JP3517846B2 - Magnetic bearing control device - Google Patents

Magnetic bearing control device

Info

Publication number
JP3517846B2
JP3517846B2 JP29455593A JP29455593A JP3517846B2 JP 3517846 B2 JP3517846 B2 JP 3517846B2 JP 29455593 A JP29455593 A JP 29455593A JP 29455593 A JP29455593 A JP 29455593A JP 3517846 B2 JP3517846 B2 JP 3517846B2
Authority
JP
Japan
Prior art keywords
bearing
controller
signal
stator
levitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29455593A
Other languages
Japanese (ja)
Other versions
JPH07127640A (en
Inventor
精 石田
前村  明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP29455593A priority Critical patent/JP3517846B2/en
Publication of JPH07127640A publication Critical patent/JPH07127640A/en
Application granted granted Critical
Publication of JP3517846B2 publication Critical patent/JP3517846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気吸引力で高速モー
タを非接触支持する磁気軸受制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing control device for supporting a high speed motor in a non-contact manner by a magnetic attraction force.

【0002】[0002]

【従来の技術】モータを高速回転すると同一体格でも高
い出力が得られるため、近年モータの高速化が行われて
いる。しかし、回転速度が上昇していくと回転体を支持
する軸受の回転摩擦が大きくなって温度が上昇したり振
動が大きくなったりするため、従来のころがり軸受や流
体軸受では回転速度をさらに大きくすることが困難であ
った。そこで磁気吸引力を利用して非接触支持する磁気
軸受が開発された。ラジアル軸受に適用した例を図3に
より説明する。1は回転軸であり、外周部に磁性材料か
らなる鉄心部を形成している。その外周には、エアギャ
ップを介して、フレームなど固定側に固定された磁性材
の鉄心にコイルを巻回した電磁石で構成された固定子2
1、22を対向させて設けてある。固定子21、22
は、回転軸1を互いに逆方向に吸引できるようになって
いる。3は回転軸1の径方向変位を検出する変位検出器
であり、固定子21或いは22の近傍に固定されてい
る。41、42は入力信号に応じた電流を増幅して出力
し、それぞれの固定子21、22に励磁電流を供給する
電流増幅器である。5はPID補償要素等からなり電流
増幅器41、42に指令を送る浮上制御器である。61
は、浮上位置指令と変位検出器3の信号を比較して、浮
上制御器5に偏差信号を送る比較器である。この構成に
おいて、浮上位置の指令と変位検出器3で検出した回転
軸1の浮上位置を比較器61で比較し、差があれば浮上
制御器5が電流増幅器41或いは42に指令を送り、固
定子21或いは22に励磁電流を与える。そして固定子
21或いは22と回転軸1間に働く磁気吸引力で回転軸
1が所定の位置に来るよう保持される。図の固定子2
1、22で支持する方向と直交する方向にも同じ構成の
浮上系が設けられており、2つの制御系により回転軸1
のラジアル軸受を構成する。このラジアル軸受を2組、
両軸端部近傍に設け、回転軸1を完全に非接触支持する
ことができ、回転軸1にモータの回転子を一体に設ける
と高速回転することができる。このように2組のラジア
ル磁気軸受、1つのアキシャル磁気軸受とモータの回転
子で構成する高速モータは、高周波インバータでモータ
の固定子を励磁すると支持部の摩擦が小さいため従来の
軸受で到達することができなかった領域の高速回転がで
きるのである。
2. Description of the Related Art When a motor is rotated at a high speed, a high output can be obtained even if it has the same physical structure. However, as the rotational speed increases, the rotational friction of the bearings that support the rotating body increases, which raises the temperature and vibrations.Therefore, in conventional rolling bearings and fluid bearings, the rotational speed must be further increased. Was difficult. Therefore, magnetic bearings have been developed that support in a non-contact manner by utilizing magnetic attraction. An example applied to a radial bearing will be described with reference to FIG. Reference numeral 1 is a rotary shaft, and an iron core portion made of a magnetic material is formed on the outer peripheral portion thereof. A stator 2 composed of an electromagnet in which a coil is wound around an iron core of a magnetic material fixed to a fixed side such as a frame via an air gap on the outer periphery thereof.
1, 22 are provided to face each other. Stator 21, 22
Can suck the rotating shafts 1 in opposite directions. A displacement detector 3 detects a radial displacement of the rotary shaft 1, and is fixed near the stator 21 or 22. Reference numerals 41 and 42 denote current amplifiers for amplifying and outputting a current according to an input signal and supplying an exciting current to each of the stators 21 and 22. A levitation controller 5 includes a PID compensation element and sends a command to the current amplifiers 41 and 42. 61
Is a comparator that compares the flying position command and the signal of the displacement detector 3 and sends a deviation signal to the flying controller 5. In this configuration, the command for the levitation position and the levitation position of the rotary shaft 1 detected by the displacement detector 3 are compared by the comparator 61, and if there is a difference, the levitation controller 5 sends a command to the current amplifier 41 or 42 to fix it. An exciting current is applied to the child 21 or 22. Then, the rotary shaft 1 is held so as to come to a predetermined position by the magnetic attraction force acting between the stator 21 or 22 and the rotary shaft 1. Stator 2 shown
A levitation system having the same structure is provided in a direction orthogonal to the direction in which the rotary shaft 1 and 22 are supported.
Constitutes a radial bearing of. 2 sets of this radial bearing,
The rotary shaft 1 can be completely supported in a non-contact manner by being provided in the vicinity of both ends of the shaft. If the rotor of the motor is integrally provided on the rotary shaft 1, high speed rotation can be achieved. In this way, a high-speed motor composed of two sets of radial magnetic bearings, one axial magnetic bearing and a rotor of a motor can be reached by a conventional bearing because when the stator of the motor is excited by a high frequency inverter, the friction of the supporting portion is small. High-speed rotation of the region that could not be done is possible.

【0003】[0003]

【発明が解決しようとする課題】ところが、そのような
構成の高速モータを、インバータで励磁して高速回転す
ると、次のような問題があった。モータの固定子巻線に
励磁電流を供給して回転磁界を生じさせると、軸対称の
磁束分布が生じ、その磁束分布が励磁に同期して回転す
る。モータが2極の誘導電動機の場合、N極とS極の2
つの主磁束が軸対称に分布して励磁周波数に従って回転
する。ところが、この磁束は、固定子の鉄心材料に磁気
的な異方性があったり、機械加工や組立時の影響で磁気
回路の磁気抵抗が回転位置によって不均一となったりす
るので、必ずしも軸対称とはなっていない。スイッチン
グ素子を用いてモータを駆動する高周波インバータもそ
の原因の一つと考えられる。これらの因果関係はよく分
かっているわけではないが、磁束分布が軸対称とならな
いため次のような不具合点が生じることになる。すなわ
ち、前記の磁気軸受形高速モータの回転速度を上げてゆ
くと、ラジアル軸受で非接触支持して回転軸1を軸受の
中心に保持する制御をしていても、図4に示すように次
第に中央から周辺へとアンバランスプルが働く方向へシ
フトしていき、その偏差が回転速度とともに大きくなっ
てゆくのである。磁気軸受の浮上制御器に完全な積分機
能がある場合は、図のように浮上位置がシフトすること
はないが、モータのアンバランスプルが次第に大きくな
るため、それに対抗して回転中心位置に保持しようと軸
受の固定子に大きな励磁電流が供給される。積分機能が
完全でなく、回転軸に偏心がある場合は、偏心すればす
るほどアンバランスプルが大きくなるので固定子電流の
増加が一層大きくなる。何れにしても、回転軸の浮上位
置または固定子の励磁電流が制限を越えるところまでア
ンバランスプルが大きくなると、正常な浮上制御が行わ
れなくなり回転軸が固定側に接触したりして様々なトラ
ブルを引き起こすのである。そこで、本発明はそのよう
なモータ部の径方向のアンバランスプルによる諸問題を
回避する磁気軸受制御装置を提供することを目的とす
る。
However, when a high speed motor having such a structure is excited by an inverter and rotated at a high speed, there are the following problems. When an exciting current is supplied to the stator winding of the motor to generate a rotating magnetic field, an axially symmetrical magnetic flux distribution is generated, and the magnetic flux distribution rotates in synchronization with the excitation. If the motor is an induction motor with 2 poles, 2
The two main magnetic fluxes are distributed symmetrically and rotate according to the excitation frequency. However, this magnetic flux is not necessarily axially symmetric because the stator core material has magnetic anisotropy and the magnetic resistance of the magnetic circuit becomes non-uniform depending on the rotational position due to the effects of machining and assembly. Is not. A high frequency inverter that drives a motor using switching elements is also considered to be one of the causes. Although the causal relationship between these is not well understood, the following problems will occur because the magnetic flux distribution is not axisymmetric. That is, when the rotational speed of the magnetic bearing type high-speed motor is increased, even if control is performed to support the rotating shaft 1 at the center of the bearing by non-contact supporting with the radial bearing, as shown in FIG. It shifts from the center to the periphery in the direction of the unbalanced pull, and the deviation increases with the rotation speed. If the levitation controller of the magnetic bearing has a complete integration function, the levitation position will not shift as shown in the figure, but the motor unbalance pull will gradually increase, so it will be held at the rotation center position against it. A large exciting current is supplied to the stator of the bearing. When the integral function is not perfect and the rotating shaft has eccentricity, the more eccentric the unbalanced pull becomes, the more the stator current increases. In any case, if the unbalanced pull becomes large to the point where the floating position of the rotating shaft or the exciting current of the stator exceeds the limit, normal floating control will not be performed and the rotating shaft will contact the fixed side. It causes trouble. Therefore, it is an object of the present invention to provide a magnetic bearing control device that avoids various problems caused by such radial unbalanced pulling of a motor unit.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、モータの回転子を備えた回転軸と、回転
軸に固着された磁気軸受の回転子と、この回転子とエア
ギャップを介して対向させて設けた2つの磁気軸受の固
定子と、この固定子に対する前記回転子の浮上位置を検
出する変位検出器と、この変位検出器の信号と浮上位置
指令信号を受ける浮上制御器と、この浮上制御器の指令
を受けて前記固定子に励磁電流を供給する2つの電流増
幅器より磁気軸受制御装置において、前記変位検出器と
前記2つの電流増幅器の出力電流から軸受の支持力を演
算する演算器と、回転前・浮上直後の空隙がバランスす
る前記演算器の支持力指令信号を出力する支持力指令器
と、該支持力指令器と前記演算器の信号を受けて比較す
る比較器と、この比較器の信号を受けて浮上位置指令を
前記浮上制御器に送る支持力制御器を付加し、回転中の
軸受の支持力が回転前の支持力で支持されるよう制御す
るようにしたのである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to a rotary shaft having a rotor of a motor, a rotor of a magnetic bearing fixed to the rotary shaft, and the rotor and an air gap. And a displacement detector that detects the floating position of the rotor with respect to the stator, and a levitation control that receives a signal from the displacement detector and a levitation position command signal. And a magnetic bearing control device comprising two current amplifiers which supply an exciting current to the stator in response to a command from the levitation controller, in a magnetic bearing control device, the bearing support force is determined from the output currents of the displacement detector and the two current amplifiers. a calculator for calculating a to balance gap immediately before rotation-floating
A bearing force command device for outputting a bearing force command signal of the computing unit, a comparator for receiving the bearing force command device and the signal of the computing unit for comparison, and receiving a flying position command by receiving the signal of the comparator. A supporting force controller for sending to the levitation controller is added to control so that the supporting force of the rotating bearing is supported by the supporting force before the rotation.

【0005】[0005]

【作用】上記手段により、モータを励磁して回転速度を
上げていきモータの径方向のアンバランスプルが大きく
なっても、支持力制御器が働いて浮上位置をアンバラン
スプルの方向と反対の方向に、回転子を偏位させるの
で、アンバランスプルが解消されて回転前の支持力で支
持することができ、浮上位置や励磁電流が飽和すること
なく安定して支持することができるのである。
With the above-mentioned means, even if the motor is excited to increase the rotational speed and the unbalance pull in the radial direction of the motor becomes large, the supporting force controller works to move the levitation position to the opposite direction of the unbalance pull. Since the rotor is deviated in the direction, unbalance pull can be eliminated and it can be supported by the supporting force before rotation, and it can be stably supported without levitation position or exciting current being saturated. .

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明の磁気軸受制御装置のブロック図であ
り、図2は図1中の演算器の詳細図である。図におい
て、8は、電流増幅器41、42が固定子21、22に
与える励磁電流を検出する電流検出器43、44で検出
された2つの電流信号i11、i21と変位検出器3の
信号Xを受けて、軸受の支持力を演算する演算器であ
る。9は、回転前・浮上直後の空隙がバランスする演算
器8の支持力指令信号f 保持して出力する支持
力指令器である。62は、演算器8の出力信号fと支
持力指令器9の出力信号fを受けて、比較する比較器
である。7は、比較器62の出力信号を受けて比較器6
1に信号を送る支持力制御器であり、少なくとも積分補
償要素を備えている。その積分補償要素の時定数は、支
持力制御が回転速度の上昇に応答する程度でよいため、
浮上制御器5の時定数よりかなり大きく設定されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a magnetic bearing control device according to the present invention, and FIG. 2 is a detailed diagram of a computing unit in FIG. In the figure, 8 indicates two current signals i 11 and i 21 detected by the current detectors 43 and 44 that detect the exciting current applied to the stators 21 and 22 by the current amplifiers 41 and 42, and the signal of the displacement detector 3. It is a calculator that receives the bearing force Xf and calculates the bearing force of the bearing. Reference numeral 9 is a support force command device that holds and outputs the support force command signal f s 0 of the computing unit 8 in which the gaps before rotation and immediately after ascent are balanced. A comparator 62 receives the output signal f f of the computing unit 8 and the output signal f s of the supporting force command unit 9 and compares them. 7 receives the output signal of the comparator 62 and receives the comparator 6
1 is a bearing force controller that sends a signal to 1, and includes at least an integral compensation element. Since the time constant of the integral compensation element may be such that the bearing force control responds to the increase in the rotation speed,
It is set to be considerably larger than the time constant of the levitation controller 5.

【0007】図2は、演算器8の詳細図である。811
は、変位検出器3の出力信号Xf と軸中心位置信号X0
の差をとって、固定子21と回転軸1間のエアギャップ
を求める比較器である。812は、変位検出器3の出力
信号Xf と軸中心位置信号X0 の和を演算して、固定子
22と回転軸1間のエアギャップを求める加算器であ
る。821は電流検出器43の信号を増幅する増幅器、
822は電流検出器44の信号を増幅する増幅器であ
る。831は、比較器811の出力信号X0 −Xf と増
幅器821の出力信号i1を受けてi1 /(X0
f )を除算する除算器である。832は、加算器81
2の出力信号X0 +Xf と増幅器822の出力信号i2
を受けてi2 /(X0 +Xf )を演算する除算器であ
る。841は、除算器831の出力信号を受けて(i1
/(X0 −Xf ))2 を演算する乗算器、842は除算
器832の出力信号を受けて(i2 /(X0 +Xf ))
2 を演算する乗算器である。813は、乗算器841の
出力信号と乗算器842の出力信号を受けて比較する比
較器、85は比較器813の出力信号を受けて信号レベ
ルを調整する増幅器である。すなはち、演算器8は、電
磁石の磁気吸引力が( 電流/ エアギャップ)2に比例する
ことから、2つの電磁石の吸引力を求めその差から軸受
の支持力を演算していることになる。
FIG. 2 is a detailed diagram of the arithmetic unit 8. 811
Is the output signal X f of the displacement detector 3 and the axis center position signal X 0.
Is a comparator for obtaining the air gap between the stator 21 and the rotary shaft 1 by taking the difference An adder 812 calculates the sum of the output signal X f of the displacement detector 3 and the shaft center position signal X 0 to obtain the air gap between the stator 22 and the rotary shaft 1. 821 is an amplifier for amplifying the signal of the current detector 43,
Reference numeral 822 is an amplifier that amplifies the signal of the current detector 44. 831 receives the output signal X 0 −X f of the comparator 811 and the output signal i 1 of the amplifier 821 and i 1 / (X 0
X f ) is a divider. 832 is an adder 81
2 output signal X 0 + X f and amplifier 822 output signal i 2
It is a divider that receives and calculates i 2 / (X 0 + X f ). 841 receives the output signal of the divider 831 (i 1
/ (X 0 −X f )) 2 multiplier 842 receives the output signal of the divider 832 (i 2 / (X 0 + X f ))
It is a multiplier that calculates 2 . Reference numeral 813 is a comparator that receives and compares the output signal of the multiplier 841 and the output signal of the multiplier 842, and 85 is an amplifier that receives the output signal of the comparator 813 and adjusts the signal level. That is, since the magnetic attraction force of the electromagnet is proportional to (current / air gap) 2 the calculator 8 calculates the bearing force of the bearing from the difference between the attraction forces of the two electromagnets. Become.

【0008】比較器62は、回転前・浮上直後の空隙が
バランスする演算器8の支持力指令信号fs0と回転中の
支持力に相当する支持力指令信号ff を出力する演算器
8の信号を受けて比較するため、モータが高速回転して
アンバランスプルが生じたときは、それにより回転軸が
偏心するかどうかに関わらず比較器62によって支持力
の偏差が出力される。この信号を受けた支持力制御器7
は前記偏差を低減するよう働いて指令信号Xs を出力す
る。この指令信号Xs は浮上制御系の浮上位置指令とし
て比較器61に入力される。そして、この指令を受けた
浮上制御系はモータのアンバランスプルが作用している
方向と逆の方向に浮上位置を偏位させるので、ついには
回転前の支持力と同じ支持力となる浮上位置まで偏位す
るのである。こうして、モータに生じたアンバランスプ
ルに対抗して浮上位置を偏位すると、アンバランスプル
が磁気吸引力と同様に(1/エアギャップ)2 に比例する
ため、僅かの偏位でアンバランスプルを低減することが
できるのである。
The comparator 62 outputs a bearing force command signal f s0 of the computing unit 8 in which the air gaps before rotation and immediately after ascent and a bearing force command signal f f corresponding to the bearing force during rotation are output. Since a signal is received and compared, when the motor rotates at high speed and an unbalanced pull occurs, the comparator 62 outputs the deviation of the supporting force regardless of whether the rotation shaft is eccentric. Support force controller 7 which received this signal
Outputs the command signal X s by working to reduce the deviation. This command signal X s is input to the comparator 61 as a floating position command of the floating control system. Then, the levitation control system that receives this command shifts the levitation position in the direction opposite to the direction in which the unbalanced pull of the motor is operating, so that finally the levitation position that gives the same bearing force as before rotation. It deviates to. In this way, if the levitation position is displaced against the unbalanced pull generated in the motor, the unbalanced pull is proportional to (1 / air gap) 2 in the same way as the magnetic attraction force. Can be reduced.

【0009】[0009]

【発明の効果】以上述べたように、本発明によれば、駆
動用モータで回転するときに不平衡磁気吸引力によるア
ンバランスプルが生じても、その方向と逆の方向に浮上
位置を偏位させてアンバランスプルを解消するため、固
定子の電流が飽和することがなく、高速回転まで安定し
た支持状態を得ることができて高速モータの実用性を高
めうるという効果がある。
As described above, according to the present invention, even when an unbalanced pull due to an unbalanced magnetic attraction force is generated when rotating by a drive motor, the flying position is biased in the opposite direction. Since the unbalanced pull is eliminated by arranging the stator, the current of the stator is not saturated, a stable supporting state can be obtained even at high speed rotation, and the practicality of the high speed motor can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の演算器の詳細図FIG. 2 is a detailed diagram of a computing unit of the present invention.

【図3】従来の磁気軸受制御装置を示すブロック図FIG. 3 is a block diagram showing a conventional magnetic bearing control device.

【図4】アンバランスプルを示すベクトル図FIG. 4 is a vector diagram showing an unbalanced pull.

【符号の説明】[Explanation of symbols]

1 回転軸 21、22 固定子 3 変位検出器 41、42 電流増幅器 43、44 電流検出器 5 浮上制御器 61、62、811、813 比較器 7 支持力制御器 8 演算器 812 加算器 821、822 増幅器 831、832 除算器 841、842 乗算器 85 増幅器 9 支持力指令器 1 rotation axis 21, 22 Stator 3 Displacement detector 41, 42 Current amplifier 43,44 Current detector 5 Levitation controller 61, 62, 811, 813 comparator 7 Support force controller 8 arithmetic unit 812 adder 821,822 amplifier 831, 832 divider 841,842 multipliers 85 amplifier 9 Support force commander

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16C 32/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F16C 32/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】モータの回転子を備えた回転軸と、この回
転軸に固着された磁気軸受の回転子と、この回転子とエ
アギャップを介して対向させて設けた、2つの磁気軸受
の固定子と、この固定子に対する前記回転子の浮上位置
を検出する変位検出器と、この変位検出器の信号と浮上
位置指令信号を受ける浮上制御器と、この浮上制御器の
指令を受けて前記固定子に励磁電流を供給する2つの電
流増幅器よりなる磁気軸受制御装置において、 前記変位検出器と前記2つの電流増幅器の出力電流から
軸受の支持力を演算する演算器と、回転前・浮上直後の
空隙がバランスする前記演算器の支持力指令信号を出力
する支持力指令器と、この支持力指令器と前記演算器の
出力信号を受けて比較する比較器と、この比較器の出力
信号を受けて浮上位置指令を前記浮上制御器に送る支持
力制御器を備えたことを特徴とする磁気軸受制御装置。
1. A rotary shaft provided with a rotor of a motor, a rotor of a magnetic bearing fixed to the rotary shaft, and two magnetic bearings provided so as to face the rotor via an air gap. A stator, a displacement detector that detects a floating position of the rotor with respect to the stator, a levitation controller that receives a signal of the displacement detector and a levitation position command signal, and a susceptor that receives a command of the levitation controller. in the magnetic bearing control device consisting of two current amplifiers for supplying an excitation current to the stator, and a calculator for calculating the bearing capacity of the bearing from the output current of the displacement detector the two current amplifiers, after pre-rotation-floating of
A bearing force commander that outputs a bearing force command signal of the arithmetic unit in which the air gap is balanced, a comparator that receives and compares the bearing force command device and the output signal of the arithmetic unit, and an output signal of this comparator And a supporting force controller for sending a floating position command to the floating controller.
【請求項2】前記支持力制御器の積分補償要素の時定数
が浮上制御器の時定数より大きい請求項1の磁気軸受制
御装置。
2. The magnetic bearing control device according to claim 1, wherein the time constant of the integral compensation element of the bearing force controller is larger than the time constant of the levitation controller.
JP29455593A 1993-10-29 1993-10-29 Magnetic bearing control device Expired - Lifetime JP3517846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29455593A JP3517846B2 (en) 1993-10-29 1993-10-29 Magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29455593A JP3517846B2 (en) 1993-10-29 1993-10-29 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPH07127640A JPH07127640A (en) 1995-05-16
JP3517846B2 true JP3517846B2 (en) 2004-04-12

Family

ID=17809311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29455593A Expired - Lifetime JP3517846B2 (en) 1993-10-29 1993-10-29 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JP3517846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623239B (en) * 2021-09-16 2024-06-25 北京航空航天大学宁波创新研究院 Unbalanced magnetic tension control method, device, system, equipment and medium

Also Published As

Publication number Publication date
JPH07127640A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
EP0364993B1 (en) Magnetic bearing system
EP0313727B1 (en) Unstable vibration prevention apparatus for magnetic bearing system
US5880550A (en) Variable-speed dynamotor
EP1188943B1 (en) Magnetic levitation rotating machine
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
GB2129582A (en) Controlled magnetic bearing device
JPH07256503A (en) Spindle apparatus
US6984907B2 (en) Magnetic bearing apparatus
JPH10150755A (en) Radial force generator, rotary machine with winding, and turning equipment
JP3259404B2 (en) Vibration suppressor
EP0716241B1 (en) Magnetic bearing apparatus
JPH0232868B2 (en)
JP3517846B2 (en) Magnetic bearing control device
JP2860398B2 (en) Axial magnetic levitation rotating motor and rotating device using the same
JP3710547B2 (en) Disk type magnetic levitation rotating machine
JPH10136622A (en) Homopolar reluctance motor
JP3712519B2 (en) Disc type bearingless rotating machine
JP2546997B2 (en) Non-contact support method
JPH0787680B2 (en) Radial magnetic bearing device
JPH048911A (en) Magnetic bearing device
JPS63210414A (en) Magnetic bearing device
JPH0965607A (en) Inner-rotor type motor
JPH1122730A (en) Magnetic bearing and magnetic bearing unit
JP2002021850A (en) Magnetic bearing
JP3042545B2 (en) Magnetic bearing device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term