JPH048911A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH048911A
JPH048911A JP11041490A JP11041490A JPH048911A JP H048911 A JPH048911 A JP H048911A JP 11041490 A JP11041490 A JP 11041490A JP 11041490 A JP11041490 A JP 11041490A JP H048911 A JPH048911 A JP H048911A
Authority
JP
Japan
Prior art keywords
rotating shaft
signal
circuit
output
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041490A
Other languages
Japanese (ja)
Inventor
Atsushi Ikariga
厚 碇賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11041490A priority Critical patent/JPH048911A/en
Publication of JPH048911A publication Critical patent/JPH048911A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To support a magnetic bearing device with an auxiliary bearing in a stable state even when abnormal vibration is generated on a rotating shaft by outputting a signal of a specific level when the output signal of a displacement sensor exceeds a set value and by adding between a phase compensating circuit and one power amplifier and exciting an electromagnet to attract the rotating shaft to one side. CONSTITUTION:A signal detected by displacement detection sensors 4a, 4b of a rotating shaft 1 is computed at a position deflection arithmetic circuit 7a to get difference between it and a position setter 6a. This output is compensated at a phase compensating circuit 8a, a comparing circuit 13a compares the output of the position deflection arithmetic circuit 7a and a standard setting circuit 14a and a specific direct current signal is output. Additionally, an electric power amplifier 9 flows a current which is larger than 10a by the output of the comparing circuit 13a to a coil 11a of an electromagnet 2a, and electromagnets 2b, 3b are excited in the Y axis direction in the same way. Accordingly, it is possible to support the rotating shaft 1 with an auxiliary bearing in a stable state without swinging by way of attracting the rotating shaft 1 to the side of the magnet 2a when abnormal vibration is generated on the rotating shaft 1.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は回転軸を非接触状態で保持する磁気軸受装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a magnetic bearing device that holds a rotating shaft in a non-contact state.

(従来の技術) 従来、この種の磁気軸受装置としては、例えば第4図に
示すようなものが供されている。即ち、1は回転軸であ
り、2a、、3a及び2b、3bはこの回転軸1を図示
の基準位置に非接触状態で保持するための電磁石である
。この場合、回転軸1の回転中心0で直交するX軸及び
Y軸を想定したとき、電磁石2g、3aはX軸上で回転
軸1を狭んで対向するように配置され、電磁石2b、3
bはY軸上で回転軸1を狭んで対向するように配置され
ている。4a、4bは変位センサであり、これらは夫々
X l1ll Y軸上に配置され、回転軸1の夫々の軸
方向の変位を検出するものである。5aはX軸方向の制
御を行う制御回路であり、これは次のように構成されて
いる。即ち、6aは回転軸1の基準位置を設定する位置
設定器であり、7aはこの位置設定器6a及び変位セン
サ4aから信号が与えられる位置偏差演算回路であり、
これらの信号に基づいて回転軸1の基準位置からの偏差
に相当する偏差信号を出力するものである。8aは位相
補償回路であり、これは位置偏差演算回路7aからの偏
差信号に基づいてP、I、D制御等の処理により位相補
償を行ない、これを、制御信号として電力増幅W9a、
10aを夫々介して電磁石2a、3gの励磁コイルII
JL、12aに与えるようになっている。なお、5bは
Y軸方向の制御を行う制御回路であり制御回路5aと全
く同様の構成となっており、変位センサ4bから出力さ
れる信号に基づいて制御信号を出力し、電磁石2b、3
bの励磁コイルllb、12bに与えるようになってい
る。
(Prior Art) Conventionally, as this type of magnetic bearing device, one shown in FIG. 4, for example, has been provided. That is, 1 is a rotating shaft, and 2a, 3a, 2b, and 3b are electromagnets for holding the rotating shaft 1 at the reference position shown in the figure in a non-contact state. In this case, assuming that the X and Y axes are perpendicular to each other at the rotation center 0 of the rotation axis 1, the electromagnets 2g and 3a are arranged to face each other across the rotation axis 1 on the X axis, and the electromagnets 2b and 3
b are arranged on the Y-axis so as to be opposite to each other with the rotating shaft 1 narrowed therebetween. 4a and 4b are displacement sensors, which are arranged on the X l1ll Y axes, respectively, and detect the displacement of the rotating shaft 1 in the respective axial directions. 5a is a control circuit that performs control in the X-axis direction, and is configured as follows. That is, 6a is a position setter for setting the reference position of the rotating shaft 1, 7a is a position deviation calculation circuit to which signals are given from the position setter 6a and the displacement sensor 4a,
Based on these signals, a deviation signal corresponding to the deviation of the rotating shaft 1 from the reference position is output. 8a is a phase compensation circuit, which performs phase compensation through processing such as P, I, and D control based on the deviation signal from the position deviation calculation circuit 7a, and uses this as a control signal to power amplify W9a,
Excitation coil II of electromagnets 2a and 3g via 10a, respectively.
It is designed to be given to JL and 12a. Note that 5b is a control circuit that performs control in the Y-axis direction, and has the same configuration as the control circuit 5a. It outputs a control signal based on the signal output from the displacement sensor 4b, and controls the electromagnets 2b and 3.
b, excitation coils llb, 12b.

このような構成により、回転軸1のX方向、Y方向の変
位に対して、変位センサ4a、4b及び制御回路5a、
5bは回転軸1を基準位置に修正すべく制御信号を電磁
石2a、3g、2b、3bの励磁コイルlla、12a
、llb、12bに与えるようになる。この結果、回転
軸1は非接触状態で基準位置に保持されるものである。
With such a configuration, the displacement sensors 4a, 4b and the control circuit 5a,
5b sends a control signal to the excitation coils lla and 12a of the electromagnets 2a, 3g, 2b, and 3b in order to correct the rotating shaft 1 to the reference position.
, llb, and 12b. As a result, the rotating shaft 1 is held at the reference position in a non-contact state.

ところで、システムが動作していないときや回転軸に過
大な負荷が加わったときは、回転子は落下する。
By the way, the rotor will fall when the system is not operating or when an excessive load is applied to the rotating shaft.

このとき回転子と固定子が直接接触して破損しないよう
に補助軸受を設定している。この補助軸受部分のギャッ
プを磁気軸受部分のギャップの約1/2に設定すること
により、落下時には補助軸受が先に接触するようにして
いる。
At this time, an auxiliary bearing is installed to prevent the rotor and stator from coming into direct contact and being damaged. By setting the gap of this auxiliary bearing part to about 1/2 of the gap of the magnetic bearing part, the auxiliary bearing comes into contact first when the object falls.

高速回転中に回転子が落下すると大きな力が加わるので
、特殊な転がり軸受や滑り軸受が使用されている。
If the rotor falls during high-speed rotation, a large force is applied, so special rolling bearings and sliding bearings are used.

(発明が解決しようとする課題) このような構成の磁気軸受装置においては、高速回転中
に回転軸に過大な負荷が加わり、その大きさが制御可能
範囲を超えるときには、第3図(a)に示すように回転
軸1は補助軸受に落下し、補助軸受内周を振れ回りその
衝撃で軸受に損傷を与え、回転軸1は機械的バランスを
失う。さらに回転中に振動を発生させる原因となってし
まうという問題点があった。
(Problems to be Solved by the Invention) In a magnetic bearing device having such a configuration, when an excessive load is applied to the rotating shaft during high-speed rotation and the magnitude exceeds the controllable range, the load as shown in FIG. 3(a) As shown in the figure, the rotating shaft 1 falls onto the auxiliary bearing and swings around inside the auxiliary bearing, damaging the bearing due to the impact and causing the rotating shaft 1 to lose its mechanical balance. Furthermore, there is a problem in that it causes vibrations during rotation.

この問題を解決するために、第5図に示すように過大な
負荷や地震などの外力により回転軸に異常振動が発生し
た際に、変位センサの出力に基づき電磁石への通電を停
止し、回転軸1に設けられたスラストディスク16が永
久磁石17により下方に吸収される。さらにこの吸引力
と重力により、回転軸1は下方に移動し、回転軸のデー
パ面18が対応する補助軸受のテーバ面19に圧接する
In order to solve this problem, as shown in Figure 5, when abnormal vibration occurs in the rotating shaft due to an excessive load or external force such as an earthquake, we stop energizing the electromagnet based on the output of the displacement sensor and rotate it. A thrust disk 16 provided on the shaft 1 is absorbed downward by a permanent magnet 17. Further, due to this suction force and gravity, the rotating shaft 1 moves downward, and the tapered surface 18 of the rotating shaft comes into pressure contact with the tapered surface 19 of the corresponding auxiliary bearing.

これにより回転軸1と補助軸受20との間の隙間がなく
なり、回転軸1は補助軸受20に支持されて振れ回りを
発生することなく回転することができる(特開昭63−
190930号公報)。
As a result, there is no gap between the rotating shaft 1 and the auxiliary bearing 20, and the rotating shaft 1 is supported by the auxiliary bearing 20 and can rotate without whirling (Japanese Patent Application Laid-Open No. 1983-1973-1).
190930).

ところが、この手段では電磁石を停止した際にスラスト
ディスクを吸引する永久磁石や内輪にテーバ面を有する
転がり軸受、これに対応したテーバ面を有する回転軸が
必要となるという条件があった。
However, this method requires a permanent magnet that attracts the thrust disk when the electromagnet is stopped, a rolling bearing with a tapered surface on the inner ring, and a rotating shaft with a corresponding tapered surface.

本発明は、上記事情に鑑みてなされたものであり、その
目的は、わずかな制御回路の変更で高速回転中に回転軸
に過大な負荷が加わり異常振動が発生した際には、安定
した状態で補助軸受で支持する磁気軸受装置を提供する
にある。
The present invention has been made in view of the above circumstances, and its purpose is to stabilize the rotating shaft when excessive load is applied to the rotating shaft during high-speed rotation and abnormal vibration occurs by making slight changes to the control circuit. To provide a magnetic bearing device supported by an auxiliary bearing.

[発明の構成] (課題を解決するための手段) 本発明の磁気軸受装置は、回転軸を非接触状態で保持す
べく配置された一対の電磁石を備えたものにおいて、前
記回転軸の位置を検出する変位センサを設け、この変位
センサからの出力信号と前記回転軸の基準位置を設定す
る位置設定器の出力信号の偏差を検出する位置偏差演算
回路を設け、この位置偏差信号と設定値信号とを比較し
、運転中に過大な負荷が加わりこれによって制御不可能
になる前に回転軸を吸引するのに十分な直流信号をその
偏差に対応して出力する比較回路を設け、この直流信号
により電磁石を直流励磁し、制御不可能になり回転軸が
補助軸受に接触する前に片方の電磁石へ回転軸を吸引し
、補助軸受の一点で支持することにより回転軸の振れ回
りを防ぐように電磁石を制御する制御回路を設けて構成
したところに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) A magnetic bearing device of the present invention is provided with a pair of electromagnets arranged to hold a rotating shaft in a non-contact state. A displacement sensor is provided to detect the displacement sensor, and a position deviation calculation circuit is provided to detect the deviation between the output signal from the displacement sensor and the output signal of the position setting device which sets the reference position of the rotating shaft. A comparison circuit is provided that outputs a DC signal corresponding to the deviation, sufficient to attract the rotating shaft before an excessive load is applied during operation and the rotating shaft becomes uncontrollable. The electromagnet is excited with DC current, and before it becomes uncontrollable and the rotating shaft contacts the auxiliary bearing, the rotating shaft is attracted to one of the electromagnets, and the rotating shaft is supported at one point on the auxiliary bearing to prevent the rotating shaft from whirling around. The feature is that it is configured with a control circuit that controls the electromagnet.

(作用) 本発明の磁気軸受装置によれば、高速運転中に過大な負
荷が加わったり地震などの外力により回転軸に異常振動
が発生した際に、回転軸の現在位置と基準位置との差に
対応した直流信号を出力し、この直流信号により電磁石
を直流励磁して回転軸を吸引する。これにより、回転軸
は補助軸受の一点で支持され、振れ回りを発生すること
なく安定して回転するようになる。
(Function) According to the magnetic bearing device of the present invention, when an excessive load is applied during high-speed operation or abnormal vibration occurs on the rotating shaft due to an external force such as an earthquake, the difference between the current position of the rotating shaft and the reference position A DC signal corresponding to the output voltage is output, and the electromagnet is DC-excited by this DC signal to attract the rotating shaft. As a result, the rotating shaft is supported at one point on the auxiliary bearing, and rotates stably without whirling.

(実施例) 以下本発明をラジアル磁気軸受に適用した一実施例につ
いて第1図乃至第H←3図を参照しながら説明する。尚
、構造的構成については、第4図に示す従来例と同様で
ある。
(Embodiment) An embodiment in which the present invention is applied to a radial magnetic bearing will be described below with reference to FIGS. 1 to 3. The structural configuration is the same as the conventional example shown in FIG.

図に於いて1はモータ等の回転軸であり、これは停止中
には図示しない補助軸受に支持されている。2g、3a
、2b、3bはこの回転軸1を図示した基準位置に非接
触状態で保持するための電磁石である。
In the figure, 1 is a rotating shaft of a motor, etc., which is supported by an auxiliary bearing (not shown) when the motor is stopped. 2g, 3a
, 2b, and 3b are electromagnets for holding the rotating shaft 1 at the reference position shown in the figure in a non-contact state.

この場合、回転軸1の回転中心0で直交するX軸、Y軸
を想定したとき、電磁石’la、EatiX軸上で回転
軸lを挟んで対抗するように配置され、電磁石2b、3
bはY軸上で回転軸1を挟んで対向するように配置され
ている。4a、4bは変位センサであり、これらは、夫
々X軸、Y軸上に配置され、回転軸1の夫々のX軸、Y
軸方向への変位を検出し出力するものである。
In this case, assuming that the X and Y axes are perpendicular to each other at the rotation center 0 of the rotation axis 1, the electromagnets 2b and 3 are arranged so as to face each other across the rotation axis l on the X axis.
b are arranged to face each other on the Y-axis with the rotating shaft 1 in between. 4a and 4b are displacement sensors, which are arranged on the X-axis and Y-axis, respectively, and
It detects and outputs displacement in the axial direction.

さて、次に、電気的構成について述べる。5J!。Now, next, the electrical configuration will be described. 5J! .

5bは制御回路である。これらは夫々X軸、Y軸方向の
制御を行なうものであり、夫々同様の構成となっている
もので、以下、X軸、Y軸方向の制御系統について詳述
する。
5b is a control circuit. These control systems perform control in the X-axis and Y-axis directions, respectively, and have similar configurations, and the control systems in the X-axis and Y-axis directions will be described in detail below.

6aは回転軸1の基準位置を設定する位置設定器であり
基準位置信号Srを出力する。7aはこの位置設定器6
a及び変位センサ4aから信号が与えられる位置偏差演
算回路であり、基準位置信号Srと変位センサ出力信号
Sxに基づいて回転軸1の基準位置からの偏差に相当す
る偏差信号5r−5xを出力する。8aは位相補償回路
であり、位置偏差演算回路7aからの偏差記号5r−S
xに基づいてP、1.D制御等の処理により位相補償を
行う。13aは比較回路であり、位置偏差演算回路7a
の出力、即ち、基準位置信号S「と変位センサ出力信号
Sxの偏差の大きさが基準設定器14aから与えられる
設定値信号S、を超えたときに所定レベルLの直流信号
SDを出力する。
6a is a position setting device for setting the reference position of the rotating shaft 1, and outputs a reference position signal Sr. 7a is this position setting device 6
This is a position deviation calculation circuit to which signals are given from a and the displacement sensor 4a, and outputs a deviation signal 5r-5x corresponding to the deviation of the rotating shaft 1 from the reference position based on the reference position signal Sr and the displacement sensor output signal Sx. . 8a is a phase compensation circuit, and the deviation symbol 5r-S from the position deviation calculation circuit 7a
Based on x, P, 1. Phase compensation is performed by processing such as D control. 13a is a comparison circuit, and position deviation calculation circuit 7a
, that is, when the magnitude of the deviation between the reference position signal S' and the displacement sensor output signal Sx exceeds the set value signal S given from the reference setter 14a, a DC signal SD of a predetermined level L is output.

9aは電力増幅器であり、変位センサ4a側の電磁石2
aの励磁コイルllaに、位相補償回路8aの出力信号
SPと比較回路13aの出力信号8つを加算したものを
増幅して与える。10aもまた電力増幅器ではあるが、
これは位相補償回路8aの出力信号SP’を増幅し、電
磁石3aの励磁コイル12aに与える。このとき、SP
とSPの絶対値は常に等しい。
9a is a power amplifier, and the electromagnet 2 on the displacement sensor 4a side
The sum of the output signal SP of the phase compensation circuit 8a and eight output signals of the comparator circuit 13a is amplified and given to the excitation coil lla of a. Although 10a is also a power amplifier,
This amplifies the output signal SP' of the phase compensation circuit 8a and supplies it to the excitation coil 12a of the electromagnet 3a. At this time, SP
The absolute values of and SP are always equal.

そして、Y軸方向の制御についても同様に、変位センサ
4bから与えられる信号に基づいて制御信号を出力し、
電磁石2b、3bの励磁コイル11b、12bに与える
ようになっている。
Similarly, for control in the Y-axis direction, a control signal is output based on the signal given from the displacement sensor 4b,
It is designed to be applied to excitation coils 11b and 12b of electromagnets 2b and 3b.

次に、本実施例の作用について第2図と第3図をも参照
しながら述べる。なお、作用についてもX軸方向及びY
軸方向の制御系統は全く同様に行なわれるので、以下、
X軸方向の制御系統のみについて述べる。
Next, the operation of this embodiment will be described with reference to FIGS. 2 and 3. In addition, regarding the action, the X-axis direction and the Y-axis direction
The control system in the axial direction is carried out in exactly the same way, so below:
Only the control system in the X-axis direction will be described.

第2図に示すように、定常状態では位置偏差演算回路7
aからの偏差信号5r−5xはほぼ零に等しく、比較回
路13aの出力信号SDは零となる。これにより、電力
増幅器9aとIC1gに与えられる信号5A−SP+S
Dとs、゛の絶対値は等しくなり、回転軸1は安定して
保持される。ところが高速回転中に過大な負荷が加わり
回転軸に異状振動が発生した際には、位置偏差演算回路
7aからの偏差信号5r−3xは増大する。このとき、
比較回路13gにおいては、第2図に示すように偏差信
号5r−Sxが設定値信号SLを超えると、回転軸を吸
引するのに十分なレベルLの直流信号SDを出力するよ
うになり、この信号sDは位相補償回路8aに加算され
るようになる。これにより、電力幅増器9a、10!l
に与えられる信号5A−SP+SDとSP’は前述の場
合とは異なり、電磁石2aに発生する吸引力は、比較回
路13aの出力信号SD分だけ加算されたものとなるの
で、回転軸1は第3図(b)に示すように電磁石2a側
へ吸引されるように制御される。このように、本実施例
では比較回路13gを設け、基準位置信号Srと変位セ
ンサ出力信号Sxの偏差の大きさが基準設定器14aか
らの設定値信号SLによる設定値を超えたときには、変
異センサ側の電磁石2aの励磁コイルllaへ与えられ
る信号は、位相補償回路8aの出力信号Spに所定レベ
ルLの信号SDを加算するようにした。これにより、回
転軸1を一方向に吸引させるべく大きな吸引力が与えら
れるようになり、従って、回転軸は振れ回りを発生する
ことなく安定して回転することができる。
As shown in FIG. 2, in the steady state, the position deviation calculation circuit 7
The deviation signal 5r-5x from a is approximately equal to zero, and the output signal SD of the comparison circuit 13a becomes zero. As a result, the signal 5A-SP+S given to the power amplifier 9a and IC1g
The absolute values of D and s,' become equal, and the rotation axis 1 is held stably. However, when an excessive load is applied during high-speed rotation and abnormal vibration occurs on the rotating shaft, the deviation signal 5r-3x from the position deviation calculation circuit 7a increases. At this time,
In the comparator circuit 13g, when the deviation signal 5r-Sx exceeds the set value signal SL as shown in FIG. The signal sD is added to the phase compensation circuit 8a. As a result, power width increasers 9a, 10! l
The signals 5A-SP+SD and SP' given to As shown in Figure (b), it is controlled to be attracted to the electromagnet 2a side. In this way, the comparison circuit 13g is provided in this embodiment, and when the magnitude of the deviation between the reference position signal Sr and the displacement sensor output signal Sx exceeds the set value by the set value signal SL from the reference setter 14a, the variation sensor The signal given to the excitation coil lla of the side electromagnet 2a is such that a signal SD of a predetermined level L is added to the output signal Sp of the phase compensation circuit 8a. As a result, a large suction force is applied to attract the rotating shaft 1 in one direction, so that the rotating shaft can rotate stably without whirling.

なお、上記実施例はラジアル磁気軸受に適用しことは勿
論である。
Note that the above embodiments can of course be applied to radial magnetic bearings.

[発明の効果] 本発明の磁気軸受装置によれば、次のような効果が得ら
れる。即ち、比較回路を設けて、これにより、回転軸が
大きく変位して変位センサの出力信号が設定値を超えた
場合には所定レベルの信号を出力し、これを位相補償回
路と片方の電力増幅器との間で加算するように与えて回
転軸を一方向へ吸引するようにした。これにより、従来
と異なり、わずかな回路の変更で回転軸に異常振動が発
生した際には、安定した状態で補助軸受で支持できるも
のである。
[Effects of the Invention] According to the magnetic bearing device of the present invention, the following effects can be obtained. In other words, a comparator circuit is provided, and when the rotary shaft is greatly displaced and the output signal of the displacement sensor exceeds a set value, a comparison circuit is provided, which outputs a signal at a predetermined level when the rotation axis is largely displaced and the output signal of the displacement sensor exceeds the set value. The rotary shaft is sucked in one direction by adding the values between the two. As a result, unlike in the past, even if abnormal vibration occurs in the rotating shaft due to a slight change in the circuit, it can be stably supported by the auxiliary bearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による磁気軸受装置の一実施例を示す全
体構造図、第2図、第3図は作用説明図であり、第4図
は従来例を示す第1図相当図であり、第5図は従来例を
示す構造図である。 1・・・回転軸。 2 a 、 2 b 、  3 a 、  3 b−−
−電磁石。 4a、4b・・・変位センサ。 5a、5b・・・制御回路。 7a・・・位置偏差演算回路。 13a・・・比較回路、  20・・・補助軸受。 代理人 弁理士 則 近 憲 佑 第71 第2図
FIG. 1 is an overall structural diagram showing an embodiment of a magnetic bearing device according to the present invention, FIGS. 2 and 3 are action explanatory diagrams, and FIG. 4 is a diagram equivalent to FIG. 1 showing a conventional example. FIG. 5 is a structural diagram showing a conventional example. 1...Rotation axis. 2 a, 2 b, 3 a, 3 b---
-Electromagnet. 4a, 4b...Displacement sensor. 5a, 5b...control circuit. 7a...Position deviation calculation circuit. 13a... Comparison circuit, 20... Auxiliary bearing. Agent Patent Attorney Noriyuki Chika No. 71 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 回転軸を非接触状態で保持すべく配置された一対の電磁
石を備えたものにおいて、前記回転軸の位置を検出する
変位センサと、この変位センサからの出力信号と前記回
転軸の基準位置を設定する位置設定器の出力信号との差
を検出する位置偏差演算回路と、この位置偏差信号と設
定値信号とを比較し運転中に過大な負荷が加わり、これ
により制御不可能になる前に制御信号をしゃ断する大き
さの直流信号をその偏差に対応して出力する比較回路と
、この直流信号により電磁石を直流励磁し制御不可能に
なり回転軸が補助軸受に接触する前に片方の電磁石へ回
転軸を吸引し補助軸受の一点で支持することにより回転
軸の振れ回りを防ぐように電磁石を制御する制御回路と
を具備してなる磁気軸受装置。
A displacement sensor that detects the position of the rotating shaft, and an output signal from this displacement sensor and a reference position of the rotating shaft are set in the device including a pair of electromagnets arranged to hold the rotating shaft in a non-contact state. The position deviation calculation circuit detects the difference between the output signal of the position setting device and compares this position deviation signal with the set value signal to control the position before an excessive load is applied during operation and the control becomes uncontrollable. A comparison circuit outputs a DC signal large enough to cut off the signal in response to the deviation, and this DC signal excites the electromagnet with DC current, causing it to become uncontrollable and to one of the electromagnets before the rotating shaft contacts the auxiliary bearing. A magnetic bearing device comprising a control circuit that controls an electromagnet so as to prevent the rotating shaft from whirling by attracting the rotating shaft and supporting it at one point on an auxiliary bearing.
JP11041490A 1990-04-27 1990-04-27 Magnetic bearing device Pending JPH048911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041490A JPH048911A (en) 1990-04-27 1990-04-27 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041490A JPH048911A (en) 1990-04-27 1990-04-27 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH048911A true JPH048911A (en) 1992-01-13

Family

ID=14535177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041490A Pending JPH048911A (en) 1990-04-27 1990-04-27 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH048911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491396A (en) * 1993-05-18 1996-02-13 Hitachi, Ltd. Magnetic bearing apparatus and rotating machine having such an apparatus
EP0982836A2 (en) * 1998-08-24 2000-03-01 Sulzer Electronics AG Method and device for determining the radial position of a permanent magnetic rotor
US6249067B1 (en) 1998-08-24 2001-06-19 Sulzer Electronics Ag Method and sensor arrangement for the determination of the radial position of a permanent magnetic rotor
EP1596080A1 (en) * 2004-05-13 2005-11-16 Thermodyn Electromagnetic radial bearing and rotary machine provided with such a bearing
JP2015010716A (en) * 2013-06-28 2015-01-19 エスカエフ・マニュティック・メシャトロニク Improved active magnetic bearing control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491396A (en) * 1993-05-18 1996-02-13 Hitachi, Ltd. Magnetic bearing apparatus and rotating machine having such an apparatus
EP0982836A2 (en) * 1998-08-24 2000-03-01 Sulzer Electronics AG Method and device for determining the radial position of a permanent magnetic rotor
EP0982836A3 (en) * 1998-08-24 2000-06-07 Sulzer Electronics AG Method and device for determining the radial position of a permanent magnetic rotor
US6249067B1 (en) 1998-08-24 2001-06-19 Sulzer Electronics Ag Method and sensor arrangement for the determination of the radial position of a permanent magnetic rotor
EP1596080A1 (en) * 2004-05-13 2005-11-16 Thermodyn Electromagnetic radial bearing and rotary machine provided with such a bearing
JP2015010716A (en) * 2013-06-28 2015-01-19 エスカエフ・マニュティック・メシャトロニク Improved active magnetic bearing control system

Similar Documents

Publication Publication Date Title
US10619669B2 (en) Magnetic bearing control device and vacuum pump
EP1188943B1 (en) Magnetic levitation rotating machine
EP0311122A1 (en) Radial magnetic bearing system
US4167296A (en) Protective control system for magnetic suspension and magnetically suspended devices
US10968949B2 (en) Magnetic bearing control device and vacuum pump
KR100644852B1 (en) Magnetic bearing protective device and turbomolecular pump
JP2001200842A (en) Magnetic bearing system
JPH07256503A (en) Spindle apparatus
US11015609B2 (en) Magnetic levitation control device and vacuum pump
JPH048911A (en) Magnetic bearing device
JPH06249286A (en) Vibration restraining device for rotor
JP2018129882A (en) Magnetic bearing device and vacuum pump
JPH08322194A (en) Axial magnetic levitation motor and rotating machine employing it
JP2005140190A (en) Power amplifying device and magnetic bearing
JPH1122730A (en) Magnetic bearing and magnetic bearing unit
JPH076541B2 (en) Magnetic bearing device
JPH01182648A (en) Axial vibration reducer for rotary machine
JPS6399742A (en) Magnetic bearing integrating type motor
JPS63111311A (en) Magnetic bearing device
JP2005061580A (en) Magnetic bearing
JP2002039178A (en) Magnetic bearing device
JP3517846B2 (en) Magnetic bearing control device
JP2546997B2 (en) Non-contact support method
JPH0965607A (en) Inner-rotor type motor
JP3625904B2 (en) Magnetic bearing device