JPS63111311A - Magnetic bearing device - Google Patents
Magnetic bearing deviceInfo
- Publication number
- JPS63111311A JPS63111311A JP25741286A JP25741286A JPS63111311A JP S63111311 A JPS63111311 A JP S63111311A JP 25741286 A JP25741286 A JP 25741286A JP 25741286 A JP25741286 A JP 25741286A JP S63111311 A JPS63111311 A JP S63111311A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- radial
- magnetic pole
- electromagnet
- electromagnets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 27
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
- F16C32/0474—Active magnetic bearings for rotary movement
- F16C32/0489—Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
- F16C32/0491—Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing with electromagnets acting in axial and radial direction, e.g. with conical magnets
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は例えば真空ポンプの磁気軸受装置、特にその
電磁石の配置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic bearing device for, for example, a vacuum pump, and in particular to the arrangement of electromagnets thereof.
第3図は従来の磁気軸受を使ったターボ分子ポンプを示
す断面図であり、図において(1)はロータ、(2)は
I・ウジング、(3a)、(3b)。FIG. 3 is a sectional view showing a conventional turbomolecular pump using magnetic bearings. In the figure, (1) is the rotor, (2) is I.Using, and (3a) and (3b).
(3c)、(3d)はロータ(1)の半径方向変位を制
御する半径方向制御電磁石、(4a)。(3c), (3d) are radial control electromagnets (4a) that control the radial displacement of the rotor (1);
(4b)はロータ(1)の軸方向変位を制御する軸方向
制御電磁石、(5a)、(5b)はロータ(1)の半径
方向変位を検出する半径方向変位計、(6)はロータ(
1)の軸方向変位を検出する軸方向変位計、(10)は
回転駆動のモータである。(4b) is an axial control electromagnet that controls the axial displacement of the rotor (1), (5a) and (5b) are radial displacement meters that detect the radial displacement of the rotor (1), and (6) is the rotor (
1) is an axial displacement meter that detects axial displacement; (10) is a rotary drive motor;
次に動作について説明する。第4図を参照して、半径方
向変位計(5a)は制御回路(7a)を通じて半径方向
制御電磁石(3a)へ接続されており、かつ制御回路(
7b)を通じて半径方向制御電磁石(3b)へ接続され
ている。同様に半径方向変位計(5b)は制御回路(7
c)。Next, the operation will be explained. Referring to FIG. 4, the radial displacement meter (5a) is connected to the radial control electromagnet (3a) through the control circuit (7a), and the control circuit (
7b) to the radial control electromagnet (3b). Similarly, the radial displacement meter (5b) is connected to the control circuit (7
c).
(7d)を通じて半径方向制御電磁石(3c)。(7d) through the radial control electromagnet (3c).
(3d)へ接続されている。軸方向変位計(6)は制御
回路(8a)を通じて軸方向制御電磁石(4a)へ、か
つ制御回路(8b)を通じて軸方向制御電磁石(4b)
へ接続されている。そうして、ロータ(1)が所望され
ている位置で浮上回転しているときには、半径方向変位
計(5a)。(3d). The axial displacement meter (6) is connected to the axial control electromagnet (4a) through the control circuit (8a) and to the axial control electromagnet (4b) through the control circuit (8b).
connected to. Then, when the rotor (1) is floating and rotating at a desired position, the radial displacement meter (5a).
(5b)および軸方向変位計(6)の信号が零となるよ
うに調整されている。そこで、たとえばロータ(1)が
僅かに半径方向に図の右方向へ変位した場合には、その
変位量は半径方向変位計(5a)で検出され、これに接
続された制御回路(7a)は電磁石(3a)へ電流を供
給する。かくしてロータ(1)は所望の位置へ引き戻さ
れる。逆にロータ(1)が図の左側へ変位した場合には
、制御回路(7b)が逆符号の入力となっているので、
1に磁石(3b)が励磁され、やはりロータ(1)の変
位が修正される。更に、図示しないが前後の制御につい
ても同様に行なわれる。下方の半径方向変位計(5b)
についても同様に制御回路(7c)、(7d)を通じて
電磁石(3d)。(5b) and the axial displacement meter (6) are adjusted to zero. Therefore, for example, when the rotor (1) is slightly displaced in the radial direction to the right in the figure, the amount of displacement is detected by the radial displacement meter (5a), and the control circuit (7a) connected to this is detected by the radial displacement meter (5a). Supply current to the electromagnet (3a). The rotor (1) is thus pulled back to the desired position. Conversely, if the rotor (1) is displaced to the left in the figure, the control circuit (7b) has an input with the opposite sign, so
1, the magnet (3b) is excited, and the displacement of the rotor (1) is also corrected. Further, although not shown, the preceding and following controls are performed in the same manner. Lower radial displacement meter (5b)
Likewise, the electromagnet (3d) is connected through the control circuits (7c) and (7d).
(3d)が励磁される。軸方向変位計(6)も同様に制
御回路(8a)、(8b)を通じて電磁石(4a)、(
4b)を励磁しロータ(1)を所望位置に浮上させる。(3d) is excited. Similarly, the axial displacement meter (6) is connected to the electromagnets (4a), (
4b) to levitate the rotor (1) to a desired position.
このようにロータ(1)がどのように変位しようともそ
の誤差は修正されて、ロータ(1)は浮上回転を維持す
ることができる。In this way, no matter how the rotor (1) is displaced, the error is corrected and the rotor (1) can maintain floating rotation.
従来の磁気軸受装置は以上のように構成されているので
、多くの電磁石(第4図では図示しないものを含めて1
0個)を必要とし、重量や形状が大きく、また多くの制
御回路が必要になるという問題点があった。Since the conventional magnetic bearing device is configured as described above, it has many electromagnets (including one not shown in Fig. 4).
0 pieces), the weight and shape are large, and there are problems in that a large number of control circuits are required.
この発明は上記のような問題点を解消するためになされ
たもので、軸方向制御電磁石およびその制御回路を必要
とせずしかもロータを所望位置に浮上させることができ
、したがって小型軽量の磁気軸受装置を得ることを目的
とする。This invention was made to solve the above-mentioned problems, and it is possible to levitate the rotor to a desired position without requiring an axial direction control electromagnet and its control circuit, and therefore a small and lightweight magnetic bearing device. The purpose is to obtain.
この発明に係る磁気軸受装置は半径方向制御電磁石の吸
引力が軸方向成分をも含むように、半径方向制御電磁石
の磁極面をテーパー状とし、ロータ側の対応する環状部
も円錐状になし、ロータの軸方向変位信号をも半径方向
の制御回路へ加算して入力するようKしたものである。In the magnetic bearing device according to the present invention, the magnetic pole face of the radial control electromagnet is tapered so that the attractive force of the radial control electromagnet also includes an axial component, and the corresponding annular portion on the rotor side is also made conical. The axial displacement signal of the rotor is also added to the radial direction control circuit and inputted thereto.
この発明における磁気軸受装置は半径方向制御電磁石の
磁極面のテーパー形状とこれに対応したロータ側の環状
部の円錐面とによって、ロータの回転軸を中心に保つと
同時に、軸方向成分を使ってロータを浮上させる。The magnetic bearing device according to the present invention uses the tapered shape of the magnetic pole surface of the radial direction control electromagnet and the corresponding conical surface of the annular portion on the rotor side to maintain the rotational axis of the rotor at the center, while at the same time using the axial component. Raise the rotor.
以下、この発明の一実施例を図について説明する。第1
図において(3a)、(3b)。An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure (3a) and (3b).
(3c)、(3a)は磁極面がテーパー状に加工された
半径方向制御電磁石である。これらに対応したロータ側
の環状部の外周面も前記テーパーに対応して円錐状にな
されている。(9a)。(3c) and (3a) are radial direction control electromagnets whose magnetic pole faces are machined into a tapered shape. The outer peripheral surface of the annular portion on the rotor side corresponding to these is also formed into a conical shape corresponding to the taper. (9a).
(9b)、(9c)、(9d)は二つの電気信号の和ま
たは差に比例した電流を供給する制御回路である。なお
従来例と同じ部材については同一の符号を付しである。(9b), (9c), and (9d) are control circuits that supply current proportional to the sum or difference of two electrical signals. Note that the same members as in the conventional example are given the same reference numerals.
次に動作について説明する。第2図を参照して、半径方
向変位計(5a)、(5b)の信号は従来のものと同様
にそれぞれ制御回路(9a)〜(9a)を通じて電磁石
(3、a ) 〜(3a )に電流を供給するようにフ
ィードバックされる。Next, the operation will be explained. Referring to FIG. 2, the signals from the radial displacement meters (5a) and (5b) are sent to the electromagnets (3, a) to (3a) through control circuits (9a) to (9a), respectively, similarly to the conventional one. Feedback is provided to supply current.
かくして、ロータ(1)の半径方向変位は従来のものと
全く同様に修正され、回転軸は軸受中央に保持される。The radial displacement of the rotor (1) is thus corrected in exactly the same way as before, and the axis of rotation is kept in the center of the bearing.
一方、回転軸が沿直に配置されているロータには重力が
かかつており、このままでは浮上することができないの
で、軸方向変位計(6)でロータの軸方向変位を検出し
、その大きさに比例して全ての電磁石(3a)〜(3d
)へ電流を供給するように検出された信号を制御回路(
9a)〜(9d)へ同位相で加算久方する。したがって
、ロータ(1)が浮上位置よりも下がった場合には全て
の半径方向制御電磁石の吸引力が増加することになるが
、電磁石の磁極面が傾斜しかつこれに対応するロータ側
の環状部が相応した形状になされているために、発生吸
引力は半径方向で打ち消し合って、垂直方向の復元力だ
けが得られることになる。したがって、テーパー状の磁
極を持つ半径方向制御電磁石を使うと、従来の如く軸方
向制御電磁石がなくとも、軸方向の変位を修正してロー
タを浮上させることが可能になる。On the other hand, the rotor, whose axis of rotation is arranged vertically, has a strong gravitational force and cannot levitate in this state. Therefore, the axial displacement meter (6) detects the axial displacement of the rotor and calculates its magnitude. All electromagnets (3a) to (3d
) to supply current to the control circuit ( ).
9a) to (9d) are added in the same phase. Therefore, when the rotor (1) is lowered below the floating position, the attractive force of all the radial control electromagnets increases, but the magnetic pole faces of the electromagnets are inclined and the corresponding annular part on the rotor side Since they are shaped accordingly, the generated suction forces cancel each other out in the radial direction, and only a restoring force in the vertical direction is obtained. Therefore, by using a radial control electromagnet with tapered magnetic poles, it is possible to correct the axial displacement and levitate the rotor without the need for a conventional axial control electromagnet.
そこで、第1図に示す如く、通常は軸方向制御電磁石の
ある空間にモータ(10)などを配置することが可能に
なり、小型で軽量の磁気軸受装置を得ることが可能とな
る。Therefore, as shown in FIG. 1, it becomes possible to arrange the motor (10) etc. in the space where the axial direction control electromagnet is normally located, and it becomes possible to obtain a small and lightweight magnetic bearing device.
なお、上記実施例ではロータが電磁石の内側にあるイン
ナーロータ型について説明したが、ロータが電磁石の外
側にあるアウターロータ型についても同様の方法が応用
できる。In the above embodiments, an inner rotor type in which the rotor is located inside the electromagnet has been described, but a similar method can be applied to an outer rotor type in which the rotor is located outside the electromagnet.
以上のように、この発明によれば、半径方向制御電磁石
の磁極面をテーパー状としたために1半径方向と軸方向
の吸引力を同一の電磁石で発生できるようになり、少な
い電磁石と制御回路でロータの浮上制御が可能となり、
装置が小型軽量となり、また安価にできるという効果が
ある。As described above, according to the present invention, since the magnetic pole surface of the radial direction control electromagnet is tapered, it is possible to generate attraction forces in both the radial direction and the axial direction with the same electromagnet, and with fewer electromagnets and control circuits. Rotor levitation control becomes possible,
This has the effect that the device can be made smaller, lighter, and cheaper.
第1図はこの発明の一実施例による磁気軸受装置を示す
断面図、第2図はこの発明の動作を示すブロック図、8
3図は従来の磁気軸受装置を示す断面図、第4図はその
制御を示すブロック図である。
図において、(3a)〜(3d)は電磁石、(5a )
、 (5b ) = (61は変位計、(9a)〜(
9d)は制御回路である。
なあ、各図中同一符号は同一または相当部分を示す。
代理人 弁理士 大 岩 増 雄第1図
第2図
9d:や1−回路
第3図
第4U!J
7a−書1匍回路
δb、tl&1回路FIG. 1 is a sectional view showing a magnetic bearing device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the operation of the present invention.
FIG. 3 is a sectional view showing a conventional magnetic bearing device, and FIG. 4 is a block diagram showing its control. In the figure, (3a) to (3d) are electromagnets, (5a)
, (5b) = (61 is a displacement meter, (9a) ~ (
9d) is a control circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Patent Attorney Masuo Oiwa Figure 1 Figure 2 Figure 9d: Ya 1-Circuit Figure 3 Figure 4U! J 7a-Book 1 circuit δb, tl & 1 circuit
Claims (3)
半径方向変位を制御する電磁石の磁極面にテーパーを設
け、ロータ側の環状部の外周面の形状もこれに対応した
円錐状になし、発生吸引力に回転軸方向成分を持たせる
ことによつて、回転軸方向を制御する専用の電磁石を不
要としたことを特徴とする磁気軸受装置。(1) In a magnetic bearing device with a vertical axis of rotation, the magnetic pole surface of the electromagnet that controls the radial displacement of the rotor is tapered, and the outer peripheral surface of the annular portion on the rotor side is also shaped into a corresponding cone shape. A magnetic bearing device characterized in that a generated attractive force has a component in the direction of the rotation axis, thereby eliminating the need for a dedicated electromagnet for controlling the direction of the rotation axis.
ある特許請求の範囲第1項記載の磁気軸受装置。(2) The magnetic bearing device according to claim 1, wherein the rotor is an inner rotor type in which the rotor is located inside the electromagnet.
ある特許請求の範囲第1項記載の磁気軸受装置。(3) The magnetic bearing device according to claim 1, wherein the rotor is an outer rotor type in which the rotor is located outside the electromagnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25741286A JPS63111311A (en) | 1986-10-28 | 1986-10-28 | Magnetic bearing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25741286A JPS63111311A (en) | 1986-10-28 | 1986-10-28 | Magnetic bearing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63111311A true JPS63111311A (en) | 1988-05-16 |
Family
ID=17306017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25741286A Pending JPS63111311A (en) | 1986-10-28 | 1986-10-28 | Magnetic bearing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63111311A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19727550A1 (en) * | 1996-08-21 | 1998-02-26 | Canders Wolf R Prof Dr Ing | Magnetic bearing of rotor in stator e.g. for permanent magnetic element connected to turbine shaft |
JP2003339136A (en) * | 2002-05-20 | 2003-11-28 | Kumamoto Technology & Industry Foundation | Annular type motor |
KR100513205B1 (en) * | 2002-03-21 | 2005-09-08 | 한국전기연구원 | Radial Magnetic Bearing With Increased Axial Guidance Force |
CN111102234A (en) * | 2019-12-30 | 2020-05-05 | 北京航空航天大学 | Permanent magnet biased magnetic suspension bearing |
CN115853901A (en) * | 2023-02-10 | 2023-03-28 | 山东天瑞重工有限公司 | Magnetic suspension bearing system and magnetic suspension motor |
CN116123216A (en) * | 2023-04-17 | 2023-05-16 | 山东华东风机有限公司 | Magnetic bearing system based on radial-axial coupling magnetic bearing, control method and system |
-
1986
- 1986-10-28 JP JP25741286A patent/JPS63111311A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19727550A1 (en) * | 1996-08-21 | 1998-02-26 | Canders Wolf R Prof Dr Ing | Magnetic bearing of rotor in stator e.g. for permanent magnetic element connected to turbine shaft |
DE19727550C2 (en) * | 1996-08-21 | 2002-05-08 | Canders Wolf R | Magnetic bearing of a rotor in a stator |
KR100513205B1 (en) * | 2002-03-21 | 2005-09-08 | 한국전기연구원 | Radial Magnetic Bearing With Increased Axial Guidance Force |
JP2003339136A (en) * | 2002-05-20 | 2003-11-28 | Kumamoto Technology & Industry Foundation | Annular type motor |
CN111102234A (en) * | 2019-12-30 | 2020-05-05 | 北京航空航天大学 | Permanent magnet biased magnetic suspension bearing |
CN111102234B (en) * | 2019-12-30 | 2021-09-03 | 北京航空航天大学 | Permanent magnet biased magnetic suspension bearing |
CN115853901A (en) * | 2023-02-10 | 2023-03-28 | 山东天瑞重工有限公司 | Magnetic suspension bearing system and magnetic suspension motor |
CN116123216A (en) * | 2023-04-17 | 2023-05-16 | 山东华东风机有限公司 | Magnetic bearing system based on radial-axial coupling magnetic bearing, control method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4090745A (en) | Magnetic suspension with magnetic stiffness augmentation | |
US4312628A (en) | Turbomolecular vacuum pump having virtually zero power magnetic bearing assembly with single axis servo control | |
EP0311122A1 (en) | Radial magnetic bearing system | |
JP3068834B2 (en) | Radial and axial bearings for rotors with large radii | |
Sabnis et al. | A magnetically suspended large momentum wheel | |
JPS61218355A (en) | Magnetically levitating actuator having rotation positioning function | |
US4983869A (en) | Magnetic bearing | |
US3929390A (en) | Damper system for suspension systems | |
US4290316A (en) | Free-rotor gas-bearing gyroscope having electromagnetic rotor restraint and acceleration output signal | |
JPS5943220A (en) | Gimbal-controlled magnetic bearing | |
JPS63111311A (en) | Magnetic bearing device | |
US3722295A (en) | Multiple rotation gyroscope with hydrodynamic suspension | |
JP3350109B2 (en) | Magnetic levitation motor | |
JPH08322194A (en) | Axial magnetic levitation motor and rotating machine employing it | |
JP3301619B2 (en) | Magnetic bearing device | |
EP1072803A2 (en) | Magnetic bearing device | |
JPH06141512A (en) | Magnetic levitation motor | |
JP2002161918A (en) | Magnetic bearing unit | |
JPS58137618A (en) | Magnetic bearing | |
US3358514A (en) | Gyroscope | |
JPH076541B2 (en) | Magnetic bearing device | |
JPS6399742A (en) | Magnetic bearing integrating type motor | |
JPH048911A (en) | Magnetic bearing device | |
JPH0674234A (en) | Repulsion magnetic levitation type rotation device | |
JPH06133493A (en) | Magnetic levitation induction motor |