JPH076541B2 - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH076541B2
JPH076541B2 JP3904487A JP3904487A JPH076541B2 JP H076541 B2 JPH076541 B2 JP H076541B2 JP 3904487 A JP3904487 A JP 3904487A JP 3904487 A JP3904487 A JP 3904487A JP H076541 B2 JPH076541 B2 JP H076541B2
Authority
JP
Japan
Prior art keywords
rotating shaft
permanent magnet
stationary
type
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3904487A
Other languages
Japanese (ja)
Other versions
JPS63210414A (en
Inventor
正幸 一文字
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3904487A priority Critical patent/JPH076541B2/en
Publication of JPS63210414A publication Critical patent/JPS63210414A/en
Publication of JPH076541B2 publication Critical patent/JPH076541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0427Passive magnetic bearings with permanent magnets on both parts repelling each other for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は回転機の磁気軸受装置に関する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a magnetic bearing device for a rotating machine.

(従来の技術) 磁気軸受装置は、磁石間の反発力あるいは吸引力により
回転軸を非接触に支持する装置であり、超高速運転や潤
滑剤の混入を嫌う真空中での運転など接触形の軸受では
使用できない分野に適している。従来技術による磁気軸
受では、永久磁石同志の反発力を用いる反発形永久磁石
式と、電磁石に流れる電流を回転軸の振動に合わせて調
節して電磁石と回転軸の間の吸引力を制御する吸引形電
磁石式とが代表的な形式である。
(Prior Art) A magnetic bearing device is a device that supports a rotating shaft in a non-contact manner by a repulsive force or an attractive force between magnets, and is of a contact type such as ultra-high speed operation or operation in a vacuum where mixing of lubricant is disliked. Suitable for fields where bearings cannot be used. The magnetic bearings according to the prior art include a repulsive permanent magnet type that uses the repulsive force of permanent magnets, and an attraction method that controls the attraction force between the electromagnet and the rotation axis by adjusting the current flowing in the electromagnet according to the vibration of the rotation axis. A typical type is the electromagnet type.

第7図は、反発形永久磁石式ラジカル軸受装置の構造を
説明する縦断面図であり、回転軸(1)に半径方向に磁
束を有する円筒永久磁石(2)を同心に取り付け、その
外側に永久磁石(2)と極性が逆方向の円筒永久磁石
(3)を静止部(7)に固定してある。このとき、2つ
の永久磁石は互いに反発し合うため回転軸(1)のポテ
ンシャルは静止側円筒永久磁石(3)の中心(C)にお
いて安定となり、回転軸(1)が中心(C)から偏心す
ると回転軸(1)を中心(C)へ押しもどす方向に磁力
が作用するので、回転軸(1)は静止部と接触すること
なく支持される。
FIG. 7 is a vertical cross-sectional view for explaining the structure of a repulsive permanent magnet type radical bearing device, in which a cylindrical permanent magnet (2) having a magnetic flux in the radial direction is concentrically attached to the rotating shaft (1) and is provided outside thereof. A cylindrical permanent magnet (3) having a polarity opposite to that of the permanent magnet (2) is fixed to the stationary portion (7). At this time, since the two permanent magnets repel each other, the potential of the rotating shaft (1) becomes stable at the center (C) of the stationary side cylindrical permanent magnet (3), and the rotating shaft (1) is eccentric from the center (C). Then, since the magnetic force acts in the direction of pushing the rotating shaft (1) back to the center (C), the rotating shaft (1) is supported without contacting the stationary portion.

反発形の永久磁石式磁気軸受装置に対して、第8図に概
略構造を示す吸引形電磁石式ラジカル磁気軸受装置で
は、回転軸(1)の外周に配設された電磁石(4)に励
磁電流Iを通電すると、回転軸(1)には電磁石(4)
の生ずる磁束によって磁気吸引力が作用するが、励磁電
流Iが一定であると、回転軸(1)は不安定な状態にあ
って変位が生じた場合はその方向へ吸引されてしまうの
で、制御回路(6)は位置センサ(5)によって計測さ
れた回転軸(1)の変位をもとに変位を修復するために
必要な励磁電流を計算して電磁石(4)が発生する磁束
密度を調節して回転軸(1)の安定性を保持する。
In contrast to the repulsive permanent magnet type magnetic bearing device, in the attraction type electromagnet type radical magnetic bearing device whose schematic structure is shown in FIG. 8, the exciting current is applied to the electromagnet (4) arranged on the outer periphery of the rotating shaft (1). When I is energized, the rotating shaft (1) has an electromagnet (4)
The magnetic attraction force is generated by the magnetic flux generated by, but if the exciting current I is constant, the rotating shaft (1) is in an unstable state and if displacement occurs, it is attracted in that direction. The circuit (6) adjusts the magnetic flux density generated by the electromagnet (4) by calculating the exciting current required to restore the displacement based on the displacement of the rotating shaft (1) measured by the position sensor (5). The stability of the rotary shaft (1) is maintained.

以上はラジアル軸受装置に関するものであるがスラスト
軸受装置についても同様で、永久磁石式では反発形が電
磁石式では吸引形がそれぞれ主流である。
The above description relates to the radial bearing device, but the same applies to the thrust bearing device, and the repulsive type is the main type in the permanent magnet type and the suction type is the main type in the electromagnet type.

上述のように、磁気軸受装置は回転軸を非接触で支持す
るので、ころがり軸受やジャーナル軸受などでは焼き付
きのため使用できない超高速運転が可能であり、駆動装
置の軸受損失も皆無に等しくなる。また、潤滑剤が不要
のため、真空中の運転も極めて容易である。このように
すぐれた特徴を有している反面、従来技術では以下に説
明するような解決すべき問題が存在し、とりわけ大形機
械への適用がはばまれている。
As described above, since the magnetic bearing device supports the rotating shaft in a non-contact manner, it is possible to operate at an extremely high speed, which cannot be used in rolling bearings or journal bearings due to seizure, and the bearing loss of the drive device becomes zero. Further, since a lubricant is unnecessary, operation in vacuum is extremely easy. In spite of having such excellent characteristics, there are problems to be solved in the prior art as described below, and their application to large machines is particularly hindered.

まず、反発形永久磁石式磁気軸受においては、永久磁石
の磁力が調節できないために回転軸の振動を制御するこ
とができない。このため、危険速度通過時に不つり合い
により回転軸の振動が大きくなるので、回転軸のつり合
せを厳密に行え必要がある。したがって、その適用は小
形でかつ回転速度が比較的低いものに限られ、不つり合
い力が大きい大形機械や超高速運転への適用は困難であ
る。
First, in the repulsive permanent magnet type magnetic bearing, the vibration of the rotating shaft cannot be controlled because the magnetic force of the permanent magnet cannot be adjusted. For this reason, the vibration of the rotating shaft becomes large due to imbalance when passing the dangerous speed, and therefore it is necessary to strictly balance the rotating shaft. Therefore, its application is limited to those that are small and have a relatively low rotational speed, and it is difficult to apply it to large machines with a large unbalanced force and ultra-high speed operation.

次に、吸引形電磁石式磁気軸受装置では、回転軸の荷重
を支持するため非常に大きな励磁電流を電磁石に供給し
なければならず、そのために大形の電源装置が必要であ
り、運転には大電力の消費を伴う。さらに、この励磁電
流を制御して回転軸の安定性を保持することから、制御
装置も大電流を制御できる大容量なものが必要である上
に、停電あるいは電源装置や制御装置が故障した場合に
は、回転軸の位置制御が不可能となるので、回転軸が静
止部と衝突して機械の破損へつながりかねないため、補
助電源や補助回路および回転軸を機械的に支持する補助
軸受等種々の保障装置を設ける必要があり、装置および
信頼性の上で吸引形電磁石式磁気軸受には問題が多く、
かつ大形化には限界がある。
Next, in the attraction type electromagnet type magnetic bearing device, a very large exciting current must be supplied to the electromagnet in order to support the load of the rotating shaft. It consumes a lot of power. Furthermore, since this exciting current is controlled to maintain the stability of the rotating shaft, the control device also needs a large capacity capable of controlling a large current, and also in the event of a power failure or failure of the power supply device or control device. Since it becomes impossible to control the position of the rotating shaft, the rotating shaft may collide with the stationary part and damage the machine.Therefore, an auxiliary power supply, an auxiliary circuit, an auxiliary bearing that mechanically supports the rotating shaft, etc. It is necessary to install various security devices, and there are many problems with the suction type electromagnet type magnetic bearing in terms of the device and reliability.
And there is a limit to the size.

(発明の解決しようとする問題点) このように従来技術による磁気軸受では、反発形永久磁
石式にあっては回転軸の制振性の欠除、吸引形電磁石式
にあっては大電流の消費、これに伴う大容量の電源およ
び制御装置の付帯、故障に対する保障装置の必要性な
ど、それぞれに問題がある上に、これらの問題を原因に
して両方式とも適用機種の大形化をはかるのは非常に困
難である。
(Problems to be Solved by the Invention) As described above, in the magnetic bearing according to the prior art, in the repulsion type permanent magnet type, the vibration damping property of the rotating shaft is omitted, and in the attraction type electromagnet type, a large current There are problems with consumption, accompanying large-capacity power supply and control device, necessity of security device for failure, etc., and due to these problems, both types will increase the size of applicable models. Is very difficult.

そこで、本発明においては、これら従来技術における問
題点に鑑み、消費電力が小さく、したがって大容量の電
源および保障装置を不要にして簡単で、かつ回転軸の振
動制御が可能な磁気軸受装置の提供を目的とする。
In view of these problems in the prior art, the present invention provides a magnetic bearing device that consumes less power and therefore does not require a large-capacity power source and a security device and that can control vibration of a rotating shaft. With the goal.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 上記目的を達成するために本発明においては、回転軸と
これに対向する静止部とにそれぞれギャップを介して対
向装着した磁石と、静止側磁石と静止部との間に設けた
電歪素子と、回転軸の変位を検出する位置センサと、位
置センサからの変位信号を入力して前記電歪素子を変形
させる電力を供給して静止側磁石の位置を変化させ、回
転軸の振動を小さくさせる制御装置とを備えたことを特
徴とする磁気軸受装置を提供する。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the present invention, a magnet that is oppositely attached to a rotating shaft and a stationary portion that faces the rotating shaft via a gap, a stationary magnet and a stationary portion, respectively. An electrostrictive element provided between the position sensor for detecting the displacement of the rotating shaft, a displacement signal from the position sensor, and the power for deforming the electrostrictive element is supplied to move the position of the stationary magnet. There is provided a magnetic bearing device including a control device that changes the vibration of a rotating shaft to reduce the vibration.

(作 用) このように構成されたものにおいては、磁石間の反発力
あるいは吸引力によって回転軸を所定の位置に保つもの
であるが、回転軸が変位すると振動が生ずるので、位置
センサで変位を検出し、位置センサからの変位信号を制
御装置に入力し、制御装置は電歪素子を変形させて静止
側磁石の位置を変化させ、磁力を調整し、回転軸の振動
を小さくし、安定した運転を継続させるものである。
(Operation) With this type of structure, the revolving force between the magnets or the attraction force keeps the rotating shaft in a predetermined position. The control device inputs the displacement signal from the position sensor to the control device, which deforms the electrostrictive element to change the position of the stationary magnet, adjusts the magnetic force, reduces the vibration of the rotating shaft, and stabilizes. The operation is continued.

(実施例) 実施例1 以下、本発明の第1の実施例について説明する。(Example) Example 1 Hereinafter, a first example of the present invention will be described.

第1図は、実施例1の反発形永久磁石式ラジアル磁気軸
受装置の概略構造を示す縦断面図であり、また、第2図
はその上面図である。磁束の方向が半径方向で極性は互
いに反対の2つの円筒永久磁石(2),(3)を用意
し、永久磁石(2)は回転軸(1)に、永久磁石(3)
は円周に等配された電歪素子(4)を介してケーシング
である静止部(7)に装着する。そして、回転軸(1)
の変位を検出する2個の位置センサ(5)を直角方向か
ら回転軸(1)に向けて配置し、図示しない取付装置に
固定する。位置センサ(5)からの変位信号を入力して
電歪素子(4)変形させる電力を供給して静止側永久磁
石(3)の位置を変化させ、回転軸の振動を小さくさせ
る制御装置(6)を設ける。
FIG. 1 is a vertical sectional view showing a schematic structure of a repulsive permanent magnet type radial magnetic bearing device according to a first embodiment, and FIG. 2 is a top view thereof. Two cylindrical permanent magnets (2) and (3) having magnetic flux directions of radial directions and opposite polarities are prepared. The permanent magnet (2) is attached to the rotary shaft (1) and the permanent magnet (3).
Is attached to the stationary part (7) which is a casing through the electrostrictive elements (4) equally distributed on the circumference. And the rotation axis (1)
The two position sensors (5) for detecting the displacement of (1) are arranged from the right angle direction toward the rotating shaft (1) and fixed to a mounting device (not shown). A control device (6) for inputting a displacement signal from the position sensor (5) and supplying electric power for deforming the electrostrictive element (4) to change the position of the stationary permanent magnet (3) to reduce vibration of the rotating shaft. ) Is provided.

次にこの実施例1の作用を説明する。上記のようにする
と、極性が反対であるために2つの永久磁石(2),
(3)の間には反発磁力が生じて回転軸(1)は空中に
支持されるが、回転軸(1)を支持する磁力Fは、回転
側永久磁石(2)および静止側永久磁石(3)の磁荷を
それぞれqR,qS両者の相対位置をr、比例定数をKとす
れば で与えられる。ところで、静止側永久磁石(3)は、位
置決め装置として設けられた電歪素子(4)によりその
位置を移動させることができるので、電歪素子(4)を
制御することによって両永久磁石(2)および(3)の
相対的位置rを変更して回転軸(1)の支持力を調節
し、回転軸(1)の振動を制御することが可能である。
すなわち、位置センサ(5)によって測定された回転軸
(1)の変位に対して、回転軸(1)の振動を極小とす
る回転軸の最適な支持力F0が存在するが、制御装置
(6)は式(101)からF0を得るための永久磁石
(2),(3)の相対位置r0を求め、その位置まで電歪
素子(4)を制御して静止側永久磁石(3)を移動させ
る。このように、静止側永久磁石(3)の位置制御を行
うことにより、永久磁石式ながら回転軸(1)の振動を
制御可能な磁気軸受が形成される。
Next, the operation of the first embodiment will be described. With the above, the two permanent magnets (2), due to the opposite polarities,
Although the repulsive magnetic force is generated between (3) and the rotating shaft (1) is supported in the air, the magnetic force F supporting the rotating shaft (1) is equal to the rotating side permanent magnet (2) and the stationary side permanent magnet (2). Let 3 be the relative position of q R and q S , and let the proportional constant be K. Given in. By the way, since the stationary permanent magnet (3) can be moved in position by an electrostrictive element (4) provided as a positioning device, both permanent magnets (2) can be controlled by controlling the electrostrictive element (4). It is possible to control the vibration of the rotating shaft (1) by changing the relative position r of (3) and (3) to adjust the supporting force of the rotating shaft (1).
That is, there is an optimum supporting force F 0 of the rotary shaft that minimizes the vibration of the rotary shaft (1) with respect to the displacement of the rotary shaft (1) measured by the position sensor (5). 6) obtains the relative position r 0 of the permanent magnets (2), (3) for obtaining F 0 from the equation (101), controls the electrostrictive element (4) to that position, and controls the stationary side permanent magnet (3 ) Move. In this way, by controlling the position of the stationary side permanent magnet (3), a magnetic bearing capable of controlling the vibration of the rotating shaft (1) while being a permanent magnet type is formed.

実施例2 第3図は同じく反発形永久磁石式ラジアル磁気軸受装置
の横断面図であるが、第2図の実施例1では静止側永久
磁石(3)は一体であるのに対して、この実施例2では
静止側永久磁石(3)は4個に等分割され、それぞれが
電歪素子(4)に装着されている。静止側永久磁石
(3)は個々に位置センサ(5)によって計測された回
転軸(1)の変位をもとに回転軸(1)との相対的位置
を制御する。他は実施例1と同様である。
Embodiment 2 FIG. 3 is a transverse sectional view of a repulsive permanent magnet type radial magnetic bearing device, which is the same as the stationary permanent magnet (3) in Embodiment 1 of FIG. In the second embodiment, the stationary permanent magnet (3) is equally divided into four pieces, each of which is attached to the electrostrictive element (4). The stationary permanent magnet (3) controls the relative position with respect to the rotating shaft (1) based on the displacement of the rotating shaft (1) individually measured by the position sensor (5). Others are the same as in the first embodiment.

このようにすると、静止側永久磁石(3)は各分割部ご
とに移動できるので、位置制御が精密にできる。
By doing so, the stationary permanent magnet (3) can be moved for each divided portion, so that the position control can be performed precisely.

また、第1,第2の実施例の変形例として、上述の2つの
反発形永久磁石式ラジアル磁気軸受と同一の構成で、回
転側永久磁石(2)および静止側永久磁石(3)の極性
を同方向にした場合、回転軸(1)に作用する支持力が
吸引力となることを考慮して、同様の制御を行うことに
より吸引形永久磁石式ラジアル磁気軸受装置が形成され
る。
As a modification of the first and second embodiments, the polarities of the rotating permanent magnet (2) and the stationary permanent magnet (3) are the same as those of the above-described two repulsive permanent magnet radial magnetic bearings. In the same direction, in consideration of the fact that the supporting force acting on the rotary shaft (1) becomes the attraction force, the attraction type permanent magnet radial magnetic bearing device is formed by performing the same control.

実施例3 第4図は、第3の実施例の吸引形電磁石式ラジアル磁気
軸受装置の構造を説明する縦断面図で、静止側電磁石
(3a)をケーシングである静止部(7)に電歪素子
(4)を介して位置制御が可能に取り付けてある。静止
側電磁石(3a)は、一定電流を供給されて一定磁束を発
生し、渦電流による発熱を避けるため回転軸(1)に装
着された積層珪素鋼板からなる回転側磁石鉄心(2a)に
磁気吸引力を作用させる。
Third Embodiment FIG. 4 is a vertical cross-sectional view for explaining the structure of the suction type electromagnet type radial magnetic bearing device of the third embodiment, in which the stationary side electromagnet (3a) is electrostricted to the stationary part (7) which is a casing. It is mounted such that position control is possible via the element (4). The stationary side electromagnet (3a) is supplied with a constant current to generate a constant magnetic flux, and the rotating side magnet iron core (2a) made of laminated silicon steel plate is attached to the rotating shaft (1) to avoid heat generation due to eddy current. Apply suction force.

このようにすると制御装置(6)は、位置センサ(5)
によって測定された回転軸(1)の変位から、静止側電
磁石(3a)の位置決め装置である電歪素子(4)を制御
して、回転軸(1)に作用する電磁吸引力を調整して回
転軸(1)の安定に支持する。そして吸引形であるから
回転側磁石は鉄心(2a)だけで良い。
In this way, the control device (6) can operate the position sensor (5).
By controlling the electrostrictive element (4) which is a positioning device for the stationary side electromagnet (3a) from the displacement of the rotating shaft (1) measured by, the electromagnetic attraction force acting on the rotating shaft (1) is adjusted. Stable support of the rotating shaft (1). And since it is an attraction type, only the iron core (2a) is required as the rotating side magnet.

実施例4 第5図は第4の実施例の吸引形電磁石式磁気軸受装置を
示す。これは荷重の大きな回転軸(1)を支持するため
に静止側の磁石を超電導電磁石(3b)にて構成したもの
であって、他は実施例3(第4図参照)を横形にして軸
受台(8)で支えたものと同じである。
Fourth Embodiment FIG. 5 shows an attraction type electromagnet type magnetic bearing device of a fourth embodiment. This is one in which the stationary magnet is composed of a superconducting electromagnet (3b) in order to support the rotating shaft (1) with a large load, and the other embodiment is a horizontal type bearing (see FIG. 4). It is the same as the one supported by the table (8).

このようにすれば超電導電磁石(3b)を使用したことか
ら強力な磁束を得ることができ、しかも電歪素子(4)
で超電導磁石(3b)の位置決めをするから、超電導磁石
(3b)は一定磁束を発生しておれば良く、磁束変化によ
る超電導性喪失の恐れがなく、大形の機械にも適用が可
能である。
By doing so, a strong magnetic flux can be obtained due to the use of the superconducting electromagnet (3b), and moreover, the electrostrictive element (4)
Since the superconducting magnet (3b) is positioned by, the superconducting magnet (3b) only needs to generate a constant magnetic flux, there is no fear of loss of superconductivity due to changes in magnetic flux, and it can be applied to large machines. .

実施例5 第6図は第5の実施例を示し、反発形永久磁石式スラス
ト磁気軸受装置の構造を説明する縦断面図である。軸方
向に磁束を有する円盤状の永久磁石(2)を回転軸
(1)に同心に取り付け、永久磁石(2)に対向してそ
の両側に永久磁石(2)と逆の極性を有する円環状の永
久磁石(3)を位置決め装置である電歪素子(4)を介
して永久磁石(2)と相対的に移動可能にケーシングか
らなる静止部(7)に装着する。回転軸(1)の軸端に
設けた位置センサ(5)は、回転軸(1)の位置を測定
し制御装置(6)へ伝える。制御装置(6)は回転軸
(1)の振動を極小とする磁力が得られる永久磁石
(3)の位置を計算して、電歪素子(4)を制御して永
久磁石(3)をその位置まで移動させ、回転軸(1)を
安定に支持する。
Fifth Embodiment FIG. 6 is a vertical sectional view showing the structure of a repulsive permanent magnet type thrust magnetic bearing device according to a fifth embodiment. A disk-shaped permanent magnet (2) having a magnetic flux in the axial direction is concentrically attached to the rotary shaft (1), and is opposed to the permanent magnet (2) and has an annular shape opposite to the permanent magnet (2) on both sides thereof. The permanent magnet (3) is attached to the stationary portion (7) composed of a casing so as to be movable relative to the permanent magnet (2) via an electrostrictive element (4) which is a positioning device. A position sensor (5) provided at the shaft end of the rotary shaft (1) measures the position of the rotary shaft (1) and transmits it to the control device (6). The control device (6) calculates the position of the permanent magnet (3) at which a magnetic force that minimizes the vibration of the rotating shaft (1) is obtained, and controls the electrostrictive element (4) to control the permanent magnet (3). It is moved to the position and the rotary shaft (1) is stably supported.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、静止側磁石の回転
軸との相対位置を電歪素子で決めるので、消費電力が小
さく、したがって大容量の電源および保障装置を不要に
して、簡単でかつ回転軸の振動制御が可能な磁気軸受装
置を提供することができる。
As described above, according to the present invention, since the relative position of the stationary side magnet to the rotation axis is determined by the electrostrictive element, the power consumption is small, and therefore a large-capacity power source and a security device are unnecessary, and A magnetic bearing device capable of controlling vibration of a rotating shaft can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の磁気軸受装置の第1の実施例を示す縦
断面、第2図は第1図の各部品の配置を示す上面図、第
3図は第2の実施例の各部品の配置を示す上面図、第4
図ないし第6図は第3ないし第5の実施例を示す縦断面
図、第7図および第8図はそれぞれ異なる従来例を示す
縦断面図である。 1……回転軸、2……回転側磁石である永久磁石、 2a……回転側磁石である鉄心、 3……静止側磁石である永久磁石、 3a……静止側磁石である電磁石、 3b……静止側磁石である超電導電磁石、 4……電歪素子、5……位置センサ、 6……制御装置、7……静止部であるケーシング、 8……軸受台。
FIG. 1 is a longitudinal section showing a first embodiment of the magnetic bearing device of the present invention, FIG. 2 is a top view showing the arrangement of the parts shown in FIG. 1, and FIG. 3 is a part showing the second embodiment. 4 is a top view showing the arrangement of FIG.
FIGS. 6 to 6 are vertical sectional views showing the third to fifth embodiments, and FIGS. 7 and 8 are vertical sectional views showing different conventional examples. 1 ... Rotation axis, 2 ... Rotation side permanent magnet, 2a ... Rotation side magnet iron core, 3 ... Stationary side permanent magnet, 3a ... Stationary side electromagnet, 3b ... ... Superconducting electromagnet which is a stationary side magnet, 4 ... Electrostrictive element, 5 ... Position sensor, 6 ... Control device, 7 ... Casing which is a stationary part, 8 ... Bearing stand.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転軸とこれに対向する静止部とにそれぞ
れギャップを介して対向装着した磁石と、静止側磁石と
静止部との間に設けた電歪素子と、回転軸の変位を検出
する位置センサと、位置センサからの変位信号を入力し
て前記電歪素子を変形させる電力を供給して静止側磁石
の位置を変化させ、回転軸の振動を小さくさせる制御装
置とを備えたことを特徴とする磁気軸受装置。
Claim: What is claimed is: 1. A magnet mounted opposite to a rotary shaft and a stationary portion facing the rotary shaft through a gap, an electrostrictive element provided between the stationary magnet and the stationary portion, and displacement of the rotary shaft detected. And a controller for inputting a displacement signal from the position sensor and supplying electric power for deforming the electrostrictive element to change the position of the stationary magnet to reduce vibration of the rotating shaft. Magnetic bearing device characterized by.
JP3904487A 1987-02-24 1987-02-24 Magnetic bearing device Expired - Lifetime JPH076541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3904487A JPH076541B2 (en) 1987-02-24 1987-02-24 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3904487A JPH076541B2 (en) 1987-02-24 1987-02-24 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPS63210414A JPS63210414A (en) 1988-09-01
JPH076541B2 true JPH076541B2 (en) 1995-01-30

Family

ID=12542120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3904487A Expired - Lifetime JPH076541B2 (en) 1987-02-24 1987-02-24 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH076541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156528A (en) * 2007-12-27 2009-07-16 Canon Anelva Technix Corp Cooling apparatus and vacuum cooling apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590568B2 (en) * 1989-08-30 1997-03-12 三菱マテリアル株式会社 Metal tube inner and outer surface processing equipment
JP4138735B2 (en) * 2004-11-29 2008-08-27 株式会社イワキ Magnetic bearing
JP2012008025A (en) * 2010-06-25 2012-01-12 Hara Doki Kk Tape measure
DE102012216450A1 (en) * 2012-09-14 2014-03-20 Pfeiffer Vacuum Gmbh Method for centering a vacuum pump or a rotation unit for a vacuum pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156528A (en) * 2007-12-27 2009-07-16 Canon Anelva Technix Corp Cooling apparatus and vacuum cooling apparatus
JP4525984B2 (en) * 2007-12-27 2010-08-18 キヤノンアネルバ株式会社 Cooling device and vacuum cooling device

Also Published As

Publication number Publication date
JPS63210414A (en) 1988-09-01

Similar Documents

Publication Publication Date Title
US6877963B2 (en) Vacuum pump
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US20030155829A1 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
JPS61218355A (en) Magnetically levitating actuator having rotation positioning function
JP2008537872A (en) Method for stabilizing a magnetically levitated object
JP2005532516A (en) Thrust load relaxation device for rotor bearing system using permanent magnet
US4983869A (en) Magnetic bearing
JP3057047B2 (en) Magnetic suspension
US3929390A (en) Damper system for suspension systems
Asama et al. Suspension performance of a two-axis actively regulated consequent-pole bearingless motor
JP4200775B2 (en) Flywheel power storage device
JPH076541B2 (en) Magnetic bearing device
JP2002257136A (en) Magnetic bearing
JPH08322194A (en) Axial magnetic levitation motor and rotating machine employing it
US6362549B1 (en) Magnetic bearing device
JP3930834B2 (en) Axial type magnetic levitation rotating equipment and centrifugal pump
JPH0674234A (en) Repulsion magnetic levitation type rotation device
JPH048911A (en) Magnetic bearing device
JP2002021850A (en) Magnetic bearing
JP2004293598A (en) Magnetic bearing
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JP4200776B2 (en) Magnetic bearing device
JP2004286175A (en) Magnetic bearing device
JP2546997B2 (en) Non-contact support method
JPS61210290A (en) Magnetic bearing equipment of turbo-molecular pump