JP7065224B1 - Energy conversion element - Google Patents

Energy conversion element Download PDF

Info

Publication number
JP7065224B1
JP7065224B1 JP2021032302A JP2021032302A JP7065224B1 JP 7065224 B1 JP7065224 B1 JP 7065224B1 JP 2021032302 A JP2021032302 A JP 2021032302A JP 2021032302 A JP2021032302 A JP 2021032302A JP 7065224 B1 JP7065224 B1 JP 7065224B1
Authority
JP
Japan
Prior art keywords
temperature
magnetic material
sensitive magnetic
input terminal
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021032302A
Other languages
Japanese (ja)
Other versions
JP2022133562A (en
Inventor
健二 香取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021032302A priority Critical patent/JP7065224B1/en
Priority to PCT/JP2022/000821 priority patent/WO2022185723A1/en
Application granted granted Critical
Publication of JP7065224B1 publication Critical patent/JP7065224B1/en
Publication of JP2022133562A publication Critical patent/JP2022133562A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Abstract

【課題】騒音、振動が発生しない単純な構造を有する、温度差エネルギーから運動エネルギーへのエネルギー変換素子を提供する。【解決手段】回転可能な円盤状の永久磁石である感温磁性体1と、これに磁場印加する部分5とを磁性流体2を用いて熱伝導し、永久磁石部分を通して外部からの熱を感温磁性体に誘導する。加熱された感温磁性体部分は磁化が小さくなり、加熱される前の感温磁性体がより磁場に引き付けられることにより回転トルクが生じる。感温磁性体1に永久磁石を用いることにより、反力も利用できる。低温入力端子8を通して感温磁性体1を冷却する。低温入力側では感温磁性体1との反力の温度依存から高温入力側7と同方向の回転トルクが生じる。簡単な構造により、低振動、低騒音、高信頼性のエネルギー変換素子を得られる。【選択図】図1PROBLEM TO BE SOLVED: To provide an energy conversion element from temperature difference energy to kinetic energy having a simple structure in which noise and vibration do not occur. SOLUTION: A temperature-sensitive magnetic material 1 which is a rotatable disk-shaped permanent magnet and a portion 5 to which a magnetic field is applied to the temperature-sensitive magnetic material 1 are thermally conducted by using a magnetic fluid 2, and heat from the outside is sensed through the permanent magnet portion. Induce to a warm magnetic material. The magnetized portion of the heated temperature-sensitive magnetic material becomes smaller, and the temperature-sensitive magnetic material before being heated is more attracted to the magnetic field, so that rotational torque is generated. By using a permanent magnet for the temperature-sensitive magnetic material 1, reaction force can also be used. The temperature sensitive magnetic material 1 is cooled through the low temperature input terminal 8. On the low temperature input side, rotational torque in the same direction as the high temperature input side 7 is generated due to the temperature dependence of the reaction force with the temperature sensitive magnetic material 1. With a simple structure, an energy conversion element with low vibration, low noise, and high reliability can be obtained. [Selection diagram] Fig. 1

Description

本開示は、温度差エネルギーから運動エネルギーへ変換するエネルギー変換素子構造及び構成材料に関する。 The present disclosure relates to an energy conversion element structure and constituent materials for converting temperature difference energy into kinetic energy.

温度差を運動エネルギーへ変換する手法について、数百℃以上の温度差領域についてはガスタービンが主に用いられている。より低い温度領域で温度差を運動エネルギーへ変換する手法については、低沸点媒体を沸騰させこれをタービンで運動エネルギーに変換するという、複雑な構造が必要となる(特開2013-036456)。 As for the method of converting the temperature difference into kinetic energy, the gas turbine is mainly used in the temperature difference region of several hundred degrees Celsius or more. A method for converting a temperature difference into kinetic energy in a lower temperature region requires a complicated structure in which a low boiling point medium is boiled and converted into kinetic energy by a turbine (Japanese Patent Laid-Open No. 2013-036456).

また磁性流体を用いた冷却システムが研究されている(特開昭64-12852,特開2018-046036,非特許文献1)。ここでは装置内部の発熱により生じた熱を発熱により生じる磁性流体の流動により冷却する手法である。ポンプレスの冷却装置として考案され、低い温度差でも磁性流体の流動化が生じるが、運動エネルギーとして取り出すことは考慮されていない。〈JP4904528B2〉においては流体の運動からドラムを回転させるとの記載があるが、ここではマイクロ波又はミリ波を照射する必要があり、複雑な構成が必要となる。 Further, a cooling system using a magnetic fluid has been studied (Japanese Patent Laid-Open No. 64-12852, JP-A-2018-046036, Non-Patent Document 1). Here, it is a method of cooling the heat generated by the heat generated inside the device by the flow of the magnetic fluid generated by the heat generation. It was devised as a pumpless cooling device, and although the magnetic fluid fluidizes even at a low temperature difference, it is not considered to be taken out as kinetic energy. In <JP4904528B2>, there is a description that the drum is rotated from the motion of the fluid, but here it is necessary to irradiate microwaves or millimeter waves, which requires a complicated configuration.

本発明者は特願2020-044836において、温度差エネルギーから運動エネルギーへ変換する素子を提案している。 The present inventor proposes an element for converting temperature difference energy into kinetic energy in Japanese Patent Application No. 2020-044836.

特開2013-036456JP 2013-036456 特開昭64-12852Japanese Patent Laid-Open No. 64-12852 特開2018-046036JP 2018-046036 JP4904528B2JP4904528B2 特願2020-044836Japanese Patent Application No. 2020-044836

Iwamoto, Y., Yamaguchi, H., and Niu, X.-D., “Magnetically-Driven Heat Transport Device using a Binary Temperature-Sensitive Magnetic Fluid”, Journal of Magnetism and Magnetic Materials, Vol. 323 (2011), pp. 1378-1383.Iwamoto, Y., Yamaguchi, H., and Niu, X.-D., “Magnetically-Driven Heat Transport Device using a Binary Temperature-Sensitive Magnetic Fluid”, Journal of Magnetism and Magnetic Materials, Vol. 323 (2011), pp. 1378-1383.

工場や家庭で排出される100℃程度以下の比較的低温度差領域においては、温度差エネルギーを運動エネルギーへ直接変換できる単純な手法が一般的に提供されていない。前述の様に低沸点溶媒を沸騰させ、この蒸気でタービンを回転させる手法があるが装置が複雑かつ大規模になる。また温度差で発電するゼーベック素子を用いて発電し、この電気によりモーターを回転させる手法もあるが、前記2種類の素子が必要となる。 In the relatively low temperature difference region of about 100 ° C or less emitted in factories and homes, a simple method that can directly convert the temperature difference energy into kinetic energy is not generally provided. As mentioned above, there is a method of boiling a low boiling point solvent and rotating a turbine with this steam, but the equipment becomes complicated and large-scale. There is also a method of generating electricity using a Zeebeck element that generates electricity by a temperature difference and rotating a motor by this electricity, but the above two types of elements are required.

本発明は温度差エネルギーから運動エネルギーへ変換する手法において、溶媒の蒸発やタービンの駆動という複雑な手法や2種類以上の素子の組み合わせを行うのではなく、マイクロ波、ミリ波も用いることなく、単純な構造の素子で騒音振動を伴うことなく直接的に運動エネルギーを出力させることを目的とする。 The present invention is a method for converting temperature difference energy into kinetic energy, without using a complicated method such as evaporation of a solvent or driving a turbine or a combination of two or more types of elements, and without using microwaves or millimeter waves. The purpose is to directly output kinetic energy without accompanied by noise and vibration with an element having a simple structure.

本発明者が開発した手法(特願2020-044836)は温度差エネルギーから運動エネルギーへ変換する手法において、複雑な動作を伴うことなく直接にエネルギー変換を行い、素子に温度差エネルギーを入力することで騒音振動を伴うことなく直接的に運動エネルギーを出力させる。この手法をより発展させることが本発明の目的である。 The method developed by the present inventor (Japanese Patent Application No. 2020-044836) is a method of converting temperature difference energy into kinetic energy, in which energy conversion is directly performed without complicated operation and the temperature difference energy is input to the element. The kinetic energy is directly output without being accompanied by noise and vibration. It is an object of the present invention to further develop this method.

上述の課題を解決するために、第1の開示は、回転可能な円盤状あるいは円筒状あるいは円錐状の帯磁した永久磁石である感温磁性体と、前記感温磁性体との間で磁気による引力を発生する強磁性体を含む固定端子を有し、素子外部からの熱入力により帯磁した永久磁石である感温磁性体を回転させることを特徴とするエネルギー変換素子の構造である。 In order to solve the above-mentioned problems, the first disclosure is made by magnetism between a temperature-sensitive magnetic material, which is a permanent magnet magnetized in a rotatable disk shape, a cylinder shape, or a conical shape, and the temperature-sensitive magnetic material. It is a structure of an energy conversion element having a fixed terminal including a ferromagnetic material that generates an attractive force, and rotating a temperature-sensitive magnetic material, which is a permanent magnet magnetized by heat input from the outside of the element.

第2の開示は、回転可能な円盤状あるいは円筒状あるいは円錐状の感温磁性体と、前記感温磁性体との間で磁気による反力を発生する材料を含む固定端子を有し、素子外部からの熱入力により感温磁性体を回転させることを特徴とするエネルギー変換素子の構造である。 The second disclosure comprises a fixed terminal comprising a rotatable disk-shaped, cylindrical or conical temperature-sensitive magnetic material and a material that generates a magnetic reaction force between the temperature-sensitive magnetic material. It is a structure of an energy conversion element characterized by rotating a temperature-sensitive magnetic material by heat input from the outside.

第3の開示は、回転可能な円盤状あるいは円筒状あるいは円錐状の感温磁性体と、前記感温磁性体との間で磁気による引力を発生する強磁性体を含む固定端子を有し、且つ前記感温磁性体との間で磁気による反力を発生する材料を含む固定端子を有し、素子外部からの熱入力により感温磁性体を回転させることを特徴とする第1,2の開示のエネルギー変換素子の構造である。 The third disclosure has a fixed terminal containing a rotatable disk-shaped, cylindrical or conical temperature-sensitive magnetic material and a ferromagnetic material that generates a magnetic attraction between the temperature-sensitive magnetic material. The first and second features include a fixed terminal containing a material that generates a reaction force due to magnetism with the temperature-sensitive magnetic material, and the temperature-sensitive magnetic material is rotated by heat input from the outside of the element. It is the structure of the disclosed energy conversion element.

第4の開示は感温磁性体と、固定端子との間に液体または微粒子が分散された液体を充填することで、回転する感温磁性体と固定端子を継続的に熱伝導させる第1-3の開示のエネルギー変換素子の構造である。 The fourth disclosure is that the rotating temperature-sensitive magnetic material and the fixed terminal are continuously thermally conducted by filling a liquid or a liquid in which fine particles are dispersed between the temperature-sensitive magnetic material and the fixed terminal. It is the structure of the energy conversion element disclosed in 3.

第5の開示は感温磁性体と,前記感温磁性体との間で磁気による引力を発生する固定端子との間に充填する液体または微粒子が分散された液体は磁性流体であることを特徴とする第1,3,4の開示のエネルギー変換素子の構造である。 The fifth disclosure is characterized in that the liquid to be filled between the temperature-sensitive magnetic material and the fixed terminal that generates an attractive force by magnetism between the temperature-sensitive magnetic material or the liquid in which fine particles are dispersed is a magnetic fluid. It is the structure of the energy conversion element of the first, third, and fourth disclosures.

第6の開示は温度差入力端子を同一感温磁性体上に複数対設置することを特徴とする第1-5の開示のエネルギー変換素子の構造である。 The sixth disclosure is the structure of the energy transformation element of the first to fifth disclosures, characterized in that a plurality of pairs of temperature difference input terminals are installed on the same temperature-sensitive magnetic material.

第7の開示は第1-6に記載のエネルギー変換素子を同一回転軸に複数設置し回転トルクを増強させることを特徴とするエネルギー変換素子の接続手法である。 The seventh disclosure is a method for connecting energy conversion elements, which comprises installing a plurality of energy conversion elements according to 1-6 on the same rotation axis to increase the rotation torque.

本開示によれば、騒音振動を伴うことなく、また複数の種類の素子を用いることもなく単純に温度差エネルギーを運動エネルギーへ変換することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果またはそれらとは異質な効果であってもよい。 According to the present disclosure, it is possible to simply convert temperature difference energy into kinetic energy without accompanying noise and vibration and without using a plurality of types of elements. It should be noted that the effects described here are not necessarily limited, and any of the effects described in the present disclosure or an effect different from them may be used.

本開示の第3の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment in the case of using the temperature-sensitive magnetic material which is the 3rd rotating disk-shaped permanent magnet of this disclosure. 本開示の第3の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断熱性間隙充填剤及び潤滑油を除いた上面図である。It is a top view excluding the heat insulating gap filler and the lubricating oil which shows the structure of the energy conversion element which concerns on embodiment when the temperature-sensitive magnetic material which is the 3rd rotating disk-shaped permanent magnet of this disclosure is used. 本開示の第3の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す上面図である。It is a top view which shows the structure of the energy conversion element which concerns on embodiment when the temperature-sensitive magnetic material which is the 3rd rotating disk-shaped permanent magnet of this disclosure is used. 本開示の第7の回転する円盤状永久磁石である感温磁性体を用いた場合の積層素子の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment of the laminated element in the case of using the temperature-sensitive magnetic material which is the 7th rotating disk-shaped permanent magnet of this disclosure. 本開示の第6の温度差入力端子を同一感温磁性体上に複数対設置した例の断熱性間隙充填剤及び潤滑油を除いた上面図である。It is a top view of the example in which a plurality of pairs of the sixth temperature difference input terminals of the present disclosure are installed on the same temperature-sensitive magnetic material, excluding the heat insulating gap filler and the lubricating oil. 本開示の第6の温度差入力端子を同一感温磁性体上に複数対設置した例の上面図である。It is a top view of the example in which a plurality of pairs of the sixth temperature difference input terminals of the present disclosure are installed on the same temperature-sensitive magnetic material. 本開示の第6の温度差入力端子を同一感温磁性体上に複数ペア設置した場合において、高温入力、低温入力をそれぞれ上下に分離した例の断面図である。It is sectional drawing of the example which separated the high temperature input and the low temperature input into the upper and lower parts when a plurality of pairs of the sixth temperature difference input terminals of this disclosure were installed on the same temperature sensitive magnetic material. 本開示の第7の回転する円盤状永久磁石である感温磁性体を用いた場合の直列接続とする積層素子の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment of the laminated element which is connected in series in the case of using the temperature-sensitive magnetic material which is the 7th rotating disk-shaped permanent magnet of this disclosure. 本開示の第1の回転する円盤状永久磁石である感温磁性体を用いた場合の実施形態に係るエネルギー変換素子の構成を示す断面図である。It is sectional drawing which shows the structure of the energy conversion element which concerns on embodiment in the case of using the temperature-sensitive magnetic material which is the 1st rotating disk-shaped permanent magnet of this disclosure.

ここで記載している低温、高温との表現であるが、相対的なものであり、例えば低温入力が40℃、高温入力が100℃である場合など、高温入力に比較して低温であるとの要件である。高温入力に比較して低温であれば、室温よりも高温であっても構わない。

本開示の実施形態について以下の順序で説明する。
1 第1-6の実施形態
2 第7の実施形態
Although the expressions "low temperature" and "high temperature" described here are relative, they are said to be colder than the high temperature input, for example, when the low temperature input is 40 ° C and the high temperature input is 100 ° C. It is a requirement of. If the temperature is lower than the high temperature input, the temperature may be higher than room temperature.

The embodiments of the present disclosure will be described in the following order.
1 Embodiments 1-6
2 Seventh embodiment

<1 第1-6の実施形態>
「感温磁性体」
従来研究されている感温磁性体を用いた冷却システム(特開昭64-12852,特開2018-046036,非特許文献1)では感温磁性体として磁性流体を用いる。
本発明人が発明した(特願2020-044836)において、従来の液体循環型では無く、回転軸により回転する固体の円盤状あるいは円筒状あるいは円錐状の感温磁性体を用いる。該固体感温磁性体を挟み込むようにして、該感温磁性体を回転させる強力な磁場を有する高温入力端子と、磁場を印加しないかあるいは高温入力側よりも弱い磁場を有する低温入力端子を設置する。ここでは感温磁性体に外部から磁場を印加することにより感温磁性体と固定端子の間に引力を発生させ、この引力の温度による増減から感温磁性体に回転トルクを発生させるものである。感温磁性体は温度により磁化が変化する磁性体であり、Mn-Zn Ferrite,Sr-Ferrite,Ni-Fe系合金等がある。
本発明では、感温磁性体に帯磁した永久磁石を用いる。これにより、温度差入力端子である固定端子には永久磁石を用いないでも感温磁性体と固定端子との間に磁気的な引力を発生させ、これの温度依存性により回転トルクを発生させることができる。また固定端に永久磁石を用いることで、磁気的な反力も発生させることができる。反力の温度依存性により、反力を用いても感温磁性体に回転トルクを発生させることができる。高温入力端子と低温入力端子にそれぞれ引力と反力の温度依存により共にトルクを発生させることができる。
永久磁石である感温磁性体にはSr-Ferrite系を含む六方晶フェライト系、Nd-Fe-B系等マグネットを挙げることができる。またこれらの材料に添加物等を導入するか作製条件を調整することにより、目的の温度域での磁化の温度依存性を調整することができる。温度の入力範囲は永久磁石である感温磁性体のTc以下であり、低温状態に戻した場合にHcが変化しない範囲での高温入力とする必要がある。
感温磁性体の形状としては前記円盤状のほかに円筒状、円錐状としても良い。
<1 First- 6th Embodiment>
"Temperature-sensitive magnetic material"
A cooling system using a temperature-sensitive magnetic material (Japanese Patent Laid-Open No. 64-12852, JP-A-2018-046036, Non-Patent Document 1), which has been studied conventionally, uses a magnetic fluid as the temperature-sensitive magnetic material.
In the invention of the present invention (Japanese Patent Application No. 2020-044836), a solid disk-shaped, cylindrical or conical temperature-sensitive magnetic material that rotates by a rotation axis is used instead of the conventional liquid circulation type. A high-temperature input terminal having a strong magnetic field for rotating the temperature-sensitive magnetic material and a low-temperature input terminal having no magnetic field applied or having a weaker magnetic field than the high-temperature input side are installed so as to sandwich the solid temperature-sensitive magnetic material. do. Here, an attractive force is generated between the temperature-sensitive magnetic material and the fixed terminal by applying a magnetic field to the temperature-sensitive magnetic material from the outside, and a rotational torque is generated in the temperature-sensitive magnetic material by increasing or decreasing the attractive force depending on the temperature. .. The temperature-sensitive magnetic material is a magnetic material whose magnetization changes with temperature, and includes Mn-Zn Ferrite, Sr-Ferrite, Ni-Fe-based alloys, and the like.
In the present invention, a permanent magnet magnetized on a temperature-sensitive magnetic material is used. As a result, a magnetic attraction is generated between the temperature-sensitive magnetic material and the fixed terminal without using a permanent magnet for the fixed terminal, which is the temperature difference input terminal, and rotational torque is generated due to the temperature dependence of this. Can be done. Further, by using a permanent magnet at the fixed end, a magnetic reaction force can be generated. Due to the temperature dependence of the reaction force, it is possible to generate rotational torque in the temperature-sensitive magnetic material even if the reaction force is used. Torque can be generated at both the high temperature input terminal and the low temperature input terminal depending on the temperature of the attractive force and the reaction force, respectively.
Examples of the temperature-sensitive magnetic material, which is a permanent magnet, include hexagonal ferrite-based magnets including Sr-Ferrite-based magnets and Nd-Fe-B-based magnets. Further, the temperature dependence of the magnetization in the target temperature range can be adjusted by introducing an additive or the like into these materials or adjusting the production conditions. The temperature input range is Tc or less of the temperature-sensitive magnetic material, which is a permanent magnet, and it is necessary to set the high temperature input within the range where Hc does not change when the temperature is returned to the low temperature state.
The shape of the temperature-sensitive magnetic material may be cylindrical or conical in addition to the disk shape.

「高温入力端子」
回転軸に取り付けられ、回転する円盤状の感温磁性体と磁気的な引力を生じる構成の高温入力端子を設置する。感温磁性体が帯磁した永久磁石である強磁性体の場合には、高温入力端子には該感温磁性体と引力を生じる強磁性体を用いる。高温入力端子の強磁性体は該感温磁性体と引力を生じる永久磁石であっても良い。帯磁した永久磁石である感温磁性体と高温入力端子との間に液体または微粒子が分散された液体を導入する。前記液体または微粒子が分散された液体には磁性流体を使用することができる。感温磁性体が回転しても磁性流体は磁場に引き寄せられ高温入力端子に留まる。磁性流体を通して、外部からの高温熱量は回転する円盤状の感温磁性体に熱伝導される。ここで高温入力端子を通して感温磁性体が加熱され、感温磁性体の磁化が小さくなる。磁場印加部中央付近と比較して磁場印加部入口付近の感温磁性体の磁化量が加熱されていない分大きくなっており、このため感温磁性体に回転トルクが生じる。
高温入力端子の磁性体は感温磁性体と磁気的な引力を発生する材料を設置し、感温磁性体の磁化の温度依存性により回転トルクを生じさせる。但し、後述の低温入力端子で感温磁性体に回転トルクを与えられる場合には、高温入力端子で回転トルクを与えなくても感温磁性を回転させることはできる。
"High temperature input terminal"
A disk-shaped temperature-sensitive magnetic material that is attached to the rotating shaft and has a structure that generates a magnetic attraction is installed. In the case of a ferromagnet whose temperature-sensitive magnetic material is a permanent magnet magnetized, a ferromagnet that generates an attractive force with the temperature-sensitive magnetic material is used for the high-temperature input terminal. The ferromagnet of the high temperature input terminal may be a permanent magnet that generates an attractive force with the temperature-sensitive magnetic material. A liquid or a liquid in which fine particles are dispersed is introduced between a thermosensitive magnetic material which is a magnetized permanent magnet and a high temperature input terminal. A magnetic fluid can be used as the liquid or the liquid in which the fine particles are dispersed. Even if the temperature-sensitive magnetic material rotates, the magnetic fluid is attracted to the magnetic field and stays at the high-temperature input terminal. Through the magnetic fluid, the amount of high-temperature heat from the outside is heat-conducted to the rotating disk-shaped temperature-sensitive magnetic material. Here, the temperature-sensitive magnetic material is heated through the high-temperature input terminal, and the magnetization of the temperature-sensitive magnetic material becomes small. The amount of magnetization of the temperature-sensitive magnetic material near the entrance of the magnetic field application part is larger than that near the center of the magnetic field application part because it is not heated, and therefore a rotational torque is generated in the temperature-sensitive magnetic material.
For the magnetic material of the high temperature input terminal, a temperature-sensitive magnetic material and a material that generates a magnetic attraction are installed, and a rotational torque is generated by the temperature dependence of the magnetization of the temperature-sensitive magnetic material. However, when the temperature-sensitive magnetic material is given a rotational torque by the low-temperature input terminal described later, the temperature-sensitive magnetism can be rotated without applying the rotational torque by the high-temperature input terminal.

「低温入力端子」
高温入力端子から出た感温磁性体を冷却する必要がある。高温状態の感温磁性体を外部の低温状態により冷却するため、低温入力端子を設置する。外部からの低温状態を感温磁性体に伝達し、感温磁性体を冷却する。前記高温入力端子で感温磁性体に回転トルクを与える場合には、低温入力端子では回転トルクを与えなくても感温磁性体は回転する。
感温磁性体に帯磁した永久磁石を用いる場合に、低温入力端子に感温磁性体と反力を生じさせる永久磁石を設置することができる。この場合、低温入力端子の入口での感温磁性体の磁化と低温入力端子の出口との感温磁性体の磁化の大きさを比較した場合、低温入力端子で感温磁性体が冷却されるため、出口での感温磁性体の磁化がより増大しており、結果的に出口での反力が入口での反力よりも大となる。このため回転トルクが生じる。
感温磁性体に帯磁した永久磁石を用いる場合には高温入力端子、低温入力端子共に回転トルクを生じさせることが可能になる。
"Low temperature input terminal"
It is necessary to cool the temperature-sensitive magnetic material emitted from the high-temperature input terminal. A low temperature input terminal is installed to cool the temperature sensitive magnetic material in a high temperature state by an external low temperature state. The low temperature state from the outside is transmitted to the temperature-sensitive magnetic material to cool the temperature-sensitive magnetic material. When a rotational torque is applied to the temperature-sensitive magnetic material at the high-temperature input terminal, the temperature-sensitive magnetic material rotates without applying a rotational torque at the low-temperature input terminal.
When a permanent magnet magnetized with a temperature-sensitive magnetic material is used, a permanent magnet that generates a reaction force with the temperature-sensitive magnetic material can be installed at the low-temperature input terminal. In this case, when comparing the magnitude of the magnetization of the temperature-sensitive magnetic material at the inlet of the low-temperature input terminal and the magnetization of the temperature-sensitive magnetic material at the outlet of the low-temperature input terminal, the temperature-sensitive magnetic material is cooled at the low-temperature input terminal. Therefore, the magnetization of the temperature-sensitive magnetic material at the outlet is further increased, and as a result, the reaction force at the outlet becomes larger than the reaction force at the inlet. Therefore, rotational torque is generated.
When a permanent magnet magnetized with a temperature-sensitive magnetic material is used, it becomes possible to generate rotational torque at both the high-temperature input terminal and the low-temperature input terminal.

磁気的な反力を生じるものは永久磁石の場合には帯磁した永久磁石である感温磁性体と同極の場合であるが、反磁性体を用いることもできる。 In the case of a permanent magnet, a magnetic reaction force is generated in the case of the same electrode as a temperature-sensitive magnetic material which is a magnetized permanent magnet, but a diamagnetic material can also be used.

感温磁性体と低温入力端子の間の熱伝導には潤滑油等の液体を用いることができる。高温入力端子では前記の様に熱伝達に磁性流体を用いてその場に留めておくことができるため、高温状態の液体が拡散することは無い。さらに高温入力端子と低温入力端子間の熱拡散を防止するため、高温入力端子と低温入力端子との間にフッ素系樹脂等の低熱伝導材を導入しても良い(図1,3,4,6-9)。 A liquid such as lubricating oil can be used for heat conduction between the temperature-sensitive magnetic material and the low-temperature input terminal. At the high temperature input terminal, as described above, a magnetic fluid can be used for heat transfer and kept in place, so that the liquid in a high temperature state does not diffuse. Furthermore, in order to prevent heat diffusion between the high temperature input terminal and the low temperature input terminal, a low thermal conductive material such as a fluororesin may be introduced between the high temperature input terminal and the low temperature input terminal (Figs. 1, 3, 4, 6-9).

「配置」
高温入力端子で加熱された感温磁性体は低温入力端子で冷却される。回転が始まれば高温入力端子でのトルク発生により連続回転が生じるが、回転を始める為には初期に回転方向を決定するための非対称性を導入する必要がある。図2に示すように、高温入力端子と低温入力端子とは円盤状感温磁性体に対して180°の位置には設けず、偏って設置する。円盤状感温磁性体が静止状態の際に偏った配置で高温、低温を入力した場合、高温入力端子端部、低温入力端子端部での感温磁性体に温度差が生じ、この温度差により初期回転トルクを生じさせることができる。
回転する感温磁性体において引力あるいは反力を生じる部分は回転トルクを生み出す原動力になるが、それ以外の部分においては熱拡散によりトルク減少の原因となる。ここで、引力あるいは反力を生じない部分の感温磁性体を断熱材に置き換えることにより回転トルクに関与しない熱拡散を減少させることができる(図2)。
温度差入力端子を同一感温磁性体上に複数ペア設置することができる(図5,6)。ここでも低温入力端子と高温入力端子は等間隔では無く、高温入力端子と隣接する2つの低温入力端子は初期回転トルクを得るため、間隔を異なる様に配置する必要がある。複数の温度差入力端子を同一感温磁性体上に設置した場合に各温度差入力への熱接続が煩雑になるが、例えば図7に示したように高温側は上面に、低温側は下面にと熱的に接続することで単純な熱入力とすることもできる。
低温入力端子、および高温入力端子は角形の形状を示したが、それぞれ円盤状磁気作業物質の形状に沿った扇形、円弧状にしても良い。
"Arrangement"
The temperature-sensitive magnetic material heated by the high-temperature input terminal is cooled by the low-temperature input terminal. When the rotation starts, continuous rotation occurs due to the torque generated at the high temperature input terminal, but in order to start the rotation, it is necessary to introduce asymmetry for determining the rotation direction at the initial stage. As shown in Fig. 2, the high-temperature input terminal and the low-temperature input terminal are not provided at a position of 180 ° with respect to the disk-shaped temperature-sensitive magnetic material, but are installed unevenly. When high temperature and low temperature are input in a biased arrangement when the disk-shaped temperature sensitive magnetic material is stationary, a temperature difference occurs in the temperature sensitive magnetic material at the high temperature input terminal end and the low temperature input terminal end, and this temperature difference occurs. Can generate an initial rotational torque.
In the rotating temperature-sensitive magnetic material, the portion that generates an attractive force or a reaction force becomes the driving force for generating the rotational torque, but the other portion causes a torque decrease due to heat diffusion. Here, by replacing the temperature-sensitive magnetic material in the portion where no attractive force or reaction force is generated with a heat insulating material, it is possible to reduce the heat diffusion that is not related to the rotational torque (Fig. 2).
Multiple pairs of temperature difference input terminals can be installed on the same temperature-sensitive magnetic material (Figs. 5 and 6). Again, the low temperature input terminal and the high temperature input terminal are not evenly spaced, and the two low temperature input terminals adjacent to the high temperature input terminal must be arranged at different intervals in order to obtain initial rotational torque. When multiple temperature difference input terminals are installed on the same temperature-sensitive magnetic material, the thermal connection to each temperature difference input becomes complicated. For example, as shown in Fig. 7, the high temperature side is on the upper surface and the low temperature side is on the lower surface. It can also be a simple heat input by thermally connecting to.
The low-temperature input terminal and the high-temperature input terminal have a square shape, but they may be fan-shaped or arc-shaped according to the shape of the disk-shaped magnetic working material, respectively.

<2 第7の実施形態>
「積層」
前記エネルギー変換素子は非常に単純な形態を採る。ここで素子を同一軸に接続することでトルクを増大することができる(図4)。
同一軸に接続された別個体の円盤状感温磁性体に対してそれぞれ高温入力端子と低温入力端子を設置する。別個体の素子の低温入力端子と低温入力端子、高温入力端子と高温入力端子とをそれぞれ熱伝導性良く接続することによりトルクを倍増できる。ここでは2段接続の例を示したが、所望のトルクを得るために必要に応じて同様に積層数を増すことができる。
前記積層は並列接続の例を示したが、複数の素子を直列に接続することもできる(図8)。同一軸に接続された別個体の感温磁性体に対してそれぞれ高温入力端子と低温入力端子を設置する。別個体の素子の低温入力端子と高温入力端子とを熱伝導性良く接続することにより前記低温入力端子と高温入力端子は同じ温度となる。直列接続とすることで、大きな温度差入力に対応することができる。この場合、積層された各素子に用いる感温磁性体は同一である必要は無い。最適動作温度の異なる感温磁性体を各素子の動作温度に従い配置し、トルクの拡大を図ることができる。
<2 Seventh Embodiment>
"Laminate"
The energy conversion element takes a very simple form. Here, the torque can be increased by connecting the elements to the same axis (Fig. 4).
A high-temperature input terminal and a low-temperature input terminal are installed for separate disk-shaped thermosensitive magnetic materials connected to the same axis, respectively. The torque can be doubled by connecting the low temperature input terminal and the low temperature input terminal, and the high temperature input terminal and the high temperature input terminal of another individual element with good thermal conductivity. Although an example of a two-stage connection is shown here, the number of layers can be similarly increased as needed in order to obtain a desired torque.
Although the above-mentioned stacking shows an example of parallel connection, a plurality of elements can be connected in series (Fig. 8). A high-temperature input terminal and a low-temperature input terminal are installed for separate temperature-sensitive magnetic materials connected to the same axis. By connecting the low temperature input terminal and the high temperature input terminal of another individual element with good thermal conductivity, the low temperature input terminal and the high temperature input terminal have the same temperature. By connecting in series, it is possible to handle a large temperature difference input. In this case, the temperature-sensitive magnetic material used for each of the laminated elements does not have to be the same. Temperature-sensitive magnetic materials having different optimum operating temperatures can be arranged according to the operating temperature of each element to increase the torque.

以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例のみに限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these Examples.

本実施例について以下の順序で説明する。
i エネルギー変換素子単体
ii エネルギー変換素子積層集合体
This embodiment will be described in the following order.
i Energy conversion element unit
ii Energy conversion element laminated aggregate

〈i エネルギー変換素子単体での実施例〉
〈実施例1〉
径5mm、長さ50mmのステンレス製軸を用意した。前記軸中央に穴あき円盤状厚さ1.5mm、直径40mmの感温磁性体Sr Ferrite(ストロンチウムフェライト)を設置し、軸に固定した。円盤状感温磁性体Sr Ferrite直径40mmの中央部分、直径20mmの部分をSr Ferriteからポリカーボネートに置き換えている(図2)。Sr Ferrite永久磁石はあらかじめ、円盤垂直方向に帯磁させた。上面にN極、下面側にS極となるように帯磁した。軸回転により円盤状感温磁性体も回転する(図1)。
<Example of i energy conversion element alone>
<Example 1>
A stainless steel shaft with a diameter of 5 mm and a length of 50 mm was prepared. A temperature-sensitive magnetic material Sr Ferrite (strontium ferrite) having a perforated disk shape with a thickness of 1.5 mm and a diameter of 40 mm was installed in the center of the shaft and fixed to the shaft. Disk-shaped thermosensitive magnetic material Sr Ferrite The central part with a diameter of 40 mm and the part with a diameter of 20 mm are replaced with polycarbonate from Sr Ferrite (Fig. 2). The Sr Ferrite permanent magnet was previously magnetized in the vertical direction of the disk. The upper surface was magnetized so that it had an N pole and the lower surface had an S pole. The disk-shaped thermosensitive magnetic material also rotates due to the rotation of the shaft (Fig. 1).

高温入力端子として、感温磁性体に磁場を印加するため、円盤状感温磁性体を挟み込むようにヨーク付きの永久磁石を設置した。高温入力端子の永久磁石にはSr-Ferrite系マグネットを用いて感温磁性体ギャップ間隔は4.0mmとした。高温入力端子による磁場と永久磁石である感温磁性体の間には引力が働く様に、高温入力端子の永久磁石を配置した。永久磁石である感温磁性体と永久磁石の間にマグネタイト磁性紛からなる磁性流体を充填し、高温入力端子とした(図1)。 As a high-temperature input terminal, a permanent magnet with a yoke was installed so as to sandwich the disk-shaped temperature-sensitive magnetic material in order to apply a magnetic field to the temperature-sensitive magnetic material. An Sr-Ferrite magnet was used as the permanent magnet for the high temperature input terminal, and the temperature-sensitive magnetic material gap interval was set to 4.0 mm. A permanent magnet of the high temperature input terminal is arranged so that an attractive force acts between the magnetic field generated by the high temperature input terminal and the temperature-sensitive magnetic material which is a permanent magnet. A magnetic fluid made of magnetite magnetic powder was filled between the temperature-sensitive magnetic material, which is a permanent magnet, and the permanent magnet to form a high-temperature input terminal (Fig. 1).

高温入力端子の円周反対側から20°ずれた位置に低温入力端子を設置するため、円盤状感温磁性体を挟み込むようにヨーク付きの永久磁石を設置した。永久磁石にはSr-Ferrite系マグネットを用いてギャップ間隔は2.0mmとした。低温入力端子による磁場と永久磁石である感温磁性体の間には反力が働く様に、低温入力端子の永久磁石を配置した。感温磁性体と低温入力端子の間には潤滑油を導入し、熱伝導を確保した。
高温入力端子と低温入力端子の間にはフッ素系低熱伝導樹脂からなる間隙充填材を導入し熱伝導を低減させた。
In order to install the low temperature input terminal at a position 20 ° away from the circumference opposite to the high temperature input terminal, a permanent magnet with a yoke was installed so as to sandwich the disk-shaped temperature-sensitive magnetic material. An Sr-Ferrite magnet was used as the permanent magnet, and the gap spacing was set to 2.0 mm. A permanent magnet of the low temperature input terminal is arranged so that a reaction force acts between the magnetic field generated by the low temperature input terminal and the temperature-sensitive magnetic material which is a permanent magnet. Lubricating oil was introduced between the temperature-sensitive magnetic material and the low-temperature input terminal to ensure heat conduction.
A gap filler made of a fluorine-based low heat conductive resin was introduced between the high temperature input terminal and the low temperature input terminal to reduce heat conduction.

室温及び素子構成材料はすべて初期は23.0℃とした。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は8rpmで回転し温度差エネルギーが直接に運動エネルギーへ変換できることが判明した。後記〈比較例1〉に比べ回転数が速くなり、引力に加え反力も利用できる長所が明らかになった。 The room temperature and the element constituent materials were all set to 23.0 ° C at the initial stage. When the high-temperature input terminal was heated and cooled to 33.0 ° C and the low-temperature input terminal was 13.0 ° C, it was found that the disk-shaped temperature-sensitive magnetic material rotates at 8 rpm and the temperature difference energy can be directly converted into kinetic energy. .. Compared to <Comparative Example 1> described later, the number of rotations is faster, and it has become clear that the reaction force can be used in addition to the attractive force.

〈比較例1〉
円盤状感温磁性体を同サイズのMn-Zn Ferrite(マンガンー亜鉛フェライト)とした。Mn-Zn Ferriteは感温磁性体であるが、ソフトフェライトなので、帯磁させること、反力を生じさせることは出来ない。高温入力端子にNdFeB系、低温入力端子にSr-Ferriteを用いてそれぞれ磁性流体をもちいて固定端子と感温磁性体の熱伝導を確保した。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は7.5rpmで回転した。
<Comparative example 1>
The disk-shaped thermosensitive magnetic material was Mn-Zn Ferrite (manganese-zinc ferrite) of the same size. Mn-Zn Ferrite is a temperature-sensitive magnetic material, but since it is a soft ferrite, it cannot be magnetized or generate a reaction force. NdFeB system was used for the high temperature input terminal, and Sr-Ferrite was used for the low temperature input terminal, and magnetic fluid was used to secure the heat conduction between the fixed terminal and the temperature sensitive magnetic material. When the high-temperature input terminal was heated and cooled to 33.0 ° C and the low-temperature input terminal was 13.0 ° C, the disk-shaped temperature-sensitive magnetic material rotated at 7.5 rpm.

〈実施例2〉
径5mm、長さ50mmのステンレス製軸を用意した。前記軸中央に穴あき円盤状厚さ1.5mm、直径40mmの感温磁性体Sr Ferrite(ストロンチウムフェライト)を設置し、軸に固定した。円盤状感温磁性体Sr Ferrite直径40mmの中央部分、直径20mmの部分をSr Ferriteからポリカーボネートに置き換えている。Sr Ferrite永久磁石はあらかじめ、円盤垂直方向に帯磁させた。上面にN極、下面側にS極となるように帯磁した。軸回転により円盤状感温磁性体も回転する。
高温入力端子として、永久磁石を用いず、鉄系ヨーク材料のみを設置した。ギャップ間隔は4.0mmとした。高温入力端子と永久磁石である感温磁性体の間には引力が働く。永久磁石である感温磁性体と鉄系ヨーク材料の間にマグネタイト磁性紛からなる磁性流体を充填し、高温入力端子とした。
高温入力端子の円周反対側から20°ずれた位置に低温入力端子を設置するため、円盤状感温磁性体を挟み込むように伝熱性材料(SiC:炭化ケイ素)を設置した。低温入力端子と感温磁性体との間には大きな磁気的な力は働かない。感温磁性体と低温入力端子の間には潤滑油を導入し、熱伝導を確保した。
高温入力端子と低温入力端子の間にはフッ素系低熱伝導樹脂からなる間隙充填材を導入し熱伝導を低減させた(図9)。
室温及び素子構成材料はすべて初期は23.0℃とした。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は6rpmで回転し温度差エネルギーが直接に運動エネルギーへ変換できることが判明した。感温磁性体に帯磁した永久磁石を用いた場合には高温入力端子、低温入力端子共に永久磁石を用いなくてもエネルギー変換素子として動作することが判明した。
<Example 2>
A stainless steel shaft with a diameter of 5 mm and a length of 50 mm was prepared. A temperature-sensitive magnetic material Sr Ferrite (strontium ferrite) having a perforated disk shape with a thickness of 1.5 mm and a diameter of 40 mm was installed in the center of the shaft and fixed to the shaft. Disk-shaped thermosensitive magnetic material Sr Ferrite The central part with a diameter of 40 mm and the part with a diameter of 20 mm are replaced with polycarbonate from Sr Ferrite. The Sr Ferrite permanent magnet was previously magnetized in the vertical direction of the disk. The upper surface was magnetized so that it had an N pole and the lower surface had an S pole. The disk-shaped temperature-sensitive magnetic material also rotates due to the rotation of the shaft.
As the high temperature input terminal, only the iron-based yoke material was installed without using a permanent magnet. The gap spacing was 4.0 mm. An attractive force acts between the high-temperature input terminal and the temperature-sensitive magnetic material, which is a permanent magnet. A magnetic fluid made of magnetite magnetic powder was filled between a temperature-sensitive magnetic material, which is a permanent magnet, and an iron-based yoke material, to form a high-temperature input terminal.
In order to install the low temperature input terminal at a position 20 ° away from the circumference opposite to the high temperature input terminal, a heat transfer material (SiC: silicon carbide) was installed so as to sandwich the disk-shaped temperature-sensitive magnetic material. No large magnetic force acts between the low temperature input terminal and the temperature sensitive magnetic material. Lubricating oil was introduced between the temperature-sensitive magnetic material and the low-temperature input terminal to ensure heat conduction.
A gap filler made of a fluorine-based low heat conductive resin was introduced between the high temperature input terminal and the low temperature input terminal to reduce heat conduction (Fig. 9).
The room temperature and the element constituent materials were all set to 23.0 ° C at the initial stage. When the high-temperature input terminal was heated and cooled to 33.0 ° C and the low-temperature input terminal was 13.0 ° C, it was found that the disk-shaped temperature-sensitive magnetic material rotates at 6 rpm and the temperature difference energy can be directly converted into kinetic energy. .. It was found that when a permanent magnet magnetized in a temperature-sensitive magnetic material is used, both the high-temperature input terminal and the low-temperature input terminal operate as energy conversion elements without using a permanent magnet.

〈実施例3〉
これまで1枚の円盤状感温磁性体に対して1対の高温入力端子および低温入力端子の例を示したが、1枚の円盤状感温磁性体に対して複数対の高温入力端子および低温入力端子を設置することも可能である(図5)。この際、高温入力端子および低温入力端子の間隔は均一にするのではなく、初期回転が生じるように不均一にする必要がある。〈実施例〉と同様の回転円盤を用いて4対の温度差入力端子を設置した(図5)。各入力端子における磁場の大きさは〈実施例1〉と同様とした。室温及び素子構成材料はすべて初期は23.0℃とした。高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体回転数は12rpmとなった。
<Example 3>
So far, an example of a pair of high-temperature input terminals and a low-temperature input terminal for one disk-shaped temperature-sensitive magnetic material has been shown, but a plurality of pairs of high-temperature input terminals and a pair of high-temperature input terminals for one disk-shaped temperature-sensitive magnetic material have been shown. It is also possible to install a low temperature input terminal (Fig. 5). At this time, it is necessary not to make the distance between the high temperature input terminal and the low temperature input terminal uniform, but to make them non-uniform so that the initial rotation occurs. Four pairs of temperature difference input terminals were installed using the same rotating disk as in <Example 1 > (Fig. 5). The magnitude of the magnetic field at each input terminal was the same as in <Example 1>. The room temperature and the element constituent materials were all set to 23.0 ° C at the initial stage. When the high-temperature input terminal was heated and cooled to 33.0 ° C and the low-temperature input terminal was heated to 13.0 ° C, the disk-shaped temperature-sensitive magnetic material rotation speed was 12 rpm.

〈ii エネルギー変換素子積層集合体〉
図1に示したエネルギー変換素子の同軸上に別個体のエネルギー変換素子を設置した。この際一方のエネルギー変換素子の高温入力端子がもう一方の高温入力端子と熱伝導性良く接続するように伝熱性材料を介して、低温入力端子側でも同様に密着固定するように設置しエネルギー変換素子積層集合体とした(図4)。
高温入力端子が33.0℃、低温入力端子が13.0℃となるようにそれぞれ加熱、冷却したところ、円盤状の感温磁性体は10rpmで回転し温度差エネルギーが直接に運動エネルギーへ変換できることが判明した。
同様にして積層構造を3段、4段とした場合それぞれ回転可能であることを確認した。
<Ii Energy conversion element laminated aggregate>
A separate energy conversion element was installed on the same axis as the energy conversion element shown in Fig. 1. At this time, the high temperature input terminal of one energy conversion element is installed so as to be closely fixed on the low temperature input terminal side via a heat conductive material so as to be connected to the other high temperature input terminal with good thermal conductivity, and energy conversion is performed. It was made into an element laminated aggregate (Fig. 4).
When the high-temperature input terminal was heated and cooled to 33.0 ° C and the low-temperature input terminal was 13.0 ° C, it was found that the disk-shaped temperature-sensitive magnetic material rotates at 10 rpm and the temperature difference energy can be directly converted into kinetic energy. ..
Similarly, it was confirmed that each of the laminated structures can be rotated when the laminated structure has 3 stages and 4 stages.

温度差エネルギーを直接的に運動エネルギーへ変換できるため、さらに気体の蒸発等の複雑な工程、他の機能性素子等複雑な構造が不要であるために高信頼性、低騒音、低振動でエネルギー変換システムが構築可能である。小温度差においても駆動可能であることから、工場、家庭内、輸送機器での排熱を利用して運動エネルギーへ変換することができる。すなわち排熱のための冷却ファン駆動及び各種ポンプ駆動、また体温により動き出さす各種感知器、玩具等にも応用することができる。
また発電機を接続して温度差による発電も行うことができる。ペルチェ素子の場合にはTe,Sb,Se等有害な元素が含まれることが一般的であるが、本発明の場合には有毒な元素を用いることなく温度差発電装置を構築することが可能である。
High reliability, low noise, and low vibration energy because the temperature difference energy can be directly converted into kinetic energy, and complicated processes such as gas evaporation and complicated structures such as other functional elements are not required. A conversion system can be constructed. Since it can be driven even with a small temperature difference, it can be converted into kinetic energy by utilizing the waste heat from factories, homes, and transportation equipment. That is, it can be applied to a cooling fan drive for exhaust heat, various pump drives, various detectors that start to move due to body temperature, toys, and the like.
It is also possible to connect a generator to generate electricity due to a temperature difference. In the case of a Pelche element, harmful elements such as Te, Sb, and Se are generally contained, but in the case of the present invention, it is possible to construct a temperature difference power generation device without using toxic elements. be.

1 円盤状感温磁性体
2 磁性流体
3 潤滑油
4 鉄系磁気ヨーク材料
5 Srフェライト系永久磁石
6 断熱性間隙充填材
7 高温入力端子
8 低温入力端子
9 回転軸
10 伝熱性材料
11 積層状態高温入力端子
12 積層状態低温入力端子
13 断熱材
14 高温入力端子接合体
15 低温入力端子接合体
1 Disc-shaped temperature-sensitive magnetic material
2 ferrofluid
3 Lubricating oil
4 Iron-based magnetic yoke material
5 Sr ferritic permanent magnet
6 Insulation gap filler
7 High temperature input terminal
8 Low temperature input terminal
9 axis of rotation
10 Heat-conducting material
11 Laminated state High temperature input terminal
12 Laminated low temperature input terminal
13 Insulation
14 High temperature input terminal junction
15 Low temperature input terminal junction

Claims (3)

回転が可能でありかつ円盤状あるいは円筒状あるいは円錐状の形態を有し、温度により磁化が変化する感温磁性体と、該感温磁性体に磁場を印加するための永久磁石を含む磁場印加部とを有し、素子外部からの温度差入力により感温磁性体を回転させ、かつ該感温磁性体と該磁場印加部との間に液体または微粒子が分散された液体を充填することで、回転する感温磁性体と磁場印加部を継続的に熱伝導させることを特徴とするエネルギー変換素子において、該感温磁性体を加熱させる固定端子と該感温磁性体を冷却させる固定端子とで該感温磁性体に同時に同方向の回転トルクを発生させることを特徴とする温度差エネルギーを運動エネルギーへ変換するエネルギー変換素子。 A magnetic field application including a temperature-sensitive magnetic material that is rotatable and has a disk-shaped, cylindrical, or conical shape and whose magnetization changes with temperature, and a permanent magnet for applying a magnetic field to the temperature-sensitive magnetic material. By having a part, the temperature-sensitive magnetic material is rotated by a temperature difference input from the outside of the element, and a liquid or a liquid in which fine particles are dispersed is filled between the temperature-sensitive magnetic material and the magnetic field application part. In an energy conversion element characterized by continuously conducting heat conduction between a rotating temperature-sensitive magnetic material and a magnetic field application portion, a fixed terminal for heating the temperature-sensitive magnetic material and a fixed terminal for cooling the temperature-sensitive magnetic material. An energy conversion element that converts temperature difference energy into kinetic energy, which is characterized by simultaneously generating rotational torque in the same direction in the temperature-sensitive magnetic material. 回転可能な円盤状あるいは円筒状あるいは円錐状の感温磁性体と、該感温磁性体との間で磁気による反力を発生する材料を含む固定端子とを有し、かつ該感温磁性体を冷却する際に生じる感温磁性体と固定端子の間の反力の増加を駆動力の一部あるいは全てとし、素子外部からの熱入力により感温磁性体を回転させることを特徴とするエネルギー変換素子。 It has a rotatable disk-shaped, cylindrical or conical temperature-sensitive magnetic material, and a fixed terminal containing a material that generates a reaction force due to magnetism between the temperature-sensitive magnetic material, and the temperature-sensitive magnetic material. The energy characterized by rotating the temperature-sensitive magnetic material by heat input from the outside of the element, with the increase in the reaction force between the temperature-sensitive magnetic material and the fixed terminal generated when cooling the element as part or all of the driving force. Conversion element. 回転可能な円盤状あるいは円筒状あるいは円錐状の帯磁した永久磁石であり、かつ運転中に消磁状態にならない永久磁石である感温磁性体と、該感温磁性体との間で磁気による引力を発生する強磁性体を含む固定端子を有し、かつ該感温磁性体と、該感温磁性体との間で磁気による反力を発生する材料を含む固定端子とを有し、素子外部からの熱入力によって該引力の温度による変化に伴う回転トルクと、同時に該反力の温度による変化に伴う該引力の場合と同方向の回転トルクとにより該感温磁性体を回転させることを特徴とする〈請求項1又は請求書2〉記載のエネルギー変換素子。
A magnetic attraction between a temperature-sensitive magnetic material, which is a rotatable disk-shaped, cylindrical, or conical magnetized permanent magnet and is a permanent magnet that does not become demagnetized during operation, and the temperature-sensitive magnetic material. It has a fixed terminal containing a generated ferromagnetic material, and has a fixed terminal containing a material that generates a reaction force due to magnetism between the temperature-sensitive magnetic material and the temperature-sensitive magnetic material, and has a fixed terminal from the outside of the element. It is characterized in that the temperature-sensitive magnetic material is rotated by the rotational torque due to the change in the attractive force temperature due to the heat input of the above and at the same time the rotational torque in the same direction as in the case of the attractive force due to the change in the reaction force temperature. The energy conversion element according to <claim 1 or claim 2>.
JP2021032302A 2021-03-02 2021-03-02 Energy conversion element Active JP7065224B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021032302A JP7065224B1 (en) 2021-03-02 2021-03-02 Energy conversion element
PCT/JP2022/000821 WO2022185723A1 (en) 2021-03-02 2022-01-13 Energy conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021032302A JP7065224B1 (en) 2021-03-02 2021-03-02 Energy conversion element

Publications (2)

Publication Number Publication Date
JP7065224B1 true JP7065224B1 (en) 2022-05-11
JP2022133562A JP2022133562A (en) 2022-09-14

Family

ID=81579251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021032302A Active JP7065224B1 (en) 2021-03-02 2021-03-02 Energy conversion element

Country Status (2)

Country Link
JP (1) JP7065224B1 (en)
WO (1) WO2022185723A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204588A (en) 2000-10-24 2002-07-19 Nagano Prefecture DRIVE METHOD OF OPTICAL THERMOMAGNETICALLY DRIVEN DEVICE, OPTICAL THERMOMAGNETICALLY DRIVEN DEVICE AND METHOD FOR MANUFACTURING Ni GROUP ALLOY HAVING LOW CURIE TEMPERATURE FOR USE IN THE DEVICE
US20030082060A1 (en) 2001-10-27 2003-05-01 Buhei Kono Compressible fluid gas dynamic generator by microwave magnetic material thermoeffect
JP2005086904A (en) 2003-09-08 2005-03-31 Canon Inc Heat engine using magnetic substance
US20100253181A1 (en) 2009-04-06 2010-10-07 John Hazelwood Special Thermo Magnetic Motor Device
US20130263599A1 (en) 2012-04-09 2013-10-10 Delta Electronics, Inc. Thermal magnetic engine and thermal magnetic engine system
JP2014138549A (en) 2013-01-17 2014-07-28 Tsutomu Tanaka Heat engine applying magnetic characteristic of metal temperature-sensitive magnetic material
JP2014155429A (en) 2013-02-06 2014-08-25 Tsutomu Tanaka Heat engine applying magnetic characteristics of metal temperature-sensitive magnetic material
JP2020169806A (en) 2019-04-04 2020-10-15 香取 健二 Energy conversion element and temperature regulator using the same
JP2020174516A (en) 2019-04-11 2020-10-22 香取 健二 Energy conversion element

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145908A (en) * 1978-05-08 1979-11-14 Sanyo Electric Co Ltd Thermal magnetic drive device
JPS6098880A (en) * 1983-10-31 1985-06-01 Tdk Corp Rotary drive device
US4730137A (en) * 1986-11-03 1988-03-08 Vollers Gary L Energy conversion system
JPH01232174A (en) * 1988-03-10 1989-09-18 Nkk Corp Power plant utilizing temperature sensing magnetic substance
JPH02269487A (en) * 1989-04-07 1990-11-02 Tsuyoshi Tanaka Converting method for thermal energy to dynamic energy and heat engine
JPH03230776A (en) * 1990-02-01 1991-10-14 Tsuyoshi Tanaka Magnetic engine
JPH03253279A (en) * 1990-03-01 1991-11-12 Tsuyoshi Tanaka Method and system for converting heat in ocean temperature difference into mechanical energy
JPH09268968A (en) * 1996-04-01 1997-10-14 Masahiro Nishikawa Thermomagnetic engine
JP3425935B2 (en) * 2000-08-14 2003-07-14 清仁 石田 Ferromagnetic shape memory alloy
US8016952B2 (en) * 2005-06-27 2011-09-13 Japan Science And Technology Agency Ferromagnetic shape memory alloy and its use
JP4918468B2 (en) * 2007-12-05 2012-04-18 大阪瓦斯株式会社 Desiccant dehumidifier and desiccant air conditioning system
JP2014207843A (en) * 2013-04-10 2014-10-30 ▲強▼ 田中 Heat engine applying magnetic characteristics of temperature-sensitive magnetic material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204588A (en) 2000-10-24 2002-07-19 Nagano Prefecture DRIVE METHOD OF OPTICAL THERMOMAGNETICALLY DRIVEN DEVICE, OPTICAL THERMOMAGNETICALLY DRIVEN DEVICE AND METHOD FOR MANUFACTURING Ni GROUP ALLOY HAVING LOW CURIE TEMPERATURE FOR USE IN THE DEVICE
US20030082060A1 (en) 2001-10-27 2003-05-01 Buhei Kono Compressible fluid gas dynamic generator by microwave magnetic material thermoeffect
JP2005086904A (en) 2003-09-08 2005-03-31 Canon Inc Heat engine using magnetic substance
US20100253181A1 (en) 2009-04-06 2010-10-07 John Hazelwood Special Thermo Magnetic Motor Device
US20130263599A1 (en) 2012-04-09 2013-10-10 Delta Electronics, Inc. Thermal magnetic engine and thermal magnetic engine system
JP2014138549A (en) 2013-01-17 2014-07-28 Tsutomu Tanaka Heat engine applying magnetic characteristic of metal temperature-sensitive magnetic material
JP2014155429A (en) 2013-02-06 2014-08-25 Tsutomu Tanaka Heat engine applying magnetic characteristics of metal temperature-sensitive magnetic material
JP2020169806A (en) 2019-04-04 2020-10-15 香取 健二 Energy conversion element and temperature regulator using the same
JP2020174516A (en) 2019-04-11 2020-10-22 香取 健二 Energy conversion element

Also Published As

Publication number Publication date
WO2022185723A1 (en) 2022-09-09
JP2022133562A (en) 2022-09-14

Similar Documents

Publication Publication Date Title
JP6997822B2 (en) Energy conversion element
US5914065A (en) Apparatus and method for heating a fluid by induction heating
US7750515B1 (en) Industrial air core motor-generator
US9883552B2 (en) Heat generator
US8129882B2 (en) Thermoelectric generator and method of generating electricity
JP2018533717A (en) Magnetic calorie heat pump, cooling device and operation method thereof
EP2108904A1 (en) A magnetocaloric device, especially a magnetic refrigerator, a heat pump or a power generator
US20060110260A1 (en) Device of micro vortex for ferrofluid power generator
US10667334B2 (en) Eddy current heat generating apparatus
US10701768B2 (en) Eddy current heat generating apparatus
US20180035493A1 (en) Eddy current heat generating apparatus
JP7065224B1 (en) Energy conversion element
CN102403925B (en) Thermal-magnetic power generation system driven by reciprocating motion piston pump
CN202094716U (en) Stator heat radiation structure of flywheel energy storage system and flywheel energy storage system
JP2014138550A (en) Thermomagnetic generator applying magnetic characteristic of metal temperature-sensitive magnetic material
JP2007278546A (en) Heating device
US11075333B2 (en) Apparatus and method for converting thermal energy into electrical energy
JP6468126B2 (en) Eddy current heating device
US7705513B1 (en) Thermal to electricity conversion using thermal magnetic properties
WO2022158282A1 (en) Energy conversion element and temperature control device using same
KR102217162B1 (en) Eddy current heater device
JP3169232U (en) Motor centrifugal heat dissipation structure and motor having centrifugal heat dissipation structure
JP2017005932A (en) Eddy current type heating device
JP2014138549A (en) Heat engine applying magnetic characteristic of metal temperature-sensitive magnetic material
JP2014155428A (en) Heat engine applying magnetic characteristics of metal temperature-sensitive magnetic material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7065224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250