JPS63111311A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPS63111311A
JPS63111311A JP25741286A JP25741286A JPS63111311A JP S63111311 A JPS63111311 A JP S63111311A JP 25741286 A JP25741286 A JP 25741286A JP 25741286 A JP25741286 A JP 25741286A JP S63111311 A JPS63111311 A JP S63111311A
Authority
JP
Japan
Prior art keywords
rotor
radial
magnetic pole
electromagnet
electromagnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25741286A
Other languages
Japanese (ja)
Inventor
Masao Inoue
正夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25741286A priority Critical patent/JPS63111311A/en
Publication of JPS63111311A publication Critical patent/JPS63111311A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • F16C32/0491Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing with electromagnets acting in axial and radial direction, e.g. with conical magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To make the device in the caption compact and light by forming the magnetic pole surfaces of radial control electromagnets into taper shape, and generating suction forces in the radial and axial directions with the same electromagnet. CONSTITUTION:The magnetic pole surfaces of radial control electromagnets 3a-3d are processed into taper forms, and the outer circumferential surface of annular portions on the rotor side facing to the above-mentioned magnetic pole surfaces are formed into cones corresponding to the taper forms. The signals of radial displacement gages 5a, 5b supply current to the electromagnets 3a-3d through control circuits 9a-9d respectively. The magnetic pole surface of the electromagnets are inclined and as well the circular portions on the rotor side facing to the above-mentioned magnetic pole surfaces have suitable forms and thereby generated suction forces are compensated with each other in the radial direction so that only restoring force in the vertical direction can be obtained. Accordingly, without any axial control electromagnet, it is possible to correct the axial displacement so as to make the rotor floatable, and then a compact and light magnetic bearing device can be secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えば真空ポンプの磁気軸受装置、特にその
電磁石の配置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic bearing device for, for example, a vacuum pump, and in particular to the arrangement of electromagnets thereof.

〔従来の技術〕[Conventional technology]

第3図は従来の磁気軸受を使ったターボ分子ポンプを示
す断面図であり、図において(1)はロータ、(2)は
I・ウジング、(3a)、(3b)。
FIG. 3 is a sectional view showing a conventional turbomolecular pump using magnetic bearings. In the figure, (1) is the rotor, (2) is I.Using, and (3a) and (3b).

(3c)、(3d)はロータ(1)の半径方向変位を制
御する半径方向制御電磁石、(4a)。
(3c), (3d) are radial control electromagnets (4a) that control the radial displacement of the rotor (1);

(4b)はロータ(1)の軸方向変位を制御する軸方向
制御電磁石、(5a)、(5b)はロータ(1)の半径
方向変位を検出する半径方向変位計、(6)はロータ(
1)の軸方向変位を検出する軸方向変位計、(10)は
回転駆動のモータである。
(4b) is an axial control electromagnet that controls the axial displacement of the rotor (1), (5a) and (5b) are radial displacement meters that detect the radial displacement of the rotor (1), and (6) is the rotor (
1) is an axial displacement meter that detects axial displacement; (10) is a rotary drive motor;

次に動作について説明する。第4図を参照して、半径方
向変位計(5a)は制御回路(7a)を通じて半径方向
制御電磁石(3a)へ接続されており、かつ制御回路(
7b)を通じて半径方向制御電磁石(3b)へ接続され
ている。同様に半径方向変位計(5b)は制御回路(7
c)。
Next, the operation will be explained. Referring to FIG. 4, the radial displacement meter (5a) is connected to the radial control electromagnet (3a) through the control circuit (7a), and the control circuit (
7b) to the radial control electromagnet (3b). Similarly, the radial displacement meter (5b) is connected to the control circuit (7
c).

(7d)を通じて半径方向制御電磁石(3c)。(7d) through the radial control electromagnet (3c).

(3d)へ接続されている。軸方向変位計(6)は制御
回路(8a)を通じて軸方向制御電磁石(4a)へ、か
つ制御回路(8b)を通じて軸方向制御電磁石(4b)
へ接続されている。そうして、ロータ(1)が所望され
ている位置で浮上回転しているときには、半径方向変位
計(5a)。
(3d). The axial displacement meter (6) is connected to the axial control electromagnet (4a) through the control circuit (8a) and to the axial control electromagnet (4b) through the control circuit (8b).
connected to. Then, when the rotor (1) is floating and rotating at a desired position, the radial displacement meter (5a).

(5b)および軸方向変位計(6)の信号が零となるよ
うに調整されている。そこで、たとえばロータ(1)が
僅かに半径方向に図の右方向へ変位した場合には、その
変位量は半径方向変位計(5a)で検出され、これに接
続された制御回路(7a)は電磁石(3a)へ電流を供
給する。かくしてロータ(1)は所望の位置へ引き戻さ
れる。逆にロータ(1)が図の左側へ変位した場合には
、制御回路(7b)が逆符号の入力となっているので、
1に磁石(3b)が励磁され、やはりロータ(1)の変
位が修正される。更に、図示しないが前後の制御につい
ても同様に行なわれる。下方の半径方向変位計(5b)
についても同様に制御回路(7c)、(7d)を通じて
電磁石(3d)。
(5b) and the axial displacement meter (6) are adjusted to zero. Therefore, for example, when the rotor (1) is slightly displaced in the radial direction to the right in the figure, the amount of displacement is detected by the radial displacement meter (5a), and the control circuit (7a) connected to this is detected by the radial displacement meter (5a). Supply current to the electromagnet (3a). The rotor (1) is thus pulled back to the desired position. Conversely, if the rotor (1) is displaced to the left in the figure, the control circuit (7b) has an input with the opposite sign, so
1, the magnet (3b) is excited, and the displacement of the rotor (1) is also corrected. Further, although not shown, the preceding and following controls are performed in the same manner. Lower radial displacement meter (5b)
Likewise, the electromagnet (3d) is connected through the control circuits (7c) and (7d).

(3d)が励磁される。軸方向変位計(6)も同様に制
御回路(8a)、(8b)を通じて電磁石(4a)、(
4b)を励磁しロータ(1)を所望位置に浮上させる。
(3d) is excited. Similarly, the axial displacement meter (6) is connected to the electromagnets (4a), (
4b) to levitate the rotor (1) to a desired position.

このようにロータ(1)がどのように変位しようともそ
の誤差は修正されて、ロータ(1)は浮上回転を維持す
ることができる。
In this way, no matter how the rotor (1) is displaced, the error is corrected and the rotor (1) can maintain floating rotation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の磁気軸受装置は以上のように構成されているので
、多くの電磁石(第4図では図示しないものを含めて1
0個)を必要とし、重量や形状が大きく、また多くの制
御回路が必要になるという問題点があった。
Since the conventional magnetic bearing device is configured as described above, it has many electromagnets (including one not shown in Fig. 4).
0 pieces), the weight and shape are large, and there are problems in that a large number of control circuits are required.

この発明は上記のような問題点を解消するためになされ
たもので、軸方向制御電磁石およびその制御回路を必要
とせずしかもロータを所望位置に浮上させることができ
、したがって小型軽量の磁気軸受装置を得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and it is possible to levitate the rotor to a desired position without requiring an axial direction control electromagnet and its control circuit, and therefore a small and lightweight magnetic bearing device. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る磁気軸受装置は半径方向制御電磁石の吸
引力が軸方向成分をも含むように、半径方向制御電磁石
の磁極面をテーパー状とし、ロータ側の対応する環状部
も円錐状になし、ロータの軸方向変位信号をも半径方向
の制御回路へ加算して入力するようKしたものである。
In the magnetic bearing device according to the present invention, the magnetic pole face of the radial control electromagnet is tapered so that the attractive force of the radial control electromagnet also includes an axial component, and the corresponding annular portion on the rotor side is also made conical. The axial displacement signal of the rotor is also added to the radial direction control circuit and inputted thereto.

〔作用〕[Effect]

この発明における磁気軸受装置は半径方向制御電磁石の
磁極面のテーパー形状とこれに対応したロータ側の環状
部の円錐面とによって、ロータの回転軸を中心に保つと
同時に、軸方向成分を使ってロータを浮上させる。
The magnetic bearing device according to the present invention uses the tapered shape of the magnetic pole surface of the radial direction control electromagnet and the corresponding conical surface of the annular portion on the rotor side to maintain the rotational axis of the rotor at the center, while at the same time using the axial component. Raise the rotor.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において(3a)、(3b)。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure (3a) and (3b).

(3c)、(3a)は磁極面がテーパー状に加工された
半径方向制御電磁石である。これらに対応したロータ側
の環状部の外周面も前記テーパーに対応して円錐状にな
されている。(9a)。
(3c) and (3a) are radial direction control electromagnets whose magnetic pole faces are machined into a tapered shape. The outer peripheral surface of the annular portion on the rotor side corresponding to these is also formed into a conical shape corresponding to the taper. (9a).

(9b)、(9c)、(9d)は二つの電気信号の和ま
たは差に比例した電流を供給する制御回路である。なお
従来例と同じ部材については同一の符号を付しである。
(9b), (9c), and (9d) are control circuits that supply current proportional to the sum or difference of two electrical signals. Note that the same members as in the conventional example are given the same reference numerals.

次に動作について説明する。第2図を参照して、半径方
向変位計(5a)、(5b)の信号は従来のものと同様
にそれぞれ制御回路(9a)〜(9a)を通じて電磁石
(3、a ) 〜(3a )に電流を供給するようにフ
ィードバックされる。
Next, the operation will be explained. Referring to FIG. 2, the signals from the radial displacement meters (5a) and (5b) are sent to the electromagnets (3, a) to (3a) through control circuits (9a) to (9a), respectively, similarly to the conventional one. Feedback is provided to supply current.

かくして、ロータ(1)の半径方向変位は従来のものと
全く同様に修正され、回転軸は軸受中央に保持される。
The radial displacement of the rotor (1) is thus corrected in exactly the same way as before, and the axis of rotation is kept in the center of the bearing.

一方、回転軸が沿直に配置されているロータには重力が
かかつており、このままでは浮上することができないの
で、軸方向変位計(6)でロータの軸方向変位を検出し
、その大きさに比例して全ての電磁石(3a)〜(3d
)へ電流を供給するように検出された信号を制御回路(
9a)〜(9d)へ同位相で加算久方する。したがって
、ロータ(1)が浮上位置よりも下がった場合には全て
の半径方向制御電磁石の吸引力が増加することになるが
、電磁石の磁極面が傾斜しかつこれに対応するロータ側
の環状部が相応した形状になされているために、発生吸
引力は半径方向で打ち消し合って、垂直方向の復元力だ
けが得られることになる。したがって、テーパー状の磁
極を持つ半径方向制御電磁石を使うと、従来の如く軸方
向制御電磁石がなくとも、軸方向の変位を修正してロー
タを浮上させることが可能になる。
On the other hand, the rotor, whose axis of rotation is arranged vertically, has a strong gravitational force and cannot levitate in this state. Therefore, the axial displacement meter (6) detects the axial displacement of the rotor and calculates its magnitude. All electromagnets (3a) to (3d
) to supply current to the control circuit ( ).
9a) to (9d) are added in the same phase. Therefore, when the rotor (1) is lowered below the floating position, the attractive force of all the radial control electromagnets increases, but the magnetic pole faces of the electromagnets are inclined and the corresponding annular part on the rotor side Since they are shaped accordingly, the generated suction forces cancel each other out in the radial direction, and only a restoring force in the vertical direction is obtained. Therefore, by using a radial control electromagnet with tapered magnetic poles, it is possible to correct the axial displacement and levitate the rotor without the need for a conventional axial control electromagnet.

そこで、第1図に示す如く、通常は軸方向制御電磁石の
ある空間にモータ(10)などを配置することが可能に
なり、小型で軽量の磁気軸受装置を得ることが可能とな
る。
Therefore, as shown in FIG. 1, it becomes possible to arrange the motor (10) etc. in the space where the axial direction control electromagnet is normally located, and it becomes possible to obtain a small and lightweight magnetic bearing device.

なお、上記実施例ではロータが電磁石の内側にあるイン
ナーロータ型について説明したが、ロータが電磁石の外
側にあるアウターロータ型についても同様の方法が応用
できる。
In the above embodiments, an inner rotor type in which the rotor is located inside the electromagnet has been described, but a similar method can be applied to an outer rotor type in which the rotor is located outside the electromagnet.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、半径方向制御電磁石
の磁極面をテーパー状としたために1半径方向と軸方向
の吸引力を同一の電磁石で発生できるようになり、少な
い電磁石と制御回路でロータの浮上制御が可能となり、
装置が小型軽量となり、また安価にできるという効果が
ある。
As described above, according to the present invention, since the magnetic pole surface of the radial direction control electromagnet is tapered, it is possible to generate attraction forces in both the radial direction and the axial direction with the same electromagnet, and with fewer electromagnets and control circuits. Rotor levitation control becomes possible,
This has the effect that the device can be made smaller, lighter, and cheaper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による磁気軸受装置を示す
断面図、第2図はこの発明の動作を示すブロック図、8
3図は従来の磁気軸受装置を示す断面図、第4図はその
制御を示すブロック図である。 図において、(3a)〜(3d)は電磁石、(5a )
 、 (5b ) = (61は変位計、(9a)〜(
9d)は制御回路である。 なあ、各図中同一符号は同一または相当部分を示す。 代理人 弁理士  大  岩  増  雄第1図 第2図 9d:や1−回路 第3図 第4U!J 7a−書1匍回路 δb、tl&1回路
FIG. 1 is a sectional view showing a magnetic bearing device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the operation of the present invention.
FIG. 3 is a sectional view showing a conventional magnetic bearing device, and FIG. 4 is a block diagram showing its control. In the figure, (3a) to (3d) are electromagnets, (5a)
, (5b) = (61 is a displacement meter, (9a) ~ (
9d) is a control circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Masuo Oiwa Figure 1 Figure 2 Figure 9d: Ya 1-Circuit Figure 3 Figure 4U! J 7a-Book 1 circuit δb, tl & 1 circuit

Claims (3)

【特許請求の範囲】[Claims] (1)回転軸が沿直な磁気軸受装置において、ロータの
半径方向変位を制御する電磁石の磁極面にテーパーを設
け、ロータ側の環状部の外周面の形状もこれに対応した
円錐状になし、発生吸引力に回転軸方向成分を持たせる
ことによつて、回転軸方向を制御する専用の電磁石を不
要としたことを特徴とする磁気軸受装置。
(1) In a magnetic bearing device with a vertical axis of rotation, the magnetic pole surface of the electromagnet that controls the radial displacement of the rotor is tapered, and the outer peripheral surface of the annular portion on the rotor side is also shaped into a corresponding cone shape. A magnetic bearing device characterized in that a generated attractive force has a component in the direction of the rotation axis, thereby eliminating the need for a dedicated electromagnet for controlling the direction of the rotation axis.
(2)ロータが電磁石の内側にあるインナーロータ型で
ある特許請求の範囲第1項記載の磁気軸受装置。
(2) The magnetic bearing device according to claim 1, wherein the rotor is an inner rotor type in which the rotor is located inside the electromagnet.
(3)ロータが電磁石の外側にあるアウターロータ型で
ある特許請求の範囲第1項記載の磁気軸受装置。
(3) The magnetic bearing device according to claim 1, wherein the rotor is an outer rotor type in which the rotor is located outside the electromagnet.
JP25741286A 1986-10-28 1986-10-28 Magnetic bearing device Pending JPS63111311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25741286A JPS63111311A (en) 1986-10-28 1986-10-28 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25741286A JPS63111311A (en) 1986-10-28 1986-10-28 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPS63111311A true JPS63111311A (en) 1988-05-16

Family

ID=17306017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25741286A Pending JPS63111311A (en) 1986-10-28 1986-10-28 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPS63111311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727550A1 (en) * 1996-08-21 1998-02-26 Canders Wolf R Prof Dr Ing Magnetic bearing of rotor in stator e.g. for permanent magnetic element connected to turbine shaft
JP2003339136A (en) * 2002-05-20 2003-11-28 Kumamoto Technology & Industry Foundation Annular type motor
KR100513205B1 (en) * 2002-03-21 2005-09-08 한국전기연구원 Radial Magnetic Bearing With Increased Axial Guidance Force
CN111102234A (en) * 2019-12-30 2020-05-05 北京航空航天大学 Permanent magnet biased magnetic suspension bearing
CN115853901A (en) * 2023-02-10 2023-03-28 山东天瑞重工有限公司 Magnetic suspension bearing system and magnetic suspension motor
CN116123216A (en) * 2023-04-17 2023-05-16 山东华东风机有限公司 Magnetic bearing system based on radial-axial coupling magnetic bearing, control method and system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727550A1 (en) * 1996-08-21 1998-02-26 Canders Wolf R Prof Dr Ing Magnetic bearing of rotor in stator e.g. for permanent magnetic element connected to turbine shaft
DE19727550C2 (en) * 1996-08-21 2002-05-08 Canders Wolf R Magnetic bearing of a rotor in a stator
KR100513205B1 (en) * 2002-03-21 2005-09-08 한국전기연구원 Radial Magnetic Bearing With Increased Axial Guidance Force
JP2003339136A (en) * 2002-05-20 2003-11-28 Kumamoto Technology & Industry Foundation Annular type motor
CN111102234A (en) * 2019-12-30 2020-05-05 北京航空航天大学 Permanent magnet biased magnetic suspension bearing
CN111102234B (en) * 2019-12-30 2021-09-03 北京航空航天大学 Permanent magnet biased magnetic suspension bearing
CN115853901A (en) * 2023-02-10 2023-03-28 山东天瑞重工有限公司 Magnetic suspension bearing system and magnetic suspension motor
CN116123216A (en) * 2023-04-17 2023-05-16 山东华东风机有限公司 Magnetic bearing system based on radial-axial coupling magnetic bearing, control method and system

Similar Documents

Publication Publication Date Title
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US4312628A (en) Turbomolecular vacuum pump having virtually zero power magnetic bearing assembly with single axis servo control
EP0311122A1 (en) Radial magnetic bearing system
JP3068834B2 (en) Radial and axial bearings for rotors with large radii
Sabnis et al. A magnetically suspended large momentum wheel
JPS61218355A (en) Magnetically levitating actuator having rotation positioning function
US4983869A (en) Magnetic bearing
US3929390A (en) Damper system for suspension systems
US4290316A (en) Free-rotor gas-bearing gyroscope having electromagnetic rotor restraint and acceleration output signal
JPS5943220A (en) Gimbal-controlled magnetic bearing
JPS63111311A (en) Magnetic bearing device
US3722295A (en) Multiple rotation gyroscope with hydrodynamic suspension
JP3350109B2 (en) Magnetic levitation motor
JPH08322194A (en) Axial magnetic levitation motor and rotating machine employing it
JP3301619B2 (en) Magnetic bearing device
EP1072803A2 (en) Magnetic bearing device
JPH06141512A (en) Magnetic levitation motor
JP2002161918A (en) Magnetic bearing unit
JPS58137618A (en) Magnetic bearing
US3358514A (en) Gyroscope
JPH076541B2 (en) Magnetic bearing device
JPS6399742A (en) Magnetic bearing integrating type motor
JPH048911A (en) Magnetic bearing device
JPH0674234A (en) Repulsion magnetic levitation type rotation device
JPH06133493A (en) Magnetic levitation induction motor