場を印加すると発熱し、磁場を除去すると吸熱する磁気作業物質を用いた磁気冷凍機が研究開発されている。これまで研究開発されてきた磁気冷凍方式とは、磁性体の磁気熱量効果を熱交換流体によって伝搬し、所定の冷凍サイクルを駆動することによって冷凍温度幅や冷凍能力を得る方法である。これは一般的にAMR(Active Magnetic Regenerator)冷凍法と呼ばれ、室温付近での磁気冷凍において有効な手法であると認識されている(特許5060602参照)。
As a method of producing a low temperature lower than room temperature, a vapor-compression refrigerator that compresses a gaseous refrigerant and generates a low temperature when it is evaporated is known and is widely used in refrigerators, air conditioners, and the like. Further, as a method for vaporizing a refrigerant, an absorption chiller that uses a low pressure generated when another refrigerant is absorbed by a liquid having a high absorbency is also known.
Furthermore, a Peltier element that directly generates temperature difference energy from electrical energy has also been developed and put into practical use.
Further, research and development have been conducted on a magnetic refrigerator using a magnetic working substance that generates heat when a magnetic field is applied and absorbs heat when the magnetic field is removed. The magnetic refrigeration method that has been researched and developed so far is a method in which the magnetic calorific value effect of a magnetic material is propagated by a heat exchange fluid and a predetermined refrigeration cycle is driven to obtain a refrigerating temperature range and a refrigerating capacity. This is generally called the AMR (Active Magnetic Regenerator) freezing method, and is recognized as an effective method for magnetic freezing near room temperature (see Patent 5060602).

特許5060602Patent 5060602

フロンレスを実現する磁気冷凍技術ー東芝、東芝レビュー62巻9号(2007年9月),https://www.toshiba.co.jp/tech/review/2007/09/62_09pdf/rd01.pdfMagnetic refrigeration technology that realizes frontless-Toshiba, Toshiba Review Vol. 62, No. 9 (September 2007), https://www.toshiba.co.jp/tech/review/2007/09/62_09pdf/rd01.pdf

前記冷却手法はいずれも電気エネルギー、運動エネルギー等を温度差のエネルギーに変換し低温部分と高温部分を生じさせる手法である。電気エネルギーから温度差エネルギーへの変換に関してはペルチェ素子によりシンプルに変換可能であるが、運動エネルギーから温度差のエネルギーに関しては複雑な構造が必要とされる。すなわち騒音振動を伴うガスの圧縮、気化、あるいは磁気冷凍においては磁場の印加と同期して冷媒の移動を行うAMR装置が必要となっていた。AMR装置においては磁場の印加に同期した冷媒調整等騒音振動を伴う複雑な機構が必要とされる。 All of the above cooling methods are methods of converting electrical energy, kinetic energy, etc. into energy of temperature difference to generate a low temperature portion and a high temperature portion. The conversion from electrical energy to temperature difference energy can be simply converted by the Peltier element, but the conversion from kinetic energy to temperature difference energy requires a complicated structure. That is, in the case of gas compression, vaporization, or magnetic refrigeration accompanied by noise and vibration, an AMR device that moves the refrigerant in synchronization with the application of a magnetic field is required. In the AMR device, a complicated mechanism accompanied by noise and vibration such as refrigerant adjustment synchronized with the application of a magnetic field is required.

本発明は運動エネルギーから温度差エネルギーへ変換する手法において、磁気冷凍AMR等のような弁の開閉を含む複雑な動作を伴うことなく直接にエネルギー変換を行い、素子に運動エネルギーを入力することで騒音振動を伴うことなく直接的に温度差エネルギーを出力させることを目的とする。 The present invention is a method of converting kinetic energy to temperature difference energy by directly performing energy conversion without complicated operation including opening and closing of a valve such as magnetic refrigeration AMR, and inputting kinetic energy to the element. The purpose is to directly output the temperature difference energy without accompanying noise and vibration.

上述の課題を解決するために、第1の開示は、回転あるいは往復運動をする磁気作業物質と、前記磁気作業物質に磁場を印加するための永久磁石を含む磁場印加部との間に液体または微粒子が分散された液体を充填し、永久磁石による磁場印加により発熱した熱量を磁場印加部に熱伝導することで高温側の熱の出力を磁場印加部を通して行うエネルギー変換素子の構造である。 In order to solve the above-mentioned problems, the first disclosure is a liquid or liquid between a magnetic working material that rotates or reciprocates and a magnetic field applying portion including a permanent magnet for applying a magnetic field to the magnetic working material. It is a structure of an energy conversion element that outputs heat on the high temperature side through a magnetic field application part by filling a liquid in which fine particles are dispersed and heat-conducting the amount of heat generated by applying a magnetic field with a permanent magnet to the magnetic field application part.

第2の開示は磁気作業物質と磁場印加部との間に充填する液体または微粒子が分散された液体に磁性流体を用いて、回転あるいは往復運動する磁気作業物質と磁場印加部を継続的に熱伝導させる第1の開示のエネルギー変換素子の構造である。 The second disclosure uses a magnetic fluid in a liquid or a liquid in which fine particles are dispersed to be filled between the magnetic working substance and the magnetic field applying portion, and continuously heats the rotating or reciprocating magnetic working material and the magnetic field applying portion. It is the structure of the energy conversion element of the first disclosure to conduct.

第3の開示は低温側の出力端子において、回転あるいは往復運動する磁気作業物質と低温出力端子との間に液体または微粒子が分散された液体を充填することで連続的に低温を得ることができる第1,2の開示のエネルギー変換素子の構造である。 The third disclosure is that the low temperature can be continuously obtained by filling the output terminal on the low temperature side with a liquid or a liquid in which fine particles are dispersed between the rotating or reciprocating magnetic working substance and the low temperature output terminal. It is the structure of the energy conversion element of the first and second disclosure.

第4の開示は低温側の出力端子において、磁性流体を保持できるが磁気作業物質を発熱させない0.01Tから0.1T程度の弱い磁場となる永久磁石を含む磁場印加部を設置し、さらに磁気作業物質と前記磁場印加部の間に磁性流体を充填することで連続的に低温を得ることができるエネルギー変換素子の構造である。 The fourth disclosure is that at the output terminal on the low temperature side, a magnetic field application part including a permanent magnet that can hold the magnetic fluid but does not generate heat of the magnetic working material but has a weak magnetic field of about 0.01T to 0.1T is installed, and further, the magnetic working material is installed. It is a structure of an energy conversion element capable of continuously obtaining a low temperature by filling a magnetic fluid between the magnetic fluid and the magnetic field application portion.

第5の開示は前記エネルギー変換素子の低温出力端子と別個体の同様なエネルギー変換素子の高温出力端子を熱伝導性良く接続することで直列接続として、温度差を増加させるエネルギー変換素子の接続手法である。 The fifth disclosure is a method of connecting an energy conversion element that increases the temperature difference as a series connection by connecting the low temperature output terminal of the energy conversion element and the high temperature output terminal of a similar energy conversion element separately with good thermal conductivity. Is.

第6の開示は前記エネルギー変換素子積層集合体において、磁気作業物質の組成を動作温度条件に伴い変化させることを特徴とするエネルギー変換素子の構成である。 The sixth disclosure is the configuration of the energy conversion element in the energy conversion element laminated assembly, characterized in that the composition of the magnetic working substance is changed according to the operating temperature condition.

第7の開示は前記エネルギー変換素子集合体を冷却部あるいは加熱部に用いることを特徴とする温度調節装置の構成である。 The seventh disclosure is a configuration of a temperature control device characterized in that the energy conversion element assembly is used for a cooling unit or a heating unit.

本開示によれば、騒音振動を伴うことなく複雑な弁の開閉無しに単純に運動エネルギーを温度差エネルギーへ変換することができる。さらに前記エネルギー変換素子を用いて加熱あるいは冷却装置を得ることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果またはそれらとは異質な効果であってもよい。 According to the present disclosure, kinetic energy can be simply converted into temperature difference energy without complicated valve opening and closing without accompanied by noise and vibration. Further, a heating or cooling device can be obtained by using the energy conversion element. The effects described herein are not necessarily limited, and may be any of the effects described in the present disclosure or an effect different from them.

本開示の第4の回転する円盤状磁気作業物質を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment when the 4th rotating disk-shaped magnetic working substance of this disclosure is used. 本開示の第4の回転する円盤状磁気作業物質を用いた場合の実施形態に係るエネルギー変換素子の構成を示す上面図である。It is a top view which shows the structure of the energy conversion element which concerns on embodiment when the 4th rotating disk-shaped magnetic working substance of this disclosure is used. 本開示の第5の回転する円盤状磁気作業物質を用いた場合の積層素子の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment of the laminated element when the 5th rotating disk-shaped magnetic working substance of this disclosure is used. 本開示の第6のそれぞれ異なる材料の回転する円盤状磁気作業物質を用いた場合の積層素子の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment of the laminated element at the time of using the 6th rotating disk-shaped magnetic working material of the present disclosure. 本開示の第4の往復運動をする短冊状の磁気作業物質を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment in the case of using the strip-shaped magnetic working substance which performs the 4th reciprocating motion of this disclosure. 本開示の第4の往復運動をする短冊状の磁気作業物質を用いた場合の実施形態に係るエネルギー変換素子の構成を示す上面図である。It is a top view which shows the structure of the energy conversion element which concerns on embodiment when the strip-shaped magnetic working substance which performs the 4th reciprocating motion of this disclosure is used. 本開示の第5の往復運動をする短冊状の磁気作業物質を用いた場合の積層素子の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment of the laminated element at the time of using the strip-shaped magnetic working substance which performs the 5th reciprocating motion of this disclosure.

本開示の実施形態について以下の順序で説明する。
1 第1-4の実施形態
2 第5、6の実施形態
The embodiments of the present disclosure will be described in the following order.
1 Embodiments 1-4
2 5th and 6th embodiments

<1 第1-4の実施形態>
「磁気作業物質」
従来磁気冷凍技術として研究開発されているAMR装置においては、粒子状の磁気作業物質を用いてこの間隙に冷媒を往復させているが、本開示においては回転する軸に取り付けられた円盤状の磁気作業物質を用いる。回転軸により回転する円盤状の磁気作業物質を挟み込むようにして、磁気作業物質を発熱させる強力な磁場を有する高温出力端子と、磁場を印加しないかあるいは磁気作業物質を発熱させない弱い磁場を有する低温出力端子を設置する。
磁気作業物質にはGd(ガドリニウム)系合金、Mn(マンガン)系合金、La(ランタン)系合金、ホウ素化合物等を用いることができる。
<1 Embodiments 1-4>
"Magnetic work material"
In the AMR device, which has been conventionally researched and developed as a magnetic refrigeration technology, the refrigerant is reciprocated in this gap by using a particulate magnetic working substance, but in the present disclosure, a disk-shaped magnetism attached to a rotating shaft is used. Use working material. A high-temperature output terminal having a strong magnetic field that generates heat of the magnetic work material by sandwiching a disk-shaped magnetic work material that rotates by the rotating shaft, and a low temperature having a weak magnetic field that does not apply a magnetic field or generate heat of the magnetic work material. Install the output terminal.
As the magnetic working substance, a Gd (gadolinium) alloy, an Mn (manganese) alloy, a La (lantern) alloy, a boron compound or the like can be used.

「高温出力端子」
回転軸に取り付けられ、回転する円盤状の磁気作業物質を挟み込む形で磁気作業物質を発熱させるのに必要な永久磁石を含む磁場印加部を設置して磁場を印加する。磁気作業物質と磁場印加部との間に液体または微粒子が分散された液体を導入する。前記液体または微粒子が分散された液体には磁性流体を使用することができる。磁気作業物質が回転しても磁性流体は磁場に引き寄せられ磁場印加部に留まる。ここで磁場印加により磁気作業物質の磁化方向が揃うため磁気作業物質が発熱する。この発熱は液体または微粒子が分散された液体を通して磁場印加部へ熱伝導され、磁場印加部自体が高温出力端子となり、磁場印加部から高温熱量を取り出すことができる。
"High temperature output terminal"
A magnetic field application unit including a permanent magnet, which is attached to a rotating shaft and sandwiches a rotating disk-shaped magnetic working material to generate heat, is installed to apply a magnetic field. A liquid or a liquid in which fine particles are dispersed is introduced between the magnetic working substance and the magnetic field application part. A magnetic fluid can be used as the liquid or the liquid in which the fine particles are dispersed. Even if the magnetic working substance rotates, the magnetic fluid is attracted to the magnetic field and stays in the magnetic field application part. Here, when the magnetic field is applied, the magnetization directions of the magnetic working material are aligned, so that the magnetic working material generates heat. This heat generation is heat-conducted to the magnetic field application section through the liquid or the liquid in which the fine particles are dispersed, and the magnetic field application section itself becomes the high temperature output terminal, and the high temperature heat quantity can be taken out from the magnetic field application section.

「低温出力端子」
強力な磁場から出た磁気作業物質は磁化の方向がランダムになることから冷却される。この際の低温状態を外部に熱伝達するため、低温出力端子を設置する。低温出力端子は磁場を印加しないか、あるいは磁気作業物質を発熱させない弱い磁場を磁気作業物質を挟むギャップ間に有する。磁気作業物質と低温出力端子は液体または微粒子が分散された液体により熱伝導される。回転軸に取り付けられ、回転する円盤状の磁気作業物質を挟み込む形で0.03T程度の弱い磁場となるように永久磁石を設置する。磁気作業物質と弱い磁石との間に磁性流体を導入する。磁気作業物質が回転しても磁性流体は磁場に引き寄せられ磁石部分に留まる。磁性流体に用いられるマグネタイト磁性紛は0.03T程度であっても強力に磁石に吸い寄せられ、磁気作業物質が回転しても磁石部分にとどまる。一方0.03T程度の磁場では磁気作業物質の磁化方向は十分には揃わず、磁気作業物質に十分な発熱は生じることなく低温状態が保持される。この低温度は磁性流体を通して磁石へ伝導され、磁石部分自体が低温出力端子となり、磁石部分を通して他の物質を冷却することができる。
高温出力端子と低温出力端子にそれぞれ充填された磁性流体はそれぞれの磁石により引き付けられお互いに交じり合うことなくそれぞれ高温状態と低温状態を維持できる。
"Low temperature output terminal"
The magnetic working material emitted from a strong magnetic field is cooled because the direction of magnetization is random. A low temperature output terminal is installed to transfer heat to the outside in the low temperature state at this time. The low temperature output terminal has a weak magnetic field between the gaps sandwiching the magnetic working material so that no magnetic field is applied or the magnetic working material does not generate heat. The magnetic working material and the low temperature output terminal are thermally conducted by a liquid or a liquid in which fine particles are dispersed. A permanent magnet is installed so that it is attached to a rotating shaft and sandwiches a rotating disk-shaped magnetic working substance so that it has a weak magnetic field of about 0.03 T. A magnetic fluid is introduced between the magnetic working material and the weak magnet. Even if the magnetic working substance rotates, the magnetic fluid is attracted to the magnetic field and stays in the magnet part. The magnetite magnetic powder used in the magnetic fluid is strongly attracted to the magnet even if it is about 0.03 T, and stays in the magnet part even if the magnetic working substance rotates. On the other hand, in a magnetic field of about 0.03 T, the magnetization directions of the magnetic working material are not sufficiently aligned, and the magnetic working material does not generate sufficient heat and is maintained in a low temperature state. This low temperature is conducted to the magnet through the magnetic fluid, and the magnet portion itself becomes a low temperature output terminal, and other substances can be cooled through the magnet portion.
The magnetic fluids filled in the high-temperature output terminal and the low-temperature output terminal can be attracted by the respective magnets and can maintain the high-temperature state and the low-temperature state, respectively, without mixing with each other.

<2 第5,6の実施形態>
「積層」
前記エネルギー変換素子は非常に単純な形態を採るが、従来研究されてきたAMR装置と比較して生じる温度差が少ない。ここで素子を直列に接続することで温度差を拡大することができる。
同一軸に接続された別個体の円盤状磁気作業物質に対してそれぞれ高温出力端子と低温出力端子を設置する。別個体の素子の低温出力端子と高温出力端子とを熱伝導性良く接続することにより前記低温出力端子と高温出力端子は同じ温度となる。このため接続されなかった側の出力端子間では温度差がさらに拡大する。ここでは2段接続の例を示したが、所望の温度差を得るために必要に応じて同様に積層数を増すことができる。
この際、積層された各素子に用いる磁気作業物質は同一である必要は無い。最適動作温度の異なる磁気作業物質を各素子の動作温度に従い配置し、より温度差の拡大を図ることができる。
<2 Embodiments 5 and 6>
"Laminate"
Although the energy conversion element takes a very simple form, the temperature difference generated is small as compared with the AMR device which has been studied conventionally. Here, the temperature difference can be expanded by connecting the elements in series.
A high-temperature output terminal and a low-temperature output terminal are installed for separate disk-shaped magnetic working materials connected to the same shaft, respectively. By connecting the low temperature output terminal and the high temperature output terminal of another individual element with good thermal conductivity, the low temperature output terminal and the high temperature output terminal have the same temperature. Therefore, the temperature difference between the output terminals on the unconnected side further increases. Although an example of two-stage connection is shown here, the number of layers can be similarly increased as needed in order to obtain a desired temperature difference.
At this time, the magnetic working material used for each of the stacked elements does not have to be the same. Magnetic working substances with different optimum operating temperatures can be arranged according to the operating temperature of each element to further increase the temperature difference.

「短冊型」
これまでは円盤状磁気作業物質を回転させる手法について開示したが、磁気作業物質を短冊型としてこれを往復運動させることもできる。短冊型磁気作業物質を挟むように、磁気作業物質を発熱させる高い磁場を有する高温出力端子と磁気作業物質を発熱させない低い磁場を有する低温出力端子をお互いが接し無い様に並べる。磁気作業物質とそれぞれ高温出力端子、低温出力端子の間には磁性流体を充填する。磁気作業物質を往復運動させる。磁気作業物質は高い磁場を有する高温出力端子に入った部分が発熱し、磁性流体により高温出力端子へ発熱が熱伝導され、高温出力端子が加熱される。高温出力端子から出た磁気作業物質は磁化の方向がばらつくため吸熱が生じ冷却される。この冷却状態は磁性流体により低温出力端子に伝導され、低温出力端子が冷却させる。こうして高温部分と低温部分が得られる。
短冊型においても積層構造を用いて前記同様に温度差を拡大することができる。
"Strip type"
So far, we have disclosed a method of rotating a disk-shaped magnetic working material, but it is also possible to reciprocate the magnetic working material in a strip shape. The high-temperature output terminal having a high magnetic field that generates heat of the magnetic work material and the low-temperature output terminal having a low magnetic field that does not generate heat of the magnetic work material are arranged so as not to touch each other so as to sandwich the strip-type magnetic work material. A magnetic fluid is filled between the magnetic working substance and the high-temperature output terminal and the low-temperature output terminal, respectively. The magnetic working material is reciprocated. The portion of the magnetic working substance that enters the high-temperature output terminal having a high magnetic field generates heat, and the magnetic fluid conducts heat to the high-temperature output terminal, heating the high-temperature output terminal. Since the magnetic working material emitted from the high temperature output terminal varies in the direction of magnetization, it absorbs heat and is cooled. This cooling state is conducted to the low temperature output terminal by the magnetic fluid, and the low temperature output terminal cools. In this way, a high temperature part and a low temperature part can be obtained.
Even in the strip type, the temperature difference can be increased in the same manner as described above by using the laminated structure.

以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例のみに限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these Examples.

本実施例について以下の順序で説明する。
i エネルギー変換素子単体
ii エネルギー変換素子積層集合体
iii エネルギー変換素子積層集合体を用いた温度調節装置
This embodiment will be described in the following order.
i Energy conversion element alone
ii Energy conversion element laminated assembly
iii Temperature control device using a laminated assembly of energy conversion elements

〈i エネルギー変換素子単体での実施例〉
径5mm、長さ50mmのステンレス製軸を用意した。前記軸中央に穴あき円盤状厚さ1.5mm、直径40mmの磁気作業物質Gd(ガドリニウム)を設置し、軸に固定した。軸回転により円盤状磁気作業物質も回転する。
<Example of i energy conversion element alone>
A stainless steel shaft with a diameter of 5 mm and a length of 50 mm was prepared. A magnetic working substance Gd (gadolinium) having a perforated disk shape with a thickness of 1.5 mm and a diameter of 40 mm was installed in the center of the shaft and fixed to the shaft. The disk-shaped magnetic working material also rotates due to the rotation of the shaft.

磁気作業物質に磁場を印加するため、円盤状磁気作業物質を挟み込むようにヨーク付きの永久磁石を設置した。永久磁石にはNdFeB系マグネットを用いてギャップ間隔は4.0mmとした。ギャップ間の磁束は0.9Tとした。磁気作業物質と永久磁石の間にマグネタイト磁性紛からなる磁性流体を充填し、高温出力端子とした。 In order to apply a magnetic field to the magnetic work material, a permanent magnet with a yoke was installed so as to sandwich the disk-shaped magnetic work material. A NdFeB magnet was used as the permanent magnet, and the gap spacing was set to 4.0 mm. The magnetic flux between the gaps was 0.9T. A magnetic fluid made of magnetite magnetic powder was filled between the magnetic working substance and the permanent magnet to form a high-temperature output terminal.

高温出力端子の円周反対側に低温出力端子を設置するため、円盤状磁気作業物質を挟み込むようにヨーク付きの永久磁石を設置した。永久磁石にはSr-Ferrite系マグネットを用いてギャップ間隔は4.0mmとした。ギャップ間の磁束は0.03Tとした。磁気作業物質と永久磁石の間にマグネタイト磁性紛からなる磁性流体にを充填し、低温出力端子とした(図1,2)。 In order to install the low temperature output terminal on the opposite side of the circumference of the high temperature output terminal, a permanent magnet with a yoke was installed so as to sandwich the disk-shaped magnetic working material. An Sr-Ferrite magnet was used as the permanent magnet, and the gap spacing was set to 4.0 mm. The magnetic flux between the gaps was 0.03T. A magnetic fluid made of magnetite magnetic powder was filled between the magnetic working substance and the permanent magnet to form a low-temperature output terminal (Figs. 1 and 2).

室温及び素子構成材料はすべて初期は23.0℃とした。軸の回転により軸に固定された円盤状の磁気作業物質を回転させた。回転数は5rpmとした。磁気作業物質の回転によっても磁性流体はそれぞれ高温出力端子、低温出力端子によって固定され移動しないことを確認した。軸の回転を始めて3分後に温度を測定したところ高温出力端子では23.9℃、低温出力端子では22.1℃と観察された。軸の回転という運動エネルギーが温度差のエネルギーへ直接的に変換されることが判明した。
ここでは円盤状の磁気作業物質回転の例を開示したが、短冊状の磁気作業物質を往復運動させて場合も同様の結果が得られた(図5,6)。
The room temperature and element constituent materials were all initially set at 23.0 ° C. The disk-shaped magnetic working material fixed to the shaft was rotated by the rotation of the shaft. The rotation speed was 5 rpm. It was confirmed that the magnetic fluid was fixed by the high temperature output terminal and the low temperature output terminal, respectively, and did not move even when the magnetic working substance was rotated. When the temperature was measured 3 minutes after the shaft started to rotate, it was observed to be 23.9 ° C at the high temperature output terminal and 22.1 ° C at the low temperature output terminal. It was found that the kinetic energy of shaft rotation is directly converted into the energy of temperature difference.
Here, an example of disk-shaped magnetic working material rotation was disclosed, but similar results were obtained when a strip-shaped magnetic working material was reciprocated (Figs. 5 and 6).

〈ii エネルギー変換素子積層集合体〉
前記に示したエネルギー変換素子の同軸上に別個体のエネルギー変換素子を設置した。この際一方のエネルギー変換素子の高温出力端子がもう一方の低温出力端子と熱伝導性良く接続するように伝熱性材料を介して密着固定するように設置しエネルギー変換素子積層集合体とした(図3)。これと対になる出力端子の接合部分では断熱性の材料を配し、熱が伝わり難くした。
室温及び素子初期温度を23.0℃とし、軸を5rpmで回転させ、5分後にエネルギー変換素子積層集合体の両端の高温出力端子、低温出力端子の温度を測定した。ここで両端の高温出力端子、低温出力端子の温度はそれぞれ24.8℃、21.2℃であり、単体での温度差より増加させることが出来た。
同様にして積層構造を3段、4段とした場合それぞれ温度差が拡大することを確認した。4段とした場合、同一の磁気作業物質Gdすなわち純Gd1.00を用いて室温及び素子初期温度を23.0℃とし、軸を5rpmで回転させ、5分後にエネルギー変換素子積層集合体の両端の高温出力端子、低温出力端子の温度を測定した。ここで両端の高温出力端子、低温出力端子の温度はそれぞれ26.4℃、19.6℃であった。
さらに、ここで使用している4枚の円盤状磁気作業物質の内、高温部の2枚を純Gd1.00とし、低温部の2枚を組成Gd0.98Y0.02の磁気作業物質として同様に軸を5rpmで回転させ、5分後にエネルギー変換素子積層集合体の両端の高温出力端子、低温出力端子の温度を測定した。ここで両端の高温出力端子、低温出力端子の温度はそれぞれ26.4℃、19.4℃であった。4枚ともにGd0.98Y0.02とした場合は4枚ともに純Gdの場合と同様の結果となり、異なる組成の磁気作業物質を用いた場合には低温部と高温部の温度差を広げられる場合があることが判明した。
<Ii Energy conversion element laminated aggregate>
A separate energy conversion element was installed on the same axis as the energy conversion element shown above. At this time, the high-temperature output terminal of one energy conversion element was installed so as to be closely fixed via a heat-conducting material so as to be connected to the other low-temperature output terminal with good thermal conductivity to form an energy conversion element laminated aggregate (Fig.). 3). A heat insulating material is placed at the joint of the output terminals that are paired with this to make it difficult for heat to be transferred.
The room temperature and the initial temperature of the element were set to 23.0 ° C., the shaft was rotated at 5 rpm, and after 5 minutes, the temperatures of the high temperature output terminals and the low temperature output terminals at both ends of the energy conversion element laminated assembly were measured. Here, the temperatures of the high-temperature output terminal and the low-temperature output terminal at both ends were 24.8 ° C and 21.2 ° C, respectively, which could be increased from the temperature difference of a single unit.
Similarly, it was confirmed that the temperature difference increased when the laminated structure was set to 3 stages and 4 stages. In the case of 4 stages, the same magnetic working material Gd, that is, pure Gd1.00, is used, the room temperature and the initial temperature of the element are set to 23.0 ° C, the shaft is rotated at 5 rpm, and after 5 minutes, the high temperature at both ends of the energy conversion element laminated assembly The temperature of the output terminal and the low temperature output terminal was measured. Here, the temperatures of the high temperature output terminal and the low temperature output terminal at both ends were 26.4 ° C and 19.6 ° C, respectively.
Furthermore, of the four disc-shaped magnetic working materials used here, two in the high temperature part are set to pure Gd1.00, and two in the low temperature part are used as the magnetic working material having a composition of Gd0.98Y0.02. The shaft was rotated at 5 rpm, and after 5 minutes, the temperatures of the high-temperature output terminals and low-temperature output terminals at both ends of the energy conversion element laminated assembly were measured. Here, the temperatures of the high temperature output terminal and the low temperature output terminal at both ends were 26.4 ° C and 19.4 ° C, respectively. When Gd0.98Y0.02 is used for all four sheets, the result is the same as for pure Gd for all four sheets, and when magnetic working substances with different compositions are used, the temperature difference between the low temperature part and the high temperature part may be widened. It turned out to be.

これまで1枚の円盤状磁気作業物質に対して1対の高温出力端子および低温出力端子の例を示したが、1枚の円盤状磁気作業物質に対して複数対の高温出力端子および低温出力端子を設置することも可能である。また低温出力端子、および高温出力端子は角形の形状を示したが、それぞれ円盤状磁気作業物質の形状に沿った扇形、円弧状にしても良い。 So far, an example of a pair of high-temperature output terminals and low-temperature output terminals for one disk-shaped magnetic working material has been shown, but multiple pairs of high-temperature output terminals and low-temperature output for one disk-shaped magnetic working material have been shown. It is also possible to install terminals. Although the low temperature output terminal and the high temperature output terminal have a square shape, they may be fan-shaped or arc-shaped according to the shape of the disk-shaped magnetic working substance, respectively.

〈iii エネルギー変換素子積層集合体を用いた温度調節装置〉
〈ii エネルギー変換素子積層集合体〉で示した2段のエネルギー変換素子積層集合体を用いて冷却装置を構築した。高温出力端子に冷却水を接続し、高温出力端子が室温(23.0℃)となるように設定した。軸を5rpmで回転させ、5分後にエネルギー変換素子積層集合体の低温出力端子の温度を測定した。ここで低温出力端子の温度は19.5℃となっており、冷却装置が可能となった。エネルギー変換素子積層数を増加させることによりさらに低温化が可能であった。
同様にして低温出力端子の温度を室温(23.0℃)となるように設定することで高温出力端子の温度を26.5℃とすることができた。加熱及び冷却が可能な温度調節装置を構成することが出来た。
<Iii Temperature control device using laminated aggregate of energy conversion elements>
A cooling device was constructed using the two-stage energy conversion element laminated assembly shown in <ii Energy conversion element laminated assembly>. Cooling water was connected to the high temperature output terminal, and the high temperature output terminal was set to room temperature (23.0 ° C). The shaft was rotated at 5 rpm, and after 5 minutes, the temperature of the low temperature output terminal of the energy conversion element laminated assembly was measured. Here, the temperature of the low temperature output terminal is 19.5 ° C, and a cooling device is possible. Further lowering the temperature was possible by increasing the number of laminated energy conversion elements.
Similarly, by setting the temperature of the low temperature output terminal to room temperature (23.0 ° C), the temperature of the high temperature output terminal could be set to 26.5 ° C. It was possible to construct a temperature control device capable of heating and cooling.

運動エネルギーを直接的に温度差エネルギーへ変換できるため、さらに気体の圧縮、弁の開閉等複雑な構造が不要であるために高信頼性、低騒音、低振動で加熱冷却システムが構築可能である。高温出力端子から冷媒等を通して放熱用ラジエターへ接続し、また低温出力端子から冷媒等を通して必要とされる冷却システムへ接続できる。同様にして加熱システム構築も可能である。このため運動エネルギーを発生する自動車等各種輸送機器、水車、風車等自然エネルギー変換装置から直接的に高温、低温を発生させる冷蔵庫、エアコン等各種加熱あるいは冷却システムに応用可能である。 Since kinetic energy can be directly converted into temperature difference energy, a heating and cooling system can be constructed with high reliability, low noise, and low vibration because complicated structures such as gas compression and valve opening / closing are not required. .. The high temperature output terminal can be connected to the radiator for heat dissipation through the refrigerant or the like, and the low temperature output terminal can be connected to the required cooling system through the refrigerant or the like. It is also possible to construct a heating system in the same way. Therefore, it can be applied to various heating or cooling systems such as various transportation devices such as automobiles that generate kinetic energy, refrigerators and air conditioners that directly generate high and low temperatures from natural energy conversion devices such as water turbines and wind turbines.

1 円盤状磁気作業物質
1-b 円盤状磁気作業物質(1と異なる組成)
2 磁性流体
3 NdFeCo系永久磁石
4 鉄系磁気ヨーク材料
5 Srフェライト系永久磁石
6 磁気作業物質設置用ハブ
7 高温出力端子
8 低温出力端子
9 回転軸
10 伝熱性材料
11 断熱性材料
12 積層状態高温出力端子
13 積層状態低温出力端子
14 短冊状磁気作業物質
1 Disc-shaped magnetic work material
1-b Disc-shaped magnetic working material (composition different from 1)
2 ferrofluid
3 NdFeCo permanent magnet
4 Iron-based magnetic yoke material
5 Sr ferritic permanent magnet
6 Hub for installing magnetic work material
7 High temperature output terminal
8 Low temperature output terminal
9 axis of rotation
10 Heat conductive material
11 Insulation material
12 Laminated high temperature output terminal
13 Laminated low temperature output terminal
14 Strip-shaped magnetic work material

Claims (7)

回転あるいは往復運動をすることが可能で磁場の印加により発熱する磁気作業物質と、前記磁気作業物質に磁場を印加するための永久磁石を含む磁場印加部を備え、かつ前記磁気作業物質と前記磁場印加部の間に液体または微粒子が分散された液体を充填し、磁場印加により発熱した熱量を磁場印加部に熱伝導することで磁場印加により発熱した熱量の出力を磁場印加部を通して行うことを特徴とするエネルギー変換素子。 It is provided with a magnetic working material that can rotate or reciprocate and generates heat when a magnetic field is applied, and a magnetic field application unit that includes a permanent magnet for applying a magnetic field to the magnetic working material, and the magnetic working material and the magnetic field. It is characterized in that a liquid or a liquid in which fine particles are dispersed is filled between the application parts, and the amount of heat generated by applying the magnetic field is conducted to the magnetic field application part to output the amount of heat generated by applying the magnetic field through the magnetic field application part. Energy conversion element. 磁場印加部と磁気作業物質との間に充填する液体または微粒子が分散された液体は、磁性微粒子を含む磁性流体であることを特徴とする〈請求項1〉記載のエネルギー変換素子。 The energy conversion element according to claim 1, wherein the liquid to be filled between the magnetic field application portion and the magnetic working substance or the liquid in which fine particles are dispersed is a magnetic fluid containing magnetic fine particles. 回転あるいは往復運動をすることが可能で磁場の印加により発熱する磁気作業物質と、前記磁気作業物質を発熱させる為の磁場を印加するための永久磁石を含む磁場印加部を備え、かつ前記磁気作業物質が冷間状態である際に、前記磁気作業物質との間に充填された液体または微粒子が分散された液体により熱伝達を行う低温出力端子を備えることを特徴とする〈請求項1、2〉記載のエネルギー変換素子。 The magnetic work material is provided with a magnetic work material that can rotate or reciprocate and generates heat when a magnetic field is applied, and a magnetic field application unit that includes a permanent magnet for applying a magnetic field for generating the magnetic work material. When the substance is in a cold state, it is characterized by comprising a low temperature output terminal that transfers heat by a liquid filled with the magnetic working substance or a liquid in which fine particles are dispersed (claims 1 and 2). > Described energy conversion element. 回転あるいは往復運動をすることが可能で磁場の印加により発熱する磁気作業物質と、前記磁気作業物質を発熱させる為の磁場を印加するための永久磁石を含む磁場印加部を備え、かつ前記磁気作業物質が冷間状態である際に、前記磁気作業物質との間に充填された磁性流体により熱伝達を行う低温出力端子を備えることを特徴とするエネルギー変換素子。 The magnetic work material is provided with a magnetic work material that can rotate or reciprocate and generates heat when a magnetic field is applied, and a magnetic field application unit that includes a permanent magnet for applying a magnetic field for generating the magnetic work material. An energy conversion element including a low-temperature output terminal that transfers heat by a magnetic fluid filled between the magnetic working material and the magnetic working material when the material is in a cold state. 〈請求項1−4〉記載の複数のエネルギー変換素子をそれぞれ、低温部分と別個体の高温部分を直接あるいは伝熱性材料により熱的に接続し直列接続とすることで、加熱、冷却の温度幅を増加させることを特徴とするエネルギー変換素子集合体。 The heating and cooling temperature ranges of the plurality of energy conversion elements according to claim 1-4 by connecting the low temperature portion and the high temperature portion of the separate body directly or thermally with a heat conductive material to form a series connection. An assembly of energy conversion elements characterized by increasing. 〈請求項5〉記載のエネルギー変換素子集合体において、磁気作業物質の組成が各素子間で均一ではないことを特徴とするエネルギー変換素子集合体。 The energy conversion element assembly according to claim 5, wherein the composition of the magnetic working substance is not uniform among the elements. 〈請求項1-6〉記載のエネルギー変換素子及びエネルギー変換素子集合体を用いることを特徴とする温度調節装置。 A temperature control device according to claim 1-6, wherein the energy conversion element and the energy conversion element assembly are used.
JP2020041197A 2019-04-04 2020-03-10 Energy conversion element and temperature control device using it Active JP6960492B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019072071 2019-04-04
JP2019072071 2019-04-04

Publications (2)

Publication Number Publication Date
JP2020169806A true JP2020169806A (en) 2020-10-15
JP6960492B2 JP6960492B2 (en) 2021-11-05

Family

ID=72746335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020041197A Active JP6960492B2 (en) 2019-04-04 2020-03-10 Energy conversion element and temperature control device using it

Country Status (1)

Country Link
JP (1) JP6960492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037688B1 (en) 2021-01-19 2022-03-16 健二 香取 Energy conversion element and temperature control device using it
JP7065224B1 (en) 2021-03-02 2022-05-11 健二 香取 Energy conversion element
WO2022190586A1 (en) * 2021-03-08 2022-09-15 株式会社日立製作所 Rotating magnetic field generation device, magnetic refrigeration device, and hydrogen liquefaction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326312B2 (en) * 1984-11-13 1988-05-28 Ryozo Aoki
JP2569059B2 (en) * 1986-07-11 1997-01-08 株式会社日立製作所 Magnetic refrigeration apparatus and method
JP2008249175A (en) * 2007-03-29 2008-10-16 Toshiba Corp Magnetic refrigerating device and method
JP5060602B2 (en) * 2010-08-05 2012-10-31 株式会社東芝 Magnetic refrigeration device and magnetic refrigeration system
JP2020174516A (en) * 2019-04-11 2020-10-22 香取 健二 Energy conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326312B2 (en) * 1984-11-13 1988-05-28 Ryozo Aoki
JP2569059B2 (en) * 1986-07-11 1997-01-08 株式会社日立製作所 Magnetic refrigeration apparatus and method
JP2008249175A (en) * 2007-03-29 2008-10-16 Toshiba Corp Magnetic refrigerating device and method
JP5060602B2 (en) * 2010-08-05 2012-10-31 株式会社東芝 Magnetic refrigeration device and magnetic refrigeration system
JP2020174516A (en) * 2019-04-11 2020-10-22 香取 健二 Energy conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037688B1 (en) 2021-01-19 2022-03-16 健二 香取 Energy conversion element and temperature control device using it
WO2022158282A1 (en) * 2021-01-19 2022-07-28 健二 香取 Energy conversion element and temperature control device using same
JP2022111021A (en) * 2021-01-19 2022-07-29 健二 香取 Energy conversion element and temperature regulator using the same
JP7065224B1 (en) 2021-03-02 2022-05-11 健二 香取 Energy conversion element
JP2022133562A (en) * 2021-03-02 2022-09-14 健二 香取 energy conversion element
WO2022190586A1 (en) * 2021-03-08 2022-09-15 株式会社日立製作所 Rotating magnetic field generation device, magnetic refrigeration device, and hydrogen liquefaction device
JP7478694B2 (en) 2021-03-08 2024-05-07 株式会社日立製作所 Rotating magnetic field generator, magnetic refrigeration device, and hydrogen liquefaction device

Also Published As

Publication number Publication date
JP6960492B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6960492B2 (en) Energy conversion element and temperature control device using it
JP4231022B2 (en) Magnetic refrigerator
JP5966740B2 (en) Magnetic structure and magnetic air conditioner using the same
JP4303879B2 (en) Magnetic refrigeration equipment
US8312730B2 (en) Magnetic refrigeration device and magnetic refrigeration system
JP6381150B2 (en) Magnetic refrigeration equipment
Masche et al. Performance assessment of a rotary active magnetic regenerator prototype using gadolinium
JP2008082663A (en) Magnetic refrigerating device and magnetic refrigerating method
JP5807723B2 (en) Magnetic air conditioner
CN110645733B (en) Refrigeration system
Masche et al. Performance analysis of a high-efficiency multi-bed active magnetic regenerator device
Lychnos et al. Prototype of hybrid refrigeration system using refrigerant R723
RU2573421C2 (en) Heat generator containing magnetocaloric material
JP7037688B1 (en) Energy conversion element and temperature control device using it
TWI398609B (en) Rotary magneto-cooling apparatus under room temperature
JP6344103B2 (en) Thermomagnetic cycle equipment
CN111174458A (en) Radial infinitesimal regenerative system and refrigeration method for room-temperature magnetic refrigeration
Fischer Not-in-kind technologies for residential and commercial unitary equipment
Ismail et al. A review of recent advances in emerging alternative heating and cooling technologies. Energies 2021; 14: 502
Dieckmann et al. Magnetic refrigeration
CN214065350U (en) Green type magnetic refrigeration heat transfer equipment based on magnetic heat effect
Cattin et al. The status of refrigeration techniques for vaccine storage and transportation in low-income settings
KR101961122B1 (en) Cooling apparatus for using a magneto caloric effect cooling fan
JP5817353B2 (en) Magnetic air conditioner
JP2013217583A (en) Low-pressure loss magnetic working material structure for magnetic refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

R150 Certificate of patent or registration of utility model

Ref document number: 6960492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150