JP2013217583A - Low-pressure loss magnetic working material structure for magnetic refrigerator - Google Patents

Low-pressure loss magnetic working material structure for magnetic refrigerator Download PDF

Info

Publication number
JP2013217583A
JP2013217583A JP2012088920A JP2012088920A JP2013217583A JP 2013217583 A JP2013217583 A JP 2013217583A JP 2012088920 A JP2012088920 A JP 2012088920A JP 2012088920 A JP2012088920 A JP 2012088920A JP 2013217583 A JP2013217583 A JP 2013217583A
Authority
JP
Japan
Prior art keywords
magnetic
working material
pressure loss
magnetic working
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012088920A
Other languages
Japanese (ja)
Inventor
Katsutoshi Mizuno
克俊 水野
Koichiro Waki
耕一郎 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2012088920A priority Critical patent/JP2013217583A/en
Publication of JP2013217583A publication Critical patent/JP2013217583A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-pressure loss magnetic working material structure for a magnetic refrigerator capable of decreasing pressure loss while maintaining high efficiency of heat exchange.SOLUTION: A low-pressure loss magnetic working material structure for a magnetic refrigerator includes a honeycomb structure alternately laminating a plate-like magnetic working material 1 and a heat insulating layer 2, and opening a large amount of holes 3 serving as a flow path for a heat exchange medium, vertically in the laminating direction.

Description

本発明は、磁気冷凍機用低圧損磁気作業物質構造に係り、特に磁気冷凍機用低圧損磁気作業物質構造に関するものである。   The present invention relates to a low pressure loss magnetic working material structure for a magnetic refrigerator, and more particularly to a low pressure loss magnetic working material structure for a magnetic refrigerator.

ガドリニウム(Gd)やランタン−鉄−シリコン系(La−Fe−Si)化合物などの磁気作業物質の磁気熱量効果を利用したAMR(Active Magnetic Refrigeration)型磁気冷凍機においては、磁気作業物質と熱交換媒体の熱交換効率が冷凍能力に影響する。   In an AMR (Active Magnetic Refrigeration) type magnetic refrigerator utilizing the magnetocaloric effect of a magnetic working material such as gadolinium (Gd) or a lanthanum-iron-silicon-based (La-Fe-Si) compound, heat exchange with the magnetic working material is performed. The heat exchange efficiency of the medium affects the refrigeration capacity.

日本冷凍空調学会論文集 Trans.of the JSRAE Vol.28,No.3(2011),pp.213〜223Proceedings of the Japan Society of Refrigerating and Air Conditioning Trans. of the JSRAE Vol. 28, no. 3 (2011), pp. 213-223

従来のAMR型磁気冷凍機では、AMRダクト内に球状の磁気作業物質が充填されており、このAMRダクト内を水などの熱交換媒体が通過することにより冷凍能力を得ている。しかしながら、球状の磁気作業物質を用いると、圧損が大きくなり、熱交換媒体の流量が制限されてしまう。加えて磁気作業物質が球状であるため流路が均一にならず、熱交換媒体の偏流が起きて熱交換の効率が低下してしまうという問題があった。   In a conventional AMR type magnetic refrigerator, a spherical magnetic working material is filled in an AMR duct, and a refrigerating capacity is obtained by passing a heat exchange medium such as water through the AMR duct. However, when a spherical magnetic working material is used, the pressure loss increases and the flow rate of the heat exchange medium is limited. In addition, since the magnetic working material is spherical, there is a problem that the flow path is not uniform, and the heat exchange medium drifts and the efficiency of heat exchange decreases.

本発明は、上記状況に鑑みて、高い熱交換効率を維持しつつ、圧損も低減できる磁気冷凍機用低圧損磁気作業物質構造を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a low pressure loss magnetic working material structure for a magnetic refrigerator that can reduce pressure loss while maintaining high heat exchange efficiency.

本発明は、上記目的を達成するために、
〔1〕磁気冷凍機用低圧損磁気作業物質構造において、板状の磁気作業物質と、熱絶縁層を交互に積層し、その積層方向に垂直に熱交換媒体流路となる多数の穴を開けたハニカム構造を有することを特徴とする。
〔2〕上記〔1〕記載の磁気冷凍機用低圧損磁気作業物質構造において、前記板状の磁気作業物質が、ガドリニウム、ランタン系又はマンガン系であることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a low pressure loss magnetic working material structure for a magnetic refrigerator, a plate-like magnetic working material and a heat insulating layer are alternately laminated, and a number of holes serving as heat exchange medium flow paths are formed perpendicular to the laminating direction. It has a honeycomb structure.
[2] The low-pressure loss magnetic working material structure for a magnetic refrigerator as described in [1] above, wherein the plate-like magnetic working material is gadolinium, lanthanum or manganese.

〔3〕上記〔1〕又は〔2〕記載の磁気冷凍機用低圧損磁気作業物質構造において、前記熱絶縁層がポリイミドフィルムからなることを特徴とする。   [3] The low pressure loss magnetic working material structure for a magnetic refrigerator as described in [1] or [2] above, wherein the thermal insulating layer is made of a polyimide film.

本発明によれば、次のような効果を奏することができる。
(1)ハニカム構造により高い熱交換効率を維持しつつ、圧損も低減することができる磁気冷凍機用低圧損磁気作業物質構造を提供することができる。
(2)また、球状の磁気作業物質をランダムに充填した場合とは異なり、均質な構造であるので、熱交換媒体の偏流が起きることがない。
According to the present invention, the following effects can be achieved.
(1) It is possible to provide a low-pressure loss magnetic working material structure for a magnetic refrigerator that can reduce pressure loss while maintaining high heat exchange efficiency with a honeycomb structure.
(2) Further, unlike the case of randomly filling a spherical magnetic working substance, the heat exchange medium does not drift because of a homogeneous structure.

(3)AMRダクトは流れ方向に温度勾配を持つ必要があり、積層された熱絶縁体によって流れ方向の伝熱を低減することができる。   (3) The AMR duct needs to have a temperature gradient in the flow direction, and heat transfer in the flow direction can be reduced by the laminated thermal insulator.

本発明の実施例を示す磁気冷凍機用低圧損磁気作業物質構造を示す斜視図である。It is a perspective view which shows the low pressure loss magnetic working material structure for magnetic refrigerators which shows the Example of this invention.

本発明の磁気冷凍機用低圧損磁気作業物質構造は、板状の磁気作業物質と、熱絶縁層を交互に積層し、その積層方向に垂直に多数の穴を開けたハニカム構造を有する。   The low-pressure loss magnetic working material structure for a magnetic refrigerator of the present invention has a honeycomb structure in which plate-like magnetic working materials and heat insulating layers are alternately laminated and a large number of holes are formed perpendicular to the laminating direction.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示す磁気冷凍機用低圧損磁気作業物質構造を示す斜視図である。
この図において、1は板状の磁気作業物質であり、ガドリニウム(Gd)、ランタン(La)系もしくはマンガン(Mn)系からなる。2は板状の磁気作業物質1の間に配置される熱絶縁層であり、ポリイミドフィルムからなる。図示されるように、板状の磁気作業物質1と熱絶縁層2は交互に積層される。3は板状の磁気作業物質1と熱絶縁層2との積層方向に垂直に開けられた熱交換媒体流路となる多数の穴である。このように本発明の磁気冷凍機用低圧損磁気作業物質構造は、板状の磁気作業物質1と熱絶縁層2との積層方向に垂直に多数の穴3を開けたハニカム構造をしている。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a perspective view showing the structure of a low-pressure loss magnetic working material for a magnetic refrigerator showing an embodiment of the present invention.
In this figure, 1 is a plate-like magnetic working substance, which is made of gadolinium (Gd), lanthanum (La) or manganese (Mn). Reference numeral 2 denotes a heat insulating layer disposed between the plate-like magnetic working substances 1 and is made of a polyimide film. As shown in the figure, the plate-like magnetic working material 1 and the heat insulating layer 2 are alternately laminated. Reference numeral 3 denotes a number of holes serving as a heat exchange medium flow path formed perpendicular to the laminating direction of the plate-like magnetic working material 1 and the heat insulating layer 2. Thus, the low-pressure loss magnetic working material structure for a magnetic refrigerator of the present invention has a honeycomb structure in which a large number of holes 3 are formed perpendicular to the laminating direction of the plate-like magnetic working material 1 and the heat insulating layer 2. .

したがって、本発明のハニカム構造の磁気作業物質構造によれば、
(1)ハニカム構造により高い熱交換効率を維持しつつ、圧損も低減することができる磁気冷凍機用低圧損磁気作業物質構造とすることができる。
(2)また、従来のように球状の磁気作業物質をランダムに充填した場合とは異なり、本発明の磁気冷凍機用低圧損磁気作業物質構造は、均質な構造であるので、熱交換媒体の偏流が起きることがない。
Therefore, according to the magnetic working material structure of the honeycomb structure of the present invention,
(1) A low pressure loss magnetic working material structure for a magnetic refrigerator capable of reducing pressure loss while maintaining high heat exchange efficiency due to the honeycomb structure.
(2) In addition, unlike the conventional case of randomly filling the spherical magnetic working material, the low-pressure loss magnetic working material structure for the magnetic refrigerator of the present invention is a homogeneous structure. No drift occurs.

(3)AMRダクトは流れ方向に温度勾配を持つ必要があるが、積層された熱絶縁体によって流れ方向の伝熱を低減することができる。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
(3) The AMR duct needs to have a temperature gradient in the flow direction, but heat transfer in the flow direction can be reduced by the laminated thermal insulator.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の磁気冷凍機用低圧損磁気作業物質構造は、ハニカム構造により高い熱交換効率を維持しつつ、圧損も低減することができる磁気冷凍機用低圧損磁気作業物質構造として利用可能である。   The low-pressure loss magnetic working material structure for a magnetic refrigerator according to the present invention can be used as a low-pressure loss magnetic working material structure for a magnetic refrigerator capable of reducing pressure loss while maintaining high heat exchange efficiency due to the honeycomb structure.

1 板状の磁気作業物質
2 熱絶縁層
3 熱交換媒体流路となる多数の穴
DESCRIPTION OF SYMBOLS 1 Plate-shaped magnetic working material 2 Thermal insulation layer 3 Many holes used as a heat exchange medium flow

Claims (3)

板状の磁気作業物質と、熱絶縁層を交互に積層し、その積層方向に垂直に熱交換媒体流路となる多数の穴を開けたハニカム構造を有することを特徴とする磁気冷凍機用低圧損磁気作業物質構造。   Low pressure for a magnetic refrigerator characterized by having a honeycomb structure in which a plate-like magnetic working substance and a heat insulating layer are alternately laminated and a number of holes are formed perpendicular to the laminating direction as a heat exchange medium flow path Magnetic loss work material structure. 請求項1記載の磁気冷凍機用低圧損磁気作業物質構造において、前記板状の磁気作業物質が、ガドリニウム、ランタン系又はマンガン系であることを特徴とする磁気冷凍機用低圧損磁気作業物質構造。   2. The low pressure loss magnetic working material structure for a magnetic refrigerator according to claim 1, wherein the plate-like magnetic working material is gadolinium, lanthanum or manganese. . 請求項1又は2記載の磁気冷凍機用低圧損磁気作業物質構造において、前記熱絶縁層がポリイミドフィルムからなることを特徴とする磁気冷凍機用低圧損磁気作業物質構造。   The low-pressure loss magnetic working material structure for a magnetic refrigerator according to claim 1 or 2, wherein the thermal insulating layer is made of a polyimide film.
JP2012088920A 2012-04-10 2012-04-10 Low-pressure loss magnetic working material structure for magnetic refrigerator Pending JP2013217583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012088920A JP2013217583A (en) 2012-04-10 2012-04-10 Low-pressure loss magnetic working material structure for magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012088920A JP2013217583A (en) 2012-04-10 2012-04-10 Low-pressure loss magnetic working material structure for magnetic refrigerator

Publications (1)

Publication Number Publication Date
JP2013217583A true JP2013217583A (en) 2013-10-24

Family

ID=49589875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012088920A Pending JP2013217583A (en) 2012-04-10 2012-04-10 Low-pressure loss magnetic working material structure for magnetic refrigerator

Country Status (1)

Country Link
JP (1) JP2013217583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269145A (en) * 2018-10-15 2019-01-25 珠海格力电器股份有限公司 Magnetic medium inner core assembly, cold storage bed and magnetic refrigerator
CN109282518A (en) * 2018-11-19 2019-01-29 珠海格力电器股份有限公司 Magnetic refrigerator, magnetic working medium bed and magnetic working medium assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269145A (en) * 2018-10-15 2019-01-25 珠海格力电器股份有限公司 Magnetic medium inner core assembly, cold storage bed and magnetic refrigerator
CN109269145B (en) * 2018-10-15 2024-04-05 珠海格力电器股份有限公司 Magnetic working medium inner core assembly, cold storage bed and magnetic refrigerator
CN109282518A (en) * 2018-11-19 2019-01-29 珠海格力电器股份有限公司 Magnetic refrigerator, magnetic working medium bed and magnetic working medium assembly

Similar Documents

Publication Publication Date Title
US10229775B2 (en) Magnetocaloric cascade and method for fabricating a magnetocaloric cascade
KR102149720B1 (en) Magnetic cooling apparatus
TWI453365B (en) Magnetic refrigerator and magnetocaloric module thereof
US8769966B2 (en) Thermal generator using magnetocaloric material
US20130319012A1 (en) Magnetic cooling device
US20130186107A1 (en) Magnetic refrigeration control system, and method thereof
US20100146989A1 (en) Continuously rotary magnetic refrigerator or heat pump
US20170372821A1 (en) Magnetocaloric cascade and method for fabricating a magnetocaloric cascade
Ma et al. Experimental investigation on a novel integrated system of vapor compression and pump-driven two phase loop for energy saving in data centers cooling
Critoph et al. Proof of concept car adsorption air-conditioning system using a compact sorption reactor
US9239176B2 (en) Magnetic heating and cooling device
US10267543B2 (en) Adsorption refrigerator, method for controlling adsorption refrigerator, and cooling system
US11402136B2 (en) Drum-type magnetic refrigeration apparatus with multiple bed rings
JP2014095535A (en) Magnetic air-heating and cooling apparatus
JP6960492B2 (en) Energy conversion element and temperature control device using it
RU2573421C2 (en) Heat generator containing magnetocaloric material
JP2013217583A (en) Low-pressure loss magnetic working material structure for magnetic refrigerator
US20180112928A1 (en) Ultra-low temperature heat exchangers
JP2007093071A (en) Cooling device
KR101204325B1 (en) Compact active magnetic regenerative refrigerator
JP2014020735A (en) Air conditioner
CN207407545U (en) Magnetic refrigeration device and the magnetic refrigeration apparatus for including it
KR100695821B1 (en) Liminated absorber for absorbing refrigerator
JP2009216303A (en) Electromagnet-type magnetic refrigerating system
ITRM20130250A1 (en) CONTACTOR WITH HYDROPHOBIC FLAT MEMBRANES INTEGRATED IN HEAT EXCHANGE COMPONENTS.