JPH05164131A - Superconductive bearing device - Google Patents

Superconductive bearing device

Info

Publication number
JPH05164131A
JPH05164131A JP34988991A JP34988991A JPH05164131A JP H05164131 A JPH05164131 A JP H05164131A JP 34988991 A JP34988991 A JP 34988991A JP 34988991 A JP34988991 A JP 34988991A JP H05164131 A JPH05164131 A JP H05164131A
Authority
JP
Japan
Prior art keywords
permanent magnet
bearing device
magnetic flux
superconductor
superconducting bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34988991A
Other languages
Japanese (ja)
Inventor
Hiromasa Fukuyama
寛正 福山
Kazutoshi Seki
和利 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP34988991A priority Critical patent/JPH05164131A/en
Publication of JPH05164131A publication Critical patent/JPH05164131A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Abstract

PURPOSE:To increase load capacity and rigidity in the radial direction without complicating or enlarging a structure. CONSTITUTION:A permanent magnet 10 is fixed to the periphery of a. rotation axis 5. The permanent magnet 10 is composed of a plurality of permanent magnet elements 11a, 11b, 11c which are respectively axially magnetized and serially combined. The adjacent permanent magnet elements 11a, 11b and 11c have the same poles opposed to each other. In a housing 12 provided on the circumference of the permanent magnet 10, a superconductor 9 is held. A coolant is fed to a cooling jacket 15, so that the superconductor 9 is brought into a superconductive state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明に係る超電導軸受装置
は、例えば高速で回転する回転軸を、非接触状態で支承
する為に利用する。
BACKGROUND OF THE INVENTION The superconducting bearing device according to the present invention is used, for example, to support a rotating shaft rotating at high speed in a non-contact state.

【0002】[0002]

【従来の技術】高速で回転する回転軸は、滑り軸受や転
がり軸受等の通常の軸受装置では支持出来ず、上記回転
軸を非接触状態で支持する必要がある。この様に、回転
軸を非接触状態で支持する為の軸受装置として近年、超
電導体のピン止め効果を利用して、回転軸を浮上状態の
まま支持する超電導軸受装置が研究されている。
2. Description of the Related Art A rotating shaft rotating at a high speed cannot be supported by a normal bearing device such as a sliding bearing or a rolling bearing, and it is necessary to support the rotating shaft in a non-contact state. As described above, as a bearing device for supporting the rotating shaft in a non-contact state, a superconducting bearing device that supports the rotating shaft in a floating state by utilizing the pinning effect of the superconductor has been studied in recent years.

【0003】図11〜12は、従来から提案されている
超電導軸受装置の内、『1991年度春季低温工学・超
電導学会講演概要集』の第18頁に記載されたものを示
している。
11 to 12 show, among the conventionally proposed superconducting bearing devices, those described on page 18 of "Summary of Abstracts of 1991 Spring Low Temperature Engineering and Superconductivity Society".

【0004】この従来から知られている超電導軸受装置
は、スラスト方向の軸受を目的としたもので、原理を表
わした図11に示す様に、円環状の永久磁石1に複数の
超電導材製のペレット2、2を対向させる事で構成され
る。上記永久磁石1及びペレット2、2は、それぞれ銅
製の円板3、4内に埋め込まれている。又、イットリウ
ム系の酸化物超電導材(例えばYBa2Cu3Ox )により造ら
れたペレット2、2は同心円状に配置し、上記永久磁石
1に対向させている。
This conventionally known superconducting bearing device is intended for bearings in the thrust direction. As shown in FIG. 11 showing the principle, the annular permanent magnet 1 is made of a plurality of superconducting materials. The pellets 2 and 2 are opposed to each other. The permanent magnet 1 and the pellets 2 and 2 are embedded in copper disks 3 and 4, respectively. The pellets 2 made of an yttrium-based oxide superconducting material (for example, YBa 2 Cu 3 Ox) are arranged concentrically and face the permanent magnet 1.

【0005】上記ペレット2、2を埋め込んだ円板4を
冷却する事で、各ペレット2、2を超電導状態とすれ
ば、各ペレット2、2と永久磁石1との間に働くピン止
め効果により、上記各ペレット2、2と永久磁石1との
距離が変化する事を阻止する方向の力が発生する。即
ち、各ペレット2、2が超電導状態になると、上記永久
磁石1から出た磁束を各ペレット2、2内に拘束する、
ピン止め力が発生する。
By cooling the disk 4 in which the pellets 2 and 2 are embedded to bring the pellets 2 and 2 into a superconducting state, a pinning effect that acts between the pellets 2 and 2 and the permanent magnet 1 is obtained. A force is generated in a direction that prevents the distance between the pellets 2 and 2 and the permanent magnet 1 from changing. That is, when the pellets 2 and 2 are in a superconducting state, the magnetic flux emitted from the permanent magnet 1 is restrained in the pellets 2 and 2.
Pinning force is generated.

【0006】このピン止め力に基づき、永久磁石1とペ
レット2、2との距離が開く傾向となった場合には、両
部材1、2同士の間に吸引力が働き、反対に永久磁石1
とペレット2、2との距離が狭まる傾向となった場合に
は、両部材1、2同士の間に反発力が働く。この様な吸
引力或は反発力により、永久磁石1とペレット2、2と
の距離が一定に保持される。又、永久磁石1とペレット
2、2との位置関係が面方向に亙ってずれる事も、上記
ピン止め力に基づいて阻止される。従って、上記永久磁
石1を回転軸に固定すれば、この回転軸を浮上状態のま
ま回転自在に支持出来る。
When the distance between the permanent magnet 1 and the pellets 2 and 2 tends to increase due to this pinning force, an attractive force acts between the two members 1 and 2, and the permanent magnet 1 on the contrary.
When the distance between the pellets 2 and the pellets 2 tends to be narrowed, a repulsive force acts between the members 1 and 2. Due to such attraction or repulsion, the distance between the permanent magnet 1 and the pellets 2, 2 is kept constant. Also, the positional relationship between the permanent magnet 1 and the pellets 2 and 2 is prevented from shifting in the surface direction based on the pinning force. Therefore, if the permanent magnet 1 is fixed to the rotary shaft, the rotary shaft can be rotatably supported in a floating state.

【0007】図12は、上述の様な原理の超電導軸受装
置により、回転軸5を回転自在に支承した状態を示して
いる。それぞれ複数のペレット2、2を埋め込んだ1対
の円輪板4a、4aは、互いに間隔をあけて平行に配置
されており、ハウジング6の冷却ジャケット7内に貯溜
された液体窒素により冷却自在としている。上記1対の
円輪板4a、4aの内側を挿通された回転軸5の中間部
で、上記1対の円輪板4a、4aの間部分には、円輪板
3aを固定している。そしてこの円輪板3aの上下両面
にそれぞれ埋め込まれた永久磁石1、1を、上記ペレッ
ト2、2に対向させている。回転軸5の端部には電動モ
ータ8を設け、この回転軸5を回転駆動自在としてい
る。
FIG. 12 shows a state in which the rotary shaft 5 is rotatably supported by the superconducting bearing device having the above-described principle. A pair of circular plates 4a and 4a in which a plurality of pellets 2 and 2 are respectively embedded are arranged in parallel with each other with a space therebetween, and can be freely cooled by liquid nitrogen stored in the cooling jacket 7 of the housing 6. There is. An annular plate 3a is fixed between the pair of annular plates 4a and 4a at an intermediate portion of the rotary shaft 5 inserted through the inside of the pair of annular plates 4a and 4a. The permanent magnets 1 and 1 embedded in the upper and lower surfaces of the circular plate 3a face the pellets 2 and 2, respectively. An electric motor 8 is provided at the end of the rotary shaft 5 so that the rotary shaft 5 can be driven to rotate.

【0008】冷却ジャケット7内に液体窒素を送り込
み、各円輪板4a、4aに埋め込まれたペレット2、2
を超電導状態にした場合には、回転軸5の中間部に固定
された円輪板3aが、上記各円輪板4a、4aに対して
遠近動する事がなくなり、上記回転軸5は浮上状態で保
持され、この回転軸5を回転させる事が可能となる。
Liquid nitrogen is fed into the cooling jacket 7 and the pellets 2 and 2 embedded in the respective discs 4a and 4a.
In the superconducting state, the circular plate 3a fixed to the intermediate portion of the rotary shaft 5 does not move far and far with respect to the circular plates 4a and 4a, and the rotary shaft 5 is in the floating state. The rotation shaft 5 can be rotated.

【0009】[0009]

【発明が解決しようとする課題】ところが、上記従来か
ら提案されている構造のものを含めて、超電導軸受装置
は、スラスト方向に亙る剛性に比較してラジアル方向に
亙る剛性が低くなり易い。前記図12に示した構造の場
合、超電導材製のペレット2、2と永久磁石1、1と
を、スラスト方向に亙って互いに対向させている為、特
にラジアル方向に亙る剛性及び負荷容量が低いが、仮え
図13に示す様に、超電導体9と軸方向に着磁された永
久磁石1とをラジアル方向に亙って対向させた場合で
も、(図12に示した構造よりはラジアル剛性及び負荷
容量が向上はするが)必ずしも十分なラジアル剛性及び
負荷容量を得る事は難しい。
However, in the superconducting bearing device including the structure proposed above, the rigidity in the radial direction tends to be lower than the rigidity in the thrust direction. In the case of the structure shown in FIG. 12, since the pellets 2 and 2 made of a superconducting material and the permanent magnets 1 and 1 are opposed to each other in the thrust direction, the rigidity and load capacity particularly in the radial direction are improved. Although it is low, even if the superconductor 9 and the permanent magnet 1 magnetized in the axial direction are made to face each other in the radial direction, as shown in FIG. It is not always possible to obtain sufficient radial rigidity and load capacity although the rigidity and load capacity are improved.

【0010】即ち、超電導軸受装置は、永久磁石1から
出た磁束を超電導体9(ペレット2、2)の内部にピン
止め(拘束)する為、上記永久磁石1の着磁方向に亙る
剛性並びに負荷容量を大きく出来ても、着磁方向と直角
な方向の剛性並びに負荷容量を大きくする事は難しかっ
た。
That is, in the superconducting bearing device, since the magnetic flux generated from the permanent magnet 1 is pinned (restricted) inside the superconductor 9 (pellets 2 and 2), the rigidity and the rigidity in the magnetizing direction of the permanent magnet 1 are increased. Even if the load capacity could be increased, it was difficult to increase the rigidity and the load capacity in the direction perpendicular to the magnetization direction.

【0011】本発明は、上述の様な事情に鑑みて考えら
れたもので、構造が簡単で、永久磁石の着磁方向と直角
な方向の剛性と負荷容量とが大きな超電導軸受装置を提
供するものである。
The present invention has been conceived in view of the above circumstances, and provides a superconducting bearing device having a simple structure and a large rigidity and load capacity in the direction perpendicular to the magnetizing direction of the permanent magnet. It is a thing.

【0012】[0012]

【課題を解決するための手段】本発明の超電導軸受装置
は、軸と、この軸の周囲にこの軸に対する相対的回転を
自在として設けられた相手部材と、上記軸の外周面と相
手部材の内周面との一方の周面に固定された永久磁石
と、他方の周面に固定され、この永久磁石とラジアル方
向の隙間を介して対向する超電導体とを備える。
A superconducting bearing device of the present invention comprises a shaft, a mating member which is provided around the shaft so as to be rotatable relative to the shaft, an outer peripheral surface of the shaft and a mating member. A permanent magnet fixed to one peripheral surface of the inner peripheral surface and a superconductor fixed to the other peripheral surface and facing the permanent magnet with a radial gap therebetween.

【0013】特に、本発明の超電導軸受装置では、上記
永久磁石を、それぞれが軸方向に亙って着磁された複数
の永久磁石素子を、軸方向に亙って直列に、同極同士を
対向させた状態で組み合わせる事により構成している。
In particular, in the superconducting bearing device of the present invention, a plurality of permanent magnet elements, each of which is magnetized in the axial direction of the above-mentioned permanent magnet, are arranged in series in the axial direction and have the same poles. It is configured by combining them in a state of facing each other.

【0014】[0014]

【作用】上述の様に構成される本発明の超電導軸受装置
の場合、隣り合う永久磁石素子の端面から出た磁束は、
互いに反発し合って、軸方向とは直角な方向に広がる。
この為、複数の永久磁石素子により構成された永久磁石
の周囲に、各永久磁石素子の着磁方向とは直角方向の磁
束が存在する状態となる。
In the superconducting bearing device of the present invention configured as described above, the magnetic flux generated from the end faces of the adjacent permanent magnet elements is
They repel each other and spread in a direction perpendicular to the axial direction.
Therefore, a magnetic flux in a direction perpendicular to the magnetization direction of each permanent magnet element exists around the permanent magnet composed of a plurality of permanent magnet elements.

【0015】この結果、ピン止め力に基づいて上記永久
磁石と超電導体との間に、大きな力を作用させる事が可
能となり、ラジアル方向に亙る剛性並びに負荷容量の大
きな超電導軸受装置を構成出来る。
As a result, a large force can be applied between the permanent magnet and the superconductor based on the pinning force, and a superconducting bearing device having a large rigidity in the radial direction and a large load capacity can be constructed.

【0016】[0016]

【実施例】図1〜4は本発明の実施例を示している。鉛
直方向に設けられた回転軸5の中間部外周面には、永久
磁石10が外嵌固定されている。この永久磁石10は、
それぞれが円環状に形成され、軸方向(図1の上下方
向)に亙って着磁された3個の永久磁石素子11a、1
1b、11cを、軸方向に亙って直列に配置する事によ
り構成している。又、隣り合う永久磁石素子11a、1
1b同士の間、11b、11c同士の間には、それぞれ
非磁性材製の間座16、16を挟持するか、或は空隙を
設けている。更に、隣り合う永久磁石素子11a、11
b同士、11b、11c同士は、図2に示す様に、同極
同士(S極同士、N極同士)を対向させている。
1 to 4 show an embodiment of the present invention. The permanent magnet 10 is externally fitted and fixed to the outer peripheral surface of the intermediate portion of the rotary shaft 5 provided in the vertical direction. This permanent magnet 10
Each of the three permanent magnet elements 11a and 1a is formed in an annular shape and is magnetized in the axial direction (vertical direction in FIG. 1).
It is configured by arranging 1b and 11c in series along the axial direction. In addition, adjacent permanent magnet elements 11a, 1
Spacers 16 and 16 made of a non-magnetic material are sandwiched between 1b and 11b and 11c, respectively, or a space is provided between them. Furthermore, adjacent permanent magnet elements 11a, 11
As shown in FIG. 2, b and 11b and 11c have the same poles (S poles and N poles) opposed to each other.

【0017】一方、上記永久磁石10の周囲には、内周
側が開口した断面コ字形で、全体が円環状のハウジング
12が設けられている。そして、このハウジング12の
内周側開口部に、前記したYBa2Cu3Ox 等の、液体窒素温
度で超電導状態となる、円環状の超電導体9を固定して
いる。上記ハウジング12の一部外面には冷却剤供給口
13を、同じく反対側外面には冷却剤排出口14を、そ
れぞれ設けて、上記超電導体9の外周面とハウジング1
2の内周面とで囲まれる冷却ジャケット15内に、液体
窒素等の冷却剤を供給自在としている。
On the other hand, around the permanent magnet 10, there is provided a housing 12 having a U-shaped cross section with an opening on the inner peripheral side and having an annular shape as a whole. Then, an annular superconductor 9 which is in a superconducting state at the liquid nitrogen temperature, such as YBa 2 Cu 3 Ox, is fixed to the opening of the inner side of the housing 12. A coolant supply port 13 is provided on a part of the outer surface of the housing 12, and a coolant discharge port 14 is provided on the opposite side of the housing 12.
A coolant such as liquid nitrogen can be supplied freely into the cooling jacket 15 surrounded by the inner peripheral surface of 2.

【0018】上述の様に構成される本発明の超電導軸受
装置により、回転軸5を浮上状態で支持する場合には、
この回転軸5を、使用状態よりも少しだけ上昇させた状
態で、上記冷却ジャケット15内に冷却剤を送り込み、
上記超電導体9を冷却して超電導状態にした後、上記回
転軸5を上昇させていた力を解除する。この結果、回転
軸5は自重により少し下降する。この状態で、回転軸5
に固定の永久磁石10から出る磁束が、上記超電導体9
内にピン止めされて、上記回転軸5がそれ以上下降する
事を防止する。
When the rotating shaft 5 is supported in a floating state by the superconducting bearing device of the present invention configured as described above,
With the rotary shaft 5 raised slightly from the state of use, the coolant is fed into the cooling jacket 15,
After cooling the superconductor 9 into a superconducting state, the force that has raised the rotating shaft 5 is released. As a result, the rotary shaft 5 is slightly lowered due to its own weight. In this state, the rotary shaft 5
The magnetic flux emitted from the permanent magnet 10 fixed to the
It is pinned inside to prevent the rotary shaft 5 from further descending.

【0019】特に、本発明の超電導軸受装置の場合、図
3に示す様に、隣り合う永久磁石素子11a、11b、
11cの端面から出た磁束は、互いに反発し合って、軸
方向とは直角な方向に広がる。この為、上記3個の永久
磁石素子11a、11b、11cにより構成された永久
磁石10の周囲に、各永久磁石素子11a、11b、1
1cの着磁方向とは直角方向の磁束が存在する状態とな
る。
Particularly, in the case of the superconducting bearing device of the present invention, as shown in FIG. 3, adjacent permanent magnet elements 11a, 11b,
The magnetic fluxes emitted from the end surface of 11c repel each other and spread in a direction perpendicular to the axial direction. Thus, the permanent magnet elements 11a, 11b, 1b, 1b, 1c are arranged around the permanent magnet 10 composed of the three permanent magnet elements 11a, 11b, 11c.
A magnetic flux exists in a direction perpendicular to the magnetization direction of 1c.

【0020】超電導体9内に磁束をピン止めする事によ
り、永久磁石10をそのままの位置に保持しようとする
力は、磁束の方向で大きく、磁束の向きとは直角な方向
では小さくなる。従って、上述の様に各永久磁石素子1
1a、11b、11cの着磁方向とは直角方向の磁束が
存在すると、これら永久磁石素子11a、11b、11
cにより構成される永久磁石10を、ラジアル方向に亙
って保持する力が大きくなる。言い換えれば、超電導軸
受装置のラジアル方向に亙る剛性並びに負荷容量が大き
くなる。
By pinning the magnetic flux in the superconductor 9, the force for holding the permanent magnet 10 in the same position is large in the direction of the magnetic flux and small in the direction perpendicular to the direction of the magnetic flux. Therefore, as described above, each permanent magnet element 1
When there is a magnetic flux in a direction perpendicular to the magnetizing directions of 1a, 11b and 11c, these permanent magnet elements 11a, 11b and 11c
The force for holding the permanent magnet 10 constituted by c in the radial direction becomes large. In other words, the rigidity and load capacity of the superconducting bearing device in the radial direction are increased.

【0021】本発明者が、有限要素法により本発明の超
電導軸受装置を構成する永久磁石10の磁力線並びに磁
束密度分布を解析したところ、図3〜4に示した様な結
果を得られた。この内の図3は磁力線を、図4は、この
永久磁石10の外周面からラジアル方向に一定距離離れ
た部分の軸方向に亙る磁束密度分布を、それぞれ表わし
ている。図4の実線は、図2に示す様に、内径25m
m、外径36mm、長さ20mmの永久磁石10の外周面か
ら0.5mm離れた部分の磁束密度分布を、破線は同じ
く0.75mm離れた部分の磁束密度分布を、鎖線は同
じく1mm離れた部分の磁束密度分布を、それぞれ表わし
ている。尚、永久磁石10は、図4の横軸で24mm〜4
4mmの間に存在する。
When the present inventor analyzed the magnetic field lines and the magnetic flux density distribution of the permanent magnet 10 constituting the superconducting bearing device of the present invention by the finite element method, the results shown in FIGS. 3 to 4 were obtained. 3 shows the magnetic force lines, and FIG. 4 shows the magnetic flux density distribution in the axial direction of the portion distant from the outer peripheral surface of the permanent magnet 10 in the radial direction by a constant distance. As shown in Fig. 2, the solid line in Fig. 4 shows an inner diameter of 25m.
The magnetic flux density distribution is 0.5 mm away from the outer peripheral surface of the permanent magnet 10 having m, outer diameter 36 mm, and length 20 mm, the broken line is the magnetic flux density distribution 0.75 mm apart, and the chain line is 1 mm apart. The magnetic flux density distribution of each portion is shown. The permanent magnet 10 is 24 mm to 4 mm on the horizontal axis of FIG.
It exists between 4 mm.

【0022】これに対して、前記図13に示した超電導
軸受装置を構成する、(複数の永久磁石素子を組み合わ
せたものでない)図5に示す様な単一の永久磁石1の磁
力線は図6に示す様に、同じく磁束密度分布は図7に示
す様になる。又、3個の永久磁石素子11a、11b、
11cを直列に組み合わせた場合でも、図8に示す様
に、異極同士(S極とN極、N極とS極)を対向させた
場合には、磁力線は図9に示す様に、同じく磁束密度分
布は図10に示す様になる。
On the other hand, the magnetic lines of force of a single permanent magnet 1 as shown in FIG. 5 (which is not a combination of a plurality of permanent magnet elements) constituting the superconducting bearing device shown in FIG. 13 are shown in FIG. Similarly, the magnetic flux density distribution is as shown in FIG. Also, the three permanent magnet elements 11a, 11b,
Even when 11c are combined in series, when different poles (S pole and N pole, N pole and S pole) are opposed to each other as shown in FIG. 8, the magnetic force lines are the same as shown in FIG. The magnetic flux density distribution is as shown in FIG.

【0023】尚、本発明に使用する永久磁石10の磁束
密度分布を表わした図4の縦軸は、その他の永久磁石の
磁束密度分布を表わした図7、10の縦軸の2倍強の磁
束密度を表わしている。
The vertical axis of FIG. 4 showing the magnetic flux density distribution of the permanent magnet 10 used in the present invention is a little more than twice the vertical axis of FIGS. 7 and 10 showing the magnetic flux density distribution of other permanent magnets. It represents the magnetic flux density.

【0024】これら磁力線を表わした図3、6、9並び
に磁束密度分布を表わした図4、7、10を比較すれ
ば、本発明の超電導軸受装置に組み込んで使用される永
久磁石10のラジアル方向の磁束密度が高く、この結果
超電導軸受装置のラジアル方向に亙る剛性並びに負荷容
量が遥かに大きくなる事が解る。
Comparing FIGS. 3, 6 and 9 showing the lines of magnetic force and FIGS. 4, 7 and 10 showing the magnetic flux density distribution, the radial direction of the permanent magnet 10 used by being incorporated in the superconducting bearing device of the present invention. It is understood that the magnetic flux density is high, and as a result, the rigidity and load capacity in the radial direction of the superconducting bearing device become much larger.

【0025】即ち、図1、13に示す様な超電導軸受装
置を構成した場合、この超電導軸受装置のラジアル方向
に亙る負荷容量は、永久磁石10、1と超電導体9との
間に存在する磁束密度が高い程、大きくなる。この前提
で、上記図3、6、9並びに図4、7、10を比較する
と、前記した様な構成を有する永久磁石10を組み込ん
だ本発明の超電導軸受装置が、大きなラジアル負荷容量
を得られる事が解る。
That is, when the superconducting bearing apparatus as shown in FIGS. 1 and 13 is constructed, the load capacity in the radial direction of this superconducting bearing apparatus is the magnetic flux existing between the permanent magnets 10 and 1 and the superconductor 9. The higher the density, the larger. Comparing FIGS. 3, 6, 9 and FIGS. 4, 7, 10 on this premise, the superconducting bearing device of the present invention incorporating the permanent magnet 10 having the above-described structure can obtain a large radial load capacity. I understand.

【0026】一方、上記超電導軸受装置のラジアル方向
に亙る剛性は、上記永久磁石10、1の磁束強度が、ラ
ジアル方向に亙って大きく変化する程、大きくなる。言
い換えれば、磁束密度分布を表わした図4、7、10
で、実線と破線との差が大きい程、破線と鎖線
との差が大きい程、ラジアル剛性が大きくなる。この前
提で、図4、7、10を比較すれば、本発明の超電導軸
受装置が、大きなラジアル剛性を得られる事が解る。
On the other hand, the rigidity of the superconducting bearing device in the radial direction increases as the magnetic flux strength of the permanent magnets 10 and 1 changes greatly in the radial direction. In other words, the magnetic flux density distribution shown in FIGS.
Then, the greater the difference between the solid line and the broken line and the greater the difference between the broken line and the chain line, the greater the radial rigidity. Comparing FIGS. 4, 7 and 10 on this assumption, it can be seen that the superconducting bearing device of the present invention can obtain a large radial rigidity.

【0027】尚、図示の実施例では、隣り合う永久磁石
素子11a、11b同士の間、11b、11c同士の間
には、それぞれ非磁性材製の間座16、16を挟持する
か、或は空隙を設けている為、各永久磁石素子11a、
11b、11cの端面の内、互いに対向する面から出た
磁束のラジアル方向への導出が確実に行なわれる。これ
に対して、各永久磁石素子11a、11b、11cの端
面同士を直接当接させた場合には、上記端面から出た磁
束がラジアル方向に導出されにくく、ラジアル方向に亙
る負荷容量と剛性とを必ずしも十分に高く出来ない場合
がある。
In the illustrated embodiment, non-magnetic spacers 16 and 16 are sandwiched between the adjacent permanent magnet elements 11a and 11b and between the adjacent permanent magnet elements 11b and 11c, respectively. Since the air gap is provided, each permanent magnet element 11a,
Of the end faces of 11b and 11c, the magnetic flux emitted from the faces facing each other is reliably derived in the radial direction. On the other hand, when the end faces of the permanent magnet elements 11a, 11b, 11c are directly brought into contact with each other, the magnetic flux emitted from the end faces is hard to be derived in the radial direction, and the load capacity and rigidity in the radial direction are reduced. May not always be high enough.

【0028】又、図示の実施例では、固定のハウジング
12の内側に回転軸5を浮上状態で支持する場合に就い
て説明したが、これとは逆に、固定の枢軸の周囲にロー
タ等を浮上状態で支持する事も出来る。この場合には、
永久磁石10をロータの内周面に固定し、超電導体9を
枢軸の外周面に固定すると共に、この枢軸に冷却ジャケ
ット15を設ける。
In the illustrated embodiment, the case where the rotary shaft 5 is supported inside the fixed housing 12 in a floating state has been described, but conversely, a rotor or the like is provided around the fixed pivot. It can also be supported in a floating state. In this case,
The permanent magnet 10 is fixed to the inner peripheral surface of the rotor, the superconductor 9 is fixed to the outer peripheral surface of the pivot, and the cooling jacket 15 is provided on the pivot.

【0029】[0029]

【発明の効果】本発明の超電導軸受装置は、以上に述べ
た通り構成され作用する為、簡単な構造で小型に構成出
来るにも拘らず、ラジアル方向に亙る負荷容量と剛性と
を大きく出来る。この為、重量の嵩む回転軸等の支持が
可能となる。
Since the superconducting bearing device of the present invention is constructed and operates as described above, it is possible to increase the load capacity and rigidity in the radial direction in spite of its simple structure and small size. For this reason, it becomes possible to support the rotating shaft and the like, which are heavy in weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す縦断面図。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】本発明に使用する永久磁石の縦断面図。FIG. 2 is a vertical sectional view of a permanent magnet used in the present invention.

【図3】この永久磁石の磁力線を示す線図。FIG. 3 is a diagram showing magnetic lines of force of this permanent magnet.

【図4】同じく磁束密度分布を示す線図。FIG. 4 is a diagram similarly showing a magnetic flux density distribution.

【図5】単一の永久磁石の断面図。FIG. 5 is a sectional view of a single permanent magnet.

【図6】この永久磁石の磁力線を示す線図。FIG. 6 is a diagram showing magnetic lines of force of this permanent magnet.

【図7】同じく磁束密度分布を示す線図。FIG. 7 is a diagram similarly showing a magnetic flux density distribution.

【図8】永久磁石素子を本発明の場合と異なる状態で組
み合わせた永久磁石の縦断面図。
FIG. 8 is a longitudinal sectional view of a permanent magnet in which permanent magnet elements are combined in a state different from that of the present invention.

【図9】この永久磁石の磁力線を示す線図。FIG. 9 is a diagram showing magnetic lines of force of this permanent magnet.

【図10】同じく磁束密度分布を示す線図。FIG. 10 is a diagram showing a magnetic flux density distribution.

【図11】従来例の基本原理を示す斜視図。FIG. 11 is a perspective view showing the basic principle of a conventional example.

【図12】従来例の具体的構成を示す斜視図。FIG. 12 is a perspective view showing a specific configuration of a conventional example.

【図13】本発明に先立って考えた超電導軸受装置の縦
断面図。
FIG. 13 is a longitudinal sectional view of a superconducting bearing device considered prior to the present invention.

【符号の説明】[Explanation of symbols]

1 永久磁石 2 ペレット 3 円板 3a 円輪板 4 円板 4a 円輪板 5 回転軸 6 ハウジング 7 冷却ジャケット 8 電動モータ 9 超電導体 10 永久磁石 11a 永久磁石素子 11b 永久磁石素子 11c 永久磁石素子 12 ハウジング 13 冷却剤供給口 14 冷却剤排出口 15 冷却ジャケット 16 間座 1 Permanent Magnet 2 Pellet 3 Disc 3a Disc 4 Disc 4a Disc 5 Rotating shaft 6 Housing 7 Cooling jacket 8 Electric motor 9 Superconductor 10 Permanent magnet 11a Permanent magnet element 11b Permanent magnet element 11c Permanent magnet element 12 Housing 13 Coolant Supply Port 14 Coolant Discharge Port 15 Cooling Jacket 16 Spacer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軸と、この軸の周囲にこの軸に対する相
対的回転を自在として設けられた相手部材と、上記軸の
外周面と相手部材の内周面との一方の周面に固定された
永久磁石と、他方の周面に固定され、この永久磁石とラ
ジアル方向の隙間を介して対向する超電導体とを備えた
超電導軸受装置であって、上記永久磁石を、それぞれが
軸方向に亙って着磁された複数の永久磁石素子を、軸方
向に亙って直列に、同極同士を対向させた状態で組み合
わせる事により構成した超電導軸受装置。
1. A shaft, a mating member provided around the shaft so as to be rotatable relative to the shaft, and fixed to one peripheral surface of an outer peripheral surface of the shaft and an inner peripheral surface of the mating member. A permanent magnet, and a superconductor fixed to the other circumferential surface and facing the permanent magnet with a radial gap therebetween, the superconducting bearing device comprising: A superconducting bearing device constituted by combining a plurality of magnetized permanent magnet elements in series in the axial direction with the same poles facing each other.
JP34988991A 1991-12-10 1991-12-10 Superconductive bearing device Pending JPH05164131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34988991A JPH05164131A (en) 1991-12-10 1991-12-10 Superconductive bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34988991A JPH05164131A (en) 1991-12-10 1991-12-10 Superconductive bearing device

Publications (1)

Publication Number Publication Date
JPH05164131A true JPH05164131A (en) 1993-06-29

Family

ID=18406797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34988991A Pending JPH05164131A (en) 1991-12-10 1991-12-10 Superconductive bearing device

Country Status (1)

Country Link
JP (1) JPH05164131A (en)

Similar Documents

Publication Publication Date Title
EP0467341B1 (en) Superconducting bearing device
JP2547287B2 (en) Superconducting bearing device
JPH07229517A (en) Magnetic bearing device of rotor shaft
JPH0737812B2 (en) Superconducting bearing device
JP3554070B2 (en) Superconducting magnetic bearing device
JP3554054B2 (en) Superconducting bearing device
JP2799802B2 (en) Superconducting levitation type rotating device
JPH05164131A (en) Superconductive bearing device
JP3177847B2 (en) Superconducting bearing device
JPH0681845A (en) Supercondctive bearing device
JP3151492B2 (en) Slide device
JPH08200368A (en) Superconducting magnetic bearing device
JP3324319B2 (en) Magnetic bearing device
JP3616856B2 (en) Bearing device
JP3385771B2 (en) Superconducting magnetic bearing device
JPH08219158A (en) Magnetic bearing device
JPH07327338A (en) Superconducting levitation rotary system
JPH08288124A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
JPH09233803A (en) Braking device for high-speed rotating equipment
JP3397823B2 (en) Superconducting bearing device
JP3149461B2 (en) Superconducting bearing device
JPH04296218A (en) Superconductive bearing device
JPH01295019A (en) Bearing
JP3232463B2 (en) Superconducting bearing device
JPH08177857A (en) Superconductive bearing device