JPH01182648A - Axial vibration reducer for rotary machine - Google Patents

Axial vibration reducer for rotary machine

Info

Publication number
JPH01182648A
JPH01182648A JP115188A JP115188A JPH01182648A JP H01182648 A JPH01182648 A JP H01182648A JP 115188 A JP115188 A JP 115188A JP 115188 A JP115188 A JP 115188A JP H01182648 A JPH01182648 A JP H01182648A
Authority
JP
Japan
Prior art keywords
pole
electromagnet
joint parts
axial
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP115188A
Other languages
Japanese (ja)
Inventor
Seiichi Asazu
静一 浅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP115188A priority Critical patent/JPH01182648A/en
Publication of JPH01182648A publication Critical patent/JPH01182648A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To make stable vibration reducing force producible by connecting a pair of joint parts of a turning shaft provided with a magnet so as to cause both N and S poles to be opposed to each other, while constituting it to set up an electromagnet on each peripheral surface of these joint parts with a radial clearance. CONSTITUTION:A pair of joint parts 1, 2 of a turning shaft are connected to each other so as to cause an N pole and an S pole of permanent magnets 3, 4 to be opposed to each other via a fixture 5 of bolt and nut. On the other hand, at the radial outward of the paired joint parts 1, 2, an electromagnet 6 is fixedly set up there so as to space a specified interval in a gap with each outer surface of these joint parts 1, 2. In this electromagnet 6, its magnetic force is displaced according to the magnitude of a current flowing into an exciting coil 7, thereby varying attraction to be produced between the S pole of the permanent magnet 3 and the N pole of the electromagnet 6 or the N pole of the permanent magnet 4 and the S pole of the electromagnet 6, and the attraction conformed to force F being produced in the axial direction is given thereto. With this constitution, an axial position of the turning shaft is stably kept up all the time.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はたとえば蒸気タービンのように複数の軸が連結
された回転機械の軸方向吸振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an axial vibration damping device for a rotating machine in which a plurality of shafts are connected, such as a steam turbine.

(従来の技術) たとえば蒸気タービン、発電機のロータ等の回転機械の
軸方向の位置決めや変位振動を抑えるために、回転軸を
軸支するジャーナル軸受とは別個に、またはこのジャー
ナル軸受と組合わせてスラスト軸受を設けている。
(Prior art) For example, in order to suppress the axial positioning and displacement vibration of rotating machinery such as steam turbines and generator rotors, it is used separately from the journal bearing that supports the rotating shaft, or in combination with this journal bearing. A thrust bearing is installed.

蒸気タービンのロータに使用されているスラスト軸受は
、回転軸に固定したスラストカラーと油潤滑により油膜
を介して摺動するように構成されており、スラスト軸受
を備えた回転軸に地震等に起因した軸方向の外乱が加え
られ、回転軸の軸方向の共振周波数成分が存在すると、
回転軸はスラストカラーとスラスト軸受間の間隙の範囲
内で軸方向に応動し、軸受部に油膜切れが生じたり、ス
ラスト荷重の過度的増加により油潤滑のスラスト軸受の
強度に問題が生じる。
The thrust bearing used in the rotor of a steam turbine is configured so that the thrust collar fixed to the rotating shaft slides through an oil film due to oil lubrication. When an axial disturbance is added and a resonant frequency component exists in the axial direction of the rotating shaft,
The rotating shaft reacts in the axial direction within the gap between the thrust collar and the thrust bearing, causing problems with the strength of the oil-lubricated thrust bearing due to lack of oil film on the bearing or excessive increase in thrust load.

すなわち油潤滑のスラスト軸受を数値解析した油膜特性
をスラスト間隙における軸方向変位比に対する油膜力と
して示すと第4図になる。第4図に示すグラフによれば
、地震等に起因した軸方向の外乱が加えられて回転軸が
軸方向に共振し、大きな応答を示すと、その応答は油膜
特性に基づく非線形的な特性を示すことになり、その応
答を把握することが難しい。
That is, FIG. 4 shows the oil film characteristics obtained by numerical analysis of an oil-lubricated thrust bearing as oil film force versus axial displacement ratio in the thrust gap. According to the graph shown in Figure 4, when an axial disturbance caused by an earthquake or the like is applied and the rotating shaft resonates in the axial direction and exhibits a large response, the response exhibits nonlinear characteristics based on oil film characteristics. It is difficult to understand the response.

(発明が解決しようとする課題) しかし上記形式の回転機械のスラスト軸受では、地震等
の外乱に対して、スラスト軸受の油膜特性により応答の
予測が難しく、場合によっては境界潤滑域に達し、油膜
切れによるスラストカラーとスラスト軸受の接触が起り
、重大な事故の原因となることがある。
(Problem to be solved by the invention) However, with the thrust bearings of rotating machines of the above type, it is difficult to predict the response to external disturbances such as earthquakes due to the oil film characteristics of the thrust bearings, and in some cases, the boundary lubrication region is reached and the oil film A break may cause contact between the thrust collar and the thrust bearing, causing a serious accident.

本発明は上記した点に鑑みてなされたもので、回転機械
の軸方向に対して生じた地震等の外乱に素早く反応し、
安定した吸振力を生じさせるようにした回転機械の軸方
向吸振装置を提供することを目的とする。
The present invention has been made in view of the above points, and is capable of quickly responding to disturbances such as earthquakes occurring in the axial direction of a rotating machine.
An object of the present invention is to provide an axial vibration absorbing device for a rotating machine that generates a stable vibration absorbing force.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の回転機械の軸方向吸振装置は、磁石を備えた回
転軸の一対の継手部をN極とS極が対向するように連結
するとともに、上記継手部の外周面に半径方向の間隙を
おいて電磁石を配置して構成される。
(Means for Solving the Problems) The axial vibration absorbing device for a rotating machine of the present invention connects a pair of joint parts of a rotating shaft provided with a magnet so that the N pole and the S pole face each other, and the joint part It is constructed by arranging electromagnets with radial gaps on the outer peripheral surface of the magnet.

(作用) 本発明の回転機械の軸方向吸振装置においては、回転軸
の一対の継手部に設けた磁石と継手部の外周面に半径方
向の間隙をおいて配置された電磁石との間に磁力による
吸引力が生じるので、軸方向に対して両者は平衡位置に
あり、回転軸と電磁石との間に相対的軸方向変位が生じ
た場合においてその軸方向変位が許容相対変位内であれ
ば、そのままの状態で平衡位置を保ち、その変位が許容
相対変位を超えると、その軸方向変位が許容値内になる
ように吸引力(スラスト力)が作用し、一定した安全な
軸位置を保つようにしている。
(Function) In the axial vibration absorbing device for a rotating machine of the present invention, a magnetic force is generated between the magnets provided at the pair of joints of the rotating shaft and the electromagnets arranged with a radial gap on the outer peripheral surface of the joint. Since an attractive force is generated by If the equilibrium position is maintained in the same state, and the displacement exceeds the allowable relative displacement, suction force (thrust force) is applied to keep the axial displacement within the allowable value, and maintains a constant and safe axial position. I have to.

(実施例〉 以下本発明の一実施例を図面につき説明する。(Example> An embodiment of the present invention will be described below with reference to the drawings.

第1図は回転機械軸方向吸収装置の原理を示すもので、
図中符号1.2はたとえば蒸気タービンのロータのよう
な回転機械の回転軸の一対の継手部であって、一方の継
手部1のフランジ外周面一側には表面がS極のリング状
永久磁石3が埋設され、他方の継手部2のフランジ外周
面一側には表面がN極のリング状永久磁石4が埋設され
ている。
Figure 1 shows the principle of a rotating machine axial absorption device.
Reference numeral 1.2 in the figure indicates a pair of joints for a rotating shaft of a rotating machine such as a rotor of a steam turbine, and one side of the outer peripheral surface of the flange of one joint 1 has a ring-shaped permanent surface with an S pole. A magnet 3 is embedded therein, and a ring-shaped permanent magnet 4 having an N-pole surface is embedded on one side of the outer peripheral surface of the flange of the other joint portion 2 .

そして回転軸の一対の継手部1,2は、永久磁石3.4
のN極とS極が対向するようにボルトナツトの固定具5
を介して連結されている。
The pair of joint parts 1 and 2 of the rotating shaft are made up of permanent magnets 3.4.
Fixing tool 5 of the bolt nut so that the N and S poles of
are connected via.

一方、上記一対の継手部1.2の半径方向外方には、こ
の継手部1,2の外面との間に所定の間隔を置くように
電磁石6が固定配置されている。
On the other hand, an electromagnet 6 is fixedly arranged radially outward of the pair of joint parts 1.2 so as to be spaced from the outer surfaces of the joint parts 1, 2 by a predetermined distance.

この′W1磁石6は励磁コイル7に流れる電流により電
磁力が調節される一方、上記電流により発生するNli
が継手部1のS極のリング状永久磁石3に、S極が継手
部2のN極のリング状永久磁石4にそれぞれ対向するよ
うに静止部であるカップリングガード等のハウジング8
(第2図参照)に取付、けられている。
The electromagnetic force of this 'W1 magnet 6 is adjusted by the current flowing through the excitation coil 7, while the Nli
A housing 8 such as a coupling guard, which is a stationary part, is arranged such that the S pole faces the S-pole ring-shaped permanent magnet 3 of the joint part 1 and the S-pole faces the N-pole ring-shaped permanent magnet 4 of the joint part 2.
(See Figure 2).

上記電磁石6は、回転軸の継手部1,2の外周に対して
半径方向に所定の間隔を置くように配置され、励磁コイ
ル7に流れる電流の大小により電磁力が変位し、永久磁
石3のS極とN磁石6のN極、あるいは永久磁石4のN
極と電磁石6のS極との間に生じる吸引力を変化させ、
軸方向に生じる力Fに対応した吸引力を与える。これに
より、回転軸の軸方向位置が常時安定的に保持される。
The electromagnets 6 are arranged at a predetermined distance in the radial direction from the outer periphery of the joints 1 and 2 of the rotating shaft, and the electromagnetic force is displaced depending on the magnitude of the current flowing through the exciting coil 7, and the permanent magnet 3 is S pole and N pole of magnet 6, or N pole of permanent magnet 4
By changing the attractive force generated between the pole and the S pole of the electromagnet 6,
Provides a suction force corresponding to the force F generated in the axial direction. Thereby, the axial position of the rotating shaft is always stably maintained.

第2図は本発明に係る回転機械の軸方向吸振装置のシス
テムを示す図であり、2つの電磁石6゜6が回転軸11
の直径線上に位置するように配置されている。電磁石6
の励磁コイルは、制御用コイル7aとバイアス用コイル
7bの2系統に分けられており、制御用コイル7aには
電子制御回路系により制御された制御電流ICが、バイ
アス用コイル7bには定電流発生器9により一定のバイ
アス電流1bが流れるようになっている。
FIG. 2 is a diagram showing a system of an axial vibration absorbing device for a rotating machine according to the present invention, in which two electromagnets 6°6 are attached to a rotating shaft 11.
It is located on the diameter line of electromagnet 6
The excitation coil is divided into two systems: a control coil 7a and a bias coil 7b.The control coil 7a carries a control current IC controlled by an electronic control circuit system, and the bias coil 7b carries a constant current. A generator 9 causes a constant bias current 1b to flow.

また、カップリングガード等のハウジング8には非接触
形の変位計10が配置されている。この変位計10は回
転軸11の軸方向の変位を検出する。上記回転軸11の
端面およびカップリングガ−ド等のハウジング8にはそ
れぞれ回転軸との相対的な軸方向および半径方向加速度
を監視するための加速度計12.13が設けられている
Further, a non-contact type displacement meter 10 is arranged in a housing 8 such as a coupling guard. This displacement meter 10 detects the displacement of the rotating shaft 11 in the axial direction. Accelerometers 12 and 13 are provided on the end face of the rotary shaft 11 and the housing 8 such as the coupling guard, respectively, for monitoring the axial and radial accelerations relative to the rotary shaft.

しかして回転軸11が非接触形変位計10により軸方向
変位Xが検出されると、回転軸11の一対の継手部1,
2に設けたリング状永久磁石3゜4とカップリングガー
ド等のハウジング8に取付けられた電磁石6との間に元
の平衡点に戻ろうとする力Fffi働く。この力Fは比
例定数をKとすると、クーロンの法則により、 ただしml:電磁石の磁極の強さ m2:永久磁石の磁極の強さ となる。
When the axial displacement X of the rotating shaft 11 is detected by the non-contact displacement meter 10, the pair of joint parts 1 of the rotating shaft 11,
A force Fffi that tries to return to the original equilibrium point acts between the ring-shaped permanent magnet 3.4 provided at 2 and the electromagnet 6 attached to a housing 8 such as a coupling guard. This force F is determined by Coulomb's law, where K is the proportionality constant, where ml is the strength of the magnetic pole of the electromagnet, and m2 is the strength of the magnetic pole of the permanent magnet.

また電磁石の磁極の強さmlは、励磁コ・イル7a、7
bに流れる電流1b、  Icに比例し、m1=Ib+
Ic、、!=なる。
Moreover, the magnetic pole strength ml of the electromagnet is the excitation coil 7a, 7
Current 1b flowing through b is proportional to Ic, m1=Ib+
Ic...! = Become.

すなわち復元力Fは、軸方向変位Xを検出し、制御電流
1cを制御することで得られかつこれにより制御するこ
とが可能となる。
That is, the restoring force F can be obtained by detecting the axial displacement X and controlling the control current 1c, and can be controlled thereby.

そこで電子a制御回路系に軸位置基準設定器14、偏差
増幅器15、位相補正回路器16、電力増幅器17を設
け、軸位置基準設定器14により回転軸1の軸方向位置
の基準値を設定し、この基準値を偏差増幅器15人力さ
せている。一方、この偏差増幅器15には非接触形変位
計10による変位量を変位計増幅器18を経て増幅され
た変位量が入力され、この変位量と基準値とが比較され
、位相補正回路器16に送られ、ここで制御の安定を図
った後、電力増幅器17で増幅し、励磁コイル7aに流
す制御]]?fi流の大きさを決定する。
Therefore, the electronic a control circuit system is provided with a shaft position reference setter 14, a deviation amplifier 15, a phase correction circuit 16, and a power amplifier 17, and the shaft position reference setter 14 sets a reference value for the axial position of the rotating shaft 1. , this reference value is used by 15 deviation amplifiers. On the other hand, the displacement amount obtained by amplifying the displacement amount by the non-contact displacement meter 10 via the displacement meter amplifier 18 is input to the deviation amplifier 15, and this displacement amount is compared with a reference value, and the displacement amount is input to the phase correction circuit 16. After stabilizing the control, the control is amplified by the power amplifier 17 and sent to the exciting coil 7a]]? Determine the magnitude of the fi flow.

一方、回転軸11に設けた加速度計12により検出され
た軸方向加速度はスリップリンタ19を介して取出され
、比較演算増幅器20においてカップリングガード等の
ハウジング8に取付けられた加速度計13が検出した静
止部側の加速度と比較され、ここからでる信号は偏差増
幅器15に送られ、軸方向変位および加速度両面からの
フィードバック制御を備えた電子制御回路系を構成する
On the other hand, the axial acceleration detected by the accelerometer 12 provided on the rotating shaft 11 is taken out via the slip linter 19, and detected by the accelerometer 13 attached to the housing 8 such as a coupling guard in the comparison operational amplifier 20. It is compared with the acceleration on the stationary part side, and the signal output therefrom is sent to the deviation amplifier 15, which constitutes an electronic control circuit system having feedback control from both sides of axial displacement and acceleration.

これにより静的あるいは動的な軸方向の外乱に対して最
適吸振力あるいは平衡力を発生することができる。
This makes it possible to generate an optimal vibration absorption force or balance force against static or dynamic axial disturbances.

第3図は本発明を蒸気タービンプラントに適用した例を
示すものであり、蒸気タービンプラントのすべり軸受3
0.30に軸支された高圧タービン31とすべり軸受3
2.32に軸支された低圧タービン33との間の軸継手
34およびすべり軸受32.32に軸支された低圧ター
ビン33とすべり軸受35.35に軸支された発電機ロ
ータ36との間の軸継手37に第2図に示す軸方向吸振
装置が配設されている。
FIG. 3 shows an example in which the present invention is applied to a steam turbine plant.
High-pressure turbine 31 and sliding bearing 3 pivotally supported at 0.30
A shaft coupling 34 between the low-pressure turbine 33 pivotally supported on a sliding bearing 32.32 and a generator rotor 36 pivotally supported on a sliding bearing 35.35. An axial vibration absorbing device shown in FIG.

この場合軸継手は2つあるので、電子制御回路系38の
制御信号は分配器39を介して各軸方向吸振装置に送ら
れる。これにより軸方向に生じるあらゆる外乱に対する
吸振効果が増大しかつ1つの軸方向吸振装置にかかる負
荷が低減され安全性が向上する。
In this case, since there are two shaft joints, the control signal of the electronic control circuit system 38 is sent to each axial vibration absorbing device via the distributor 39. This increases the vibration absorbing effect against all disturbances occurring in the axial direction, reduces the load on one axial vibration absorber, and improves safety.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、磁石を備えた回転軸
の一対の継手部をN極とS極が対向するように連結する
とともに、上記継手部の外周面に半径方向の間隔をおい
て電磁石を配置したので、あらゆる軸方向の外乱に対し
て常に最適でしかも効率のよい安全な軸方向の吸振力を
発揮でき、静的および動的に安定したスラスト軸受を提
供でき、従来の油潤滑のスラスト軸受が不要となる。
As described above, according to the present invention, a pair of joint parts of rotating shafts equipped with magnets are connected such that the north pole and the south pole face each other, and a radial interval is provided on the outer circumferential surface of the joint parts. Since the electromagnets are arranged in the same direction, it is possible to always exert optimal, efficient and safe axial vibration absorption force against all kinds of axial disturbances, and it is possible to provide statically and dynamically stable thrust bearings. No need for a thrust bearing for lubrication.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回転機械の軸方向吸振装置の基本
的な原理を示す構造図、第2図は本発明による回転機械
の軸方向吸振装置の一実施例を示すシステム全体図、第
3図は本発明の回転機械の軸方向吸振装置を蒸気タービ
ンに適用した例を示す図、第4図はスラスト軸受の数値
解析による油膜特性を示す図である。 1.2・・・継手部、3.4・・・永久磁石、6・・・
電磁石、7・・・励磁コイル。 第2図
FIG. 1 is a structural diagram showing the basic principle of the axial vibration absorbing device for a rotating machine according to the present invention, FIG. 2 is an overall system diagram showing an embodiment of the axial vibration absorbing device for a rotating machine according to the present invention, and FIG. The figure shows an example in which the axial vibration damping device for a rotating machine of the present invention is applied to a steam turbine, and FIG. 4 is a diagram showing oil film characteristics based on numerical analysis of a thrust bearing. 1.2...Joint part, 3.4...Permanent magnet, 6...
Electromagnet, 7... Excitation coil. Figure 2

Claims (1)

【特許請求の範囲】 1、磁石を備えた回転軸の一対の継手部をN極とS極が
対向するように連結するとともに、上記継手部の外周面
に半径方向の間隙をおいて電磁石を配置したことを特徴
とする回転機械の軸方向吸振装置。 2、電磁石に外乱検出器を連絡させ、この外乱検出器の
検出信号により電磁石の磁力を制御するようにしたこと
を特徴とする請求項1記載の回転機械の軸方向吸振装置
[Claims] 1. A pair of joints of rotating shafts each having a magnet are connected so that the north pole and the south pole face each other, and an electromagnet is attached to the outer peripheral surface of the joint with a gap in the radial direction. An axial vibration absorbing device for a rotating machine, characterized in that: 2. The axial vibration damping device for a rotating machine according to claim 1, wherein a disturbance detector is connected to the electromagnet, and the magnetic force of the electromagnet is controlled by a detection signal from the disturbance detector.
JP115188A 1988-01-08 1988-01-08 Axial vibration reducer for rotary machine Pending JPH01182648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP115188A JPH01182648A (en) 1988-01-08 1988-01-08 Axial vibration reducer for rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP115188A JPH01182648A (en) 1988-01-08 1988-01-08 Axial vibration reducer for rotary machine

Publications (1)

Publication Number Publication Date
JPH01182648A true JPH01182648A (en) 1989-07-20

Family

ID=11493438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP115188A Pending JPH01182648A (en) 1988-01-08 1988-01-08 Axial vibration reducer for rotary machine

Country Status (1)

Country Link
JP (1) JPH01182648A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306949A (en) * 2003-04-08 2004-11-04 Robert Bosch Gmbh Pneumatic brake booster with small actuation noise
JP2005257281A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Measuring instrument holding device and load coupling cover
CN107061613A (en) * 2017-05-03 2017-08-18 武汉理工大学 Multidimensional active control vibration damping device and method
WO2018104196A1 (en) * 2016-12-05 2018-06-14 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Auxiliary assembly of a motor vehicle with active vibration reduction
JP2020079620A (en) * 2018-11-13 2020-05-28 株式会社荏原製作所 Coupling guard, and rotary machine device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306949A (en) * 2003-04-08 2004-11-04 Robert Bosch Gmbh Pneumatic brake booster with small actuation noise
JP2005257281A (en) * 2004-03-09 2005-09-22 Tokyo Electric Power Co Inc:The Measuring instrument holding device and load coupling cover
JP4556449B2 (en) * 2004-03-09 2010-10-06 東京電力株式会社 Measuring device holding device and load coupling cover
WO2018104196A1 (en) * 2016-12-05 2018-06-14 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Auxiliary assembly of a motor vehicle with active vibration reduction
CN107061613A (en) * 2017-05-03 2017-08-18 武汉理工大学 Multidimensional active control vibration damping device and method
JP2020079620A (en) * 2018-11-13 2020-05-28 株式会社荏原製作所 Coupling guard, and rotary machine device

Similar Documents

Publication Publication Date Title
US5836739A (en) Gas turbine engine
Das et al. Vibration control and stability analysis of rotor-shaft system with electromagnetic exciters
EP0364993B1 (en) Magnetic bearing system
JPH01116318A (en) Positively acting magnetic bearing
Inayat-Hussain Nonlinear dynamics of a magnetically supported rigid rotor in auxiliary bearings
Fan et al. Active elimination of oil and dry whips in a rotating machine with an electromagnetic actuator
US8760021B2 (en) Centrifugally decoupling touchdown bearings
GB2298901A (en) Gas turbine engine axial thrust balancing
Mizuno et al. Self-sensing magnetic bearing control system design using the geometric approach
Kumar et al. A numerical study on the effect of unbalance and misalignment fault parameters in a rigid rotor levitated by active magnetic bearings
JPH01182648A (en) Axial vibration reducer for rotary machine
Inayat-Hussain Chaos via torus breakdown in the vibration response of a rigid rotor supported by active magnetic bearings
Park et al. Design and control for hybrid magnetic thrust bearing for turbo refrigerant compressor
Hendrickson et al. Application of magnetic bearing technology for vibration free rotating machinery
Orth et al. ANEAS: a modeling tool for nonlinear analysis of active magnetic bearing systems
JPH048911A (en) Magnetic bearing device
Ecker Nonlinear stability analysis of a single mass rotor contacting a rigid backup bearing
Tsunoda et al. Utilizing a radial magnetic bearing to stabilize self-excited vibrations in a rotor-oil film bearing system
Tamisier et al. Attenuation of vibrations due to unbalance of an active magnetic bearings milling electro-spindle
Weise Present industrial applications of active magnetic bearings
Pilotto et al. Vibration control of a gas turbine-generator rotor in a combined cycle system by means of active magnetic bearings
Allaire et al. Vibration Reduction in a Multimass Flexible Rotor Using a Midspan Magnetic Damper
Alves Magnetic Bearings-A Primer.
Khatri et al. Design and prototype test data for a 300 kW active magnetic bearings-supported turbine generator for natural gas pressure letdown
Pinckney et al. Magnetic bearing design and control optimization for a four-stage centrifugal compressor