JPS5943220A - Gimbal-controlled magnetic bearing - Google Patents

Gimbal-controlled magnetic bearing

Info

Publication number
JPS5943220A
JPS5943220A JP57153774A JP15377482A JPS5943220A JP S5943220 A JPS5943220 A JP S5943220A JP 57153774 A JP57153774 A JP 57153774A JP 15377482 A JP15377482 A JP 15377482A JP S5943220 A JPS5943220 A JP S5943220A
Authority
JP
Japan
Prior art keywords
control
stator
rotor portion
rotor
electromagnetic coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57153774A
Other languages
Japanese (ja)
Other versions
JPS6146684B2 (en
Inventor
Osamu Okamoto
修 岡本
Yoshiaki Ookami
嘉彰 狼
Tsutomu Murakami
力 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP57153774A priority Critical patent/JPS5943220A/en
Publication of JPS5943220A publication Critical patent/JPS5943220A/en
Publication of JPS6146684B2 publication Critical patent/JPS6146684B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0485Active magnetic bearings for rotary movement with active support of three degrees of freedom

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To facilitate adjustment in manufacture and control during operation by providing a plurality of electromagnetic coils for gimbal control. CONSTITUTION:When a floating rotor portion 1 is inclined downward on the right side thereof and upward on left side thereof, clockwise magnetic flux phi1 is increased from a permanent magnet 5 of the rotor portion 1 to the lower right stator yoke 8b, and hence an electric current is supplied to gimballing electromagnetic coils 11a, 11b to generate counter-clockwise magnetic flux phi3 to the upper and lower stator yokes 8a, 8b based upon an output of a position sensor, resulting in that attraction force in gap magnetic paths of the right upper and lower portions of the rotor portion 1 is increased to cause the rotor portion 1 to float upward on the right side thereof. While the left rotor portion 1 is inclined upward, if an electric current is supplied to electromagnetic coils 13a, 13b in such a manner that counter-clockwise magnetic flux phi4 flows between the stator yokes 8a, 8b, the left rotor portion 1 is displaced downward, so that the rotor portion 1 is restored to its normal position.

Description

【発明の詳細な説明】 本発明は、永久磁石の吸引力と電磁コイルの制御吸引力
との相互作用により、ステータ部に対しロータ部を非接
触で支持すると共に、ジンバリング制御を可能とする磁
気軸受に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention supports the rotor part with respect to the stator part in a non-contact manner and enables jimbering control through the interaction of the attractive force of the permanent magnet and the control attractive force of the electromagnetic coil. It relates to magnetic bearings.

磁気軸受とは回転している物体を支持する力として、磁
気力を利用する軸受である。この磁気軸受は摩擦・疲労
による寿命の制限がないこと、摩擦トルクが極めて小さ
いこと、真空・高温・低温等の特殊な環境に対する適合
性が優れていること等の著しい特色があるために近年盛
んに研究がなされている。そして、この用途としては例
えば遠心分離器、真空ポンプ、ジャイロ、精密測定器、
人工衛星用制御機器等への使用が有望視されている。
A magnetic bearing is a bearing that uses magnetic force to support a rotating object. These magnetic bearings have become popular in recent years due to their remarkable characteristics, such as no life limit due to friction or fatigue, extremely low friction torque, and excellent compatibility with special environments such as vacuum, high temperature, and low temperature. Research is being conducted on Examples of this use include centrifuges, vacuum pumps, gyros, precision measuring instruments,
It is seen as promising for use in control equipment for artificial satellites.

既に知られている磁気軸受においては、ジンバリング制
御を行うには浮上制御用の電磁コイルを分割して、浮上
制御と共にジンバリング制御を行うようにしているため
に、製作時の調整或いは使用時における制御が難しい。
In already known magnetic bearings, in order to perform gimbering control, the electromagnetic coil for levitation control is divided and gimbaling control is performed together with levitation control. difficult to control.

また、例えば人工衛星用の制御機器として衛星に搭載し
た場合に、電磁コイルに故障が生ずれば浮上制御もジン
バリング制御も共に不可能となる問題点がある。
Furthermore, when the electromagnetic coil is mounted on a satellite as a control device for an artificial satellite, if a failure occurs in the electromagnetic coil, there is a problem that both levitation control and gimbaling control are impossible.

本発明の目的は、上述の欠点を解消し、浮上制御用の電
磁コイルの他に複数個のジンバリング制御用の電磁コイ
ルを設けて、浮上制御とジンバリング制御とを別個の電
磁コイルを用いて独立的に行い、製作時の調整或いは使
用時の制御を容易としたジンバリング制御が可能な磁気
軸受を提供することにあり、その要旨は、非接触で相対
的に回転し得るロータ部とステータ部とから成り、ロー
タ部又は(及び)ステータ部に設けた永久磁石によって
ロータ部とステータ部の間に作用する吸引力を、ステー
タ部に設けた電磁コイルによる制御吸引力によって調整
し、軸方向の浮上制御を行うようにした磁気軸受におい
て、ステータ部の円周方向に等間隔に少なくとも3個の
ジンバリング制御用の電磁コイルを、前記浮上制御用の
電磁コイルとは別個に設けたことを特徴とするものであ
る。
An object of the present invention is to eliminate the above-mentioned drawbacks, provide a plurality of electromagnetic coils for gimbaling control in addition to the electromagnetic coil for levitation control, and use separate electromagnetic coils for levitation control and gimbaling control. The purpose of the present invention is to provide a magnetic bearing that can perform jimbering control independently, making adjustment during manufacture and control during use easy. The attractive force acting between the rotor and stator parts is adjusted by the controlled attractive force by the electromagnetic coil provided in the stator part by the permanent magnet provided in the rotor part or (and) the stator part. In a magnetic bearing configured to perform levitation control in a direction, at least three electromagnetic coils for gimbering control are provided at equal intervals in the circumferential direction of the stator portion, separately from the electromagnetic coils for levitation control. It is characterized by:

次に本発明を図示の実施例に基づいて詳細に説明する。Next, the present invention will be explained in detail based on illustrated embodiments.

第1図において、1は円板状のロータ部であり、その上
下にはロータ部1を中心として対称的にステータ部2a
、2bが配置されている。ロータ部1では同心円に配置
された2個の短円筒状の第1、第2のロータヨーク3、
4の間に、半径方向に着磁されたドーナツ型の永久磁石
5が挟設されている。また、第1のロータヨーク3の外
側にはフライホイール6が設けられており、ロータ部1
はステータ部2a、2bを連結する中心軸7の周囲を回
転するようになっている。ステータ部2a、2bは、断
面コ字形のドーナツ型のステータヨーク8a、8bを有
し、これらの開口端部9a、9bはそれぞれ第1、第2
のロータヨーク3、4の端部と対向して配置されている
。また、ステータヨーク8a、8bの内側部には、浮上
用電磁コイル10a、10bが中心軸7を中心にそれぞ
れ巻回されており、これらの外側部には第2図にも示す
ように、円周方向に等間隔に4個のジンバリング用電磁
コイル11a、12a、13a、14a;11b、12
b、13b、14b(12b、14bは図示せず)が設
けられている。これらのジンバリング用電磁コイル11
a、・・・・は、第3図に示すようにステータヨーク8
a、8bの外側部に設けられた計4個ずつの切込み部1
5a、15b(15bは図示せず)間にそれぞれ巻回さ
れたものであり、静止時におけるX軸、Y軸方向の位置
に上下対称的に設けられている。また、これらの切込み
部15a、15bはそれぞれ開口端部9a、9b側に切
欠き16a、16b(16bは図示せず)を有し、ジン
バリング用電磁コイル11a、・・・・の巻数が少ない
場合には切込み部15a、15bの深さは小さくてもよ
い。
In FIG. 1, reference numeral 1 denotes a disk-shaped rotor section, and stator sections 2a are arranged symmetrically above and below the rotor section 1.
, 2b are arranged. In the rotor part 1, two short cylindrical first and second rotor yokes 3 are arranged concentrically,
A donut-shaped permanent magnet 5 magnetized in the radial direction is sandwiched between the magnets 4 and 4. Further, a flywheel 6 is provided on the outside of the first rotor yoke 3, and a flywheel 6 is provided on the outside of the first rotor yoke 3.
rotates around a central shaft 7 that connects the stator parts 2a and 2b. The stator parts 2a, 2b have donut-shaped stator yokes 8a, 8b with a U-shaped cross section, and these open ends 9a, 9b are first and second, respectively.
The end portions of the rotor yokes 3 and 4 are arranged opposite to each other. In addition, levitation electromagnetic coils 10a and 10b are wound around the central axis 7 on the inner sides of the stator yokes 8a and 8b, respectively, and as shown in FIG. Four electromagnetic coils for gimbaling 11a, 12a, 13a, 14a; 11b, 12 at equal intervals in the circumferential direction.
b, 13b, and 14b (12b and 14b are not shown). These gimbering electromagnetic coils 11
a, . . . are stator yoke 8 as shown in FIG.
A total of four notches 1 provided on the outer sides of a and 8b
5a and 15b (15b is not shown), and are vertically symmetrically provided at positions in the X-axis and Y-axis directions when at rest. Furthermore, these notches 15a and 15b have notches 16a and 16b (16b not shown) on the open ends 9a and 9b, respectively, and the number of turns of the gimbering electromagnetic coils 11a, . . . is small. In some cases, the depth of the notches 15a and 15b may be small.

本実施例は上述の構成を有するので、作動時においては
永久磁石5のN極から磁束φ1が第1のロータヨーク3
を介してステータヨーク8a、8bに流れ込み、ステー
タヨーク8a、8bの断面内を一巡して第2のロータヨ
ーク4からS極に戻ってくることになる。ここで、ロー
タ部1に自重等のない理想的な状態を考えてみれは、永
久磁石5の磁束φ1によるロータヨーク3、4とステー
タヨーク8a、8b間に作用する吸引力は上下で相殺さ
れ、ロータ部1は中空に浮上することになる。
Since this embodiment has the above-described configuration, during operation, the magnetic flux φ1 is transmitted from the N pole of the permanent magnet 5 to the first rotor yoke 3.
It flows into the stator yokes 8a, 8b via the stator yokes 8a, 8b, goes around the cross section of the stator yokes 8a, 8b, and returns from the second rotor yoke 4 to the south pole. Now, if we consider an ideal state in which the rotor section 1 has no weight, etc., the attractive force acting between the rotor yokes 3, 4 and the stator yokes 8a, 8b due to the magnetic flux φ1 of the permanent magnet 5 is canceled out at the top and bottom. The rotor section 1 will float in the air.

実際には、ロータ部1の自重や製作上の精度によりロー
タ部1が偏位することは避けられず、例えばロータ部1
が自重により下方に中心軸7に平行に微小量移動すると
、下方のステータ部2bの開口端部9bとロータヨーク
3、4間との空隙が小さく、上方のステータ部2aの開
口端部9aとロータヨーク3、4との空隙が大きくなる
。その結果、下側の空隙磁路の磁気抵抗が小さく上側の
磁気抵抗が大きくなり、永久磁石5からの磁束φ1は下
方のステータヨーク8bに大きく流れるために、下方の
ステータヨーク8bとの間の吸引力が増加し、ロータ部
1は益々下方に引き寄せられることになる。ロータ部1
のフライホイール6の付近にX軸、Y軸方向に各2個ず
つ中心軸7を中心に対称的に設けた位置センサによりこ
の軸方向偏位を検出し、浮上用電磁コイル10a、10
bに電流を流して、永久磁石5からの磁束φ1のうち下
側の磁束φ1を打ち消すような方向、つまり実施例では
ステータヨーク8a、8b右側の断面内を反時計廻りの
方向に、左側の断面内を時計廻りの方向に電磁コイル1
0a、10bから発生する磁束φ2を通過させることに
よって、ロータ部1の軸方向偏位を元に復元し、ロータ
部1を常時同じ位置に安定して浮上させることができる
In reality, it is unavoidable that the rotor section 1 deviates due to its own weight and manufacturing precision. For example, the rotor section 1
moves a minute amount downward in parallel to the central axis 7 due to its own weight, the gap between the open end 9b of the lower stator section 2b and the rotor yokes 3 and 4 is small, and the gap between the open end 9a of the upper stator section 2a and the rotor yoke is small. The gap between 3 and 4 becomes larger. As a result, the magnetic resistance of the lower air gap magnetic path is small and the upper magnetic resistance is large, and the magnetic flux φ1 from the permanent magnet 5 largely flows to the lower stator yoke 8b, so that the magnetic resistance between the lower stator yoke 8b and the lower stator yoke 8b increases. The suction force increases and the rotor section 1 is increasingly drawn downward. Rotor part 1
This axial deviation is detected by position sensors installed symmetrically around the central axis 7 in the X-axis and Y-axis directions, two each in the vicinity of the flywheel 6 of the levitation electromagnetic coils 10a and 10.
b, in a direction that cancels out the lower magnetic flux φ1 of the magnetic flux φ1 from the permanent magnet 5, that is, in the example, counterclockwise within the cross section of the right side of the stator yokes 8a and 8b, Electromagnetic coil 1 in the clockwise direction within the cross section
By passing the magnetic flux φ2 generated from 0a and 10b, the axial deviation of the rotor portion 1 can be restored to its original state, and the rotor portion 1 can be stably floated at the same position at all times.

しかし、ロータ部1に傾斜が生じた場合、例えば第1図
においてロータ部1の右側が下方に傾き左側が上方に傾
くような場合には、前述の浮上用電磁コイル10a、1
0bだけではその復元は不可能である。この場合、ロー
タ部1の永久磁石5からは右下側のステータヨーク8b
に対し時計廻りの磁束φ1が増加するために、位置セン
サの出力を基にジンバリング用電磁コイル11a、11
bから上下のステータヨーク8a、8bを反時計廻りの
磁束φ3が発生するように、ジンパリング用電磁コイル
11a、11bに電流を与えれば、ロータ部1の右側上
下部の空隙磁路における吸引力が強まり、ロータ部の右
側は上方に浮上することになる。また、このとき左側の
ロータ部1は上方に傾いているために左上側のステータ
ヨーク8aとの間に時計廻りの永久磁石5からの磁束φ
1が多く流れるが、これに対してジンバリング用電磁コ
イル13a、13bから上下のステータヨーク8a、8
b間に反時計廻りの磁束Φ1が流れるように電磁コイル
13a、13bに電流を与えれば、左側のロータ部1は
下方に変位することになり、ロータ部1は正常な位置に
復元できることになる。なお、第1図の形状の磁気軸受
においては、ジンバリング制御をしないと傾き角に対し
て一般的に不安定なので、ジンバリング制御系が故障の
ときでも1軸制御型として使いたい場合には、受動求心
型磁気軸受を上下に設けて安定化しておく必要がある。
However, when the rotor section 1 is tilted, for example, when the right side of the rotor section 1 is tilted downward and the left side is tilted upward as shown in FIG.
Restoration is impossible with 0b alone. In this case, from the permanent magnet 5 of the rotor part 1, the stator yoke 8b on the lower right side
Since the clockwise magnetic flux φ1 increases, the gimbaling electromagnetic coils 11a, 11 are adjusted based on the output of the position sensor.
If current is applied to the electromagnetic coils 11a and 11b for jimping so that a counterclockwise magnetic flux φ3 is generated in the upper and lower stator yokes 8a and 8b from b, the attractive force in the air gap magnetic path at the upper and lower right side of the rotor section 1 The force increases, and the right side of the rotor section floats upward. In addition, since the rotor section 1 on the left side is tilted upward at this time, the magnetic flux φ from the clockwise permanent magnet 5 is generated between it and the stator yoke 8a on the upper left side.
1 flows, but on the other hand, the upper and lower stator yokes 8a, 8 flow from the gimbaling electromagnetic coils 13a, 13b.
If current is applied to the electromagnetic coils 13a and 13b so that a counterclockwise magnetic flux Φ1 flows between b, the left rotor part 1 will be displaced downward, and the rotor part 1 can be restored to its normal position. . Note that the magnetic bearing with the shape shown in Figure 1 is generally unstable with respect to the tilt angle unless gimbaling control is performed, so if you want to use it as a single-axis control type even if the gimbaling control system is broken, , passive centripetal magnetic bearings must be installed above and below to stabilize the system.

上述の説明はX軸方向のジンバリング制御について述べ
たが、Y軸方向についてはジンバリング用電磁コイル1
2a、14a、12b、14bを用いて同様に行えばよ
い。また、このジンバリング制御は人工衛星の姿勢を制
御するために、故意にロータ部1を傾斜させることに使
用することもできる。これらの浮上用電磁コイル10a
、10b、ジンバリング用電磁コイル11a、・・・・
を用いた制御は、少なくともX軸、Y軸方向にそれぞれ
2個ずつ配置された位置センサの出力を基に、図示しな
い制御回路からの信号に従って前記電磁コイルに電流が
供与することにより行われることになる。なお、軸方向
制御のときは、前述の4個のセンサ出力の和を用いるが
、ジンバリング制御のときは、例えばX軸上の2個のセ
ンサ出力の差を用いると、Y軸廻りの傾き角に比例する
信号となるのでこれを用いてもよいし、単に傾き角を零
にするたけならば、上下一対のジンバリング用電磁コイ
ルへの電流を、その近傍のセンサ出力が零になるように
サーボ系を構成して供与してもよい。
The above explanation has been about the gimbaling control in the X-axis direction, but in the Y-axis direction, the gimbaling electromagnetic coil 1
2a, 14a, 12b, and 14b may be used in the same manner. Furthermore, this gimbaling control can also be used to intentionally tilt the rotor section 1 in order to control the attitude of the artificial satellite. These levitation electromagnetic coils 10a
, 10b, jimbering electromagnetic coil 11a,...
The control using the electromagnetic coil is performed by supplying current to the electromagnetic coil according to a signal from a control circuit (not shown) based on the outputs of at least two position sensors arranged in each of the X-axis and Y-axis directions. become. Note that for axial direction control, the sum of the four sensor outputs described above is used, but for gimbaling control, for example, if the difference between the two sensor outputs on the X-axis is used, the slope around the Y-axis can be calculated. You can use this signal as it is proportional to the angle, or if you just want to make the tilt angle zero, you can set the current to the upper and lower pair of gimbering electromagnetic coils so that the sensor output in the vicinity becomes zero. A servo system may be configured and provided.

このジンバリング制御においては、上下一対のジンバリ
ング用電磁コイルが対となって作用することが好ましく
、例えば或るジンバリング用電磁コイルから発生した磁
束が、隣の組の電磁コイル磁路に流入することは制御が
効率的に行われないことになる。そこで、第3図に示し
たように、ステータヨーク8a、8bのロータヨーク3
、4に対する開口端部9a、9bには、部分的に切欠き
16a、16bを設けて、発生した磁束が隣の組の電磁
コイルが巻回されたヨーク部分に進行しないような工夫
を施すことが好適である。またこの場合に、ステータヨ
ーク8a、8bを放射状に4等分に磁気分割すれば更に
その効果は大きい。なお、上下一対のジンバリング用電
磁コイルは、左右で逆方向に同時に作用することが好ま
しく、この場合には第1図における磁束φ3とφ4は、
ステータヨーク8a、8bで接続されて大きなループを
画くことになる。
In this gimbaling control, it is preferable that a pair of upper and lower gimbaling electromagnetic coils act as a pair. For example, the magnetic flux generated from one gimbaling electromagnetic coil flows into the magnetic path of the adjacent electromagnetic coil. Doing so would result in inefficient control. Therefore, as shown in FIG. 3, the rotor yoke 3 of the stator yokes 8a and 8b
, 4 are partially provided with notches 16a, 16b in the open ends 9a, 9b to prevent the generated magnetic flux from proceeding to the yoke portion around which the electromagnetic coil of the adjacent set is wound. is suitable. In this case, the effect is even greater if the stator yokes 8a and 8b are magnetically divided into four equal parts radially. In addition, it is preferable that the upper and lower pairs of gimbering electromagnetic coils act simultaneously in opposite directions on the left and right sides, and in this case, the magnetic fluxes φ3 and φ4 in FIG.
The stator yokes 8a and 8b are connected to form a large loop.

実施例においては、ドーナツ状の永久磁石5をロータ部
1に配設したが、これは必ずしも一体の永久磁石5では
なく分割された永久磁石コイルを第1、第2のロータヨ
ーク3、4の間に設けても支障はない。また、ジンバリ
ング用電磁コイルはステータヨーク8a、8bの円周方
向に4個設けたが、これは等間隔に3個配設して電磁コ
イルによる分力を利用してX軸、Y軸方向のジンバリン
グを制御することも可能である。しかし、4個の場合の
ほうが中心軸7を中心にしてX軸、Y軸方向に対称的に
配置した電磁コイル11a、・・・・同士を逆方向の力
が作用するように作動させることができるので制御性は
良好となる。更に、実施例ではジンバリング用電磁コイ
ル11a、・・・・は、ステータヨーク8a、8bの外
側部に配置したが内側部に配置しても支障はない。
In the embodiment, the donut-shaped permanent magnet 5 is disposed in the rotor section 1, but this is not necessarily an integrated permanent magnet 5, but a divided permanent magnet coil between the first and second rotor yokes 3 and 4. There is no problem even if it is set to . In addition, four electromagnetic coils for gimbering were provided in the circumferential direction of the stator yokes 8a and 8b, but three were arranged at equal intervals and the force generated by the electromagnetic coils was used to It is also possible to control the gimbaling of However, in the case of four electromagnetic coils 11a arranged symmetrically in the X-axis and Y-axis directions with the central axis 7 as the center, it is easier to operate the electromagnetic coils 11a so that forces in opposite directions act on each other. This allows for better controllability. Further, in the embodiment, the gimbering electromagnetic coils 11a, . . . are arranged on the outer side of the stator yokes 8a, 8b, but there is no problem if they are arranged on the inner side.

また、第4図に示すようにステータ部2を1個とし、ロ
ータ部1a、1bを上下に設けるようにすることもでき
るし、その場合にはロータ部1a、1bは単にロータヨ
ーク3a、3bのみとし、永久磁石5をステータ部2に
配置することも可能である。この第2の実施例の場合、
永久磁石5は2個としステータ部2のステータヨーク8
′、8″間に挿入し、中心軸7を中心として巻回した浮
上用電磁コイル1Oa、1Obはステータヨーク8′の
−上下に対称的に設けられ、ジンバリング用電磁コイル
11、12、13、14(12、14は図示せず)も4
分割されたステータヨーク8+に等間隔に配置されてい
る。この実施例における作用は、第1図に示した先の実
施例と原理的に同じなので説明は省略する。
Furthermore, as shown in FIG. 4, the stator section 2 may be one and the rotor sections 1a, 1b may be provided above and below, or in that case, the rotor sections 1a, 1b may be simply rotor yokes 3a, 3b. It is also possible to arrange the permanent magnets 5 in the stator section 2. In this second embodiment,
The number of permanent magnets 5 is two, and the stator yoke 8 of the stator section 2
The levitation electromagnetic coils 1Oa and 1Ob, which are inserted between the stator yoke 8' and 8'' and wound around the central axis 7, are provided symmetrically above and below the stator yoke 8'. , 14 (12 and 14 are not shown) are also 4
They are arranged at equal intervals on the divided stator yoke 8+. The operation of this embodiment is basically the same as that of the previous embodiment shown in FIG. 1, so a description thereof will be omitted.

以上説明したように本発明に係るジンバリング制御が可
能な磁気軸受は、浮上制御用電磁コイルの他に複数個の
ジンバリング制御用電磁コイルを設けたので、これらの
制御が別個に独立して実施することができることになり
、これらの調整或いは制御性は従来の磁気軸受に比較し
て極めて良好どなる。また、ジンバリング制御用の電磁
コイルがたとえ故障したとしても浮上制御用電磁コイル
により浮上制御が可能なので、人工衛星に搭載した場合
などでも致命的な故障とはならない利点がある。
As explained above, the magnetic bearing capable of gimbaling control according to the present invention is provided with a plurality of electromagnetic coils for gimbaling control in addition to the electromagnetic coil for levitation control, so these controls can be performed separately and independently. The adjustment or controllability is much better than that of conventional magnetic bearings. Furthermore, even if the electromagnetic coil for gimbaling control fails, the levitation control electromagnetic coil can control the levitation, so there is an advantage that a fatal failure will not occur even when mounted on an artificial satellite.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係るジンバリング制御が可能な磁気軸受
の実施例を示すものであり、第1図は第1の実施例の縦
断面図、第2図はステータ部の平面図、第3図はステー
タヨークの斜視図、第4図は第2の実施例の縦断面図で
ある。 符号1、1a、1bはロータ部、2、2a、2bはステ
ータ部、3、3a、3b、4はロータヨーク、5は永久
磁石、8a、8b、8′、8″はステータヨーク、10
a、10bは浮上用電磁コイル、11、11a、11b
、・・・・14、14a、14bはジンバリング用電磁
コイル、15は切込み部である。 特許出願人  航空宇宙技術研究所長
The drawings show an embodiment of a magnetic bearing capable of gimbaling control according to the present invention, and FIG. 1 is a longitudinal cross-sectional view of the first embodiment, FIG. 2 is a plan view of the stator section, and FIG. 3 is a longitudinal sectional view of the first embodiment. 4 is a perspective view of the stator yoke, and FIG. 4 is a longitudinal sectional view of the second embodiment. 1, 1a, 1b are rotor parts, 2, 2a, 2b are stator parts, 3, 3a, 3b, 4 are rotor yokes, 5 is permanent magnets, 8a, 8b, 8', 8'' are stator yokes, 10
a, 10b are electromagnetic coils for levitation, 11, 11a, 11b
, . . . 14, 14a, 14b are electromagnetic coils for gimbaling, and 15 is a notch. Patent applicant Director of Aerospace Technology Research Institute

Claims (1)

【特許請求の範囲】 1、非接触で相対的に回転し得るロータ部とステータ部
とから成り、ロータ部又は(及び)ステータ部に設けた
永久磁石によってロータ部とステータ部の間に作用する
吸引力を、ステータ部に設けた電磁コイルによる制御吸
引力によって調整し、軸方向の浮上制御を行うようにし
た磁気軸受において、ステータ部の円周方向に等間隔に
少なくとも3個のジンバリング制御用の電磁コイルを、
前記浮上制御用の電磁コイルとは別個に設けたことを特
徴とするジンバリング制御が可能な磁気軸受。 2、前記ジンバリング制御用の電磁コイルは、ステータ
ヨークの円周方向に等間隔に設けた切込み部間に巻回す
るようにした特許請求の範囲第1項に記載のジンバリン
グ制御が可能な磁気軸受。
[Claims] 1. Consisting of a rotor part and a stator part that can rotate relative to each other without contact, and a permanent magnet provided in the rotor part or (and) the stator part acts between the rotor part and the stator part. In a magnetic bearing that performs axial levitation control by adjusting the attraction force by controlling attraction force using an electromagnetic coil provided in the stator part, at least three gimbering controls are provided at equal intervals in the circumferential direction of the stator part. electromagnetic coil for
A magnetic bearing capable of gimbaling control, characterized in that it is provided separately from the electromagnetic coil for levitation control. 2. The electromagnetic coil for gimbaling control is capable of gimbaling control according to claim 1, wherein the electromagnetic coil for gimbaling control is wound between notches provided at equal intervals in the circumferential direction of the stator yoke. magnetic bearing.
JP57153774A 1982-09-03 1982-09-03 Gimbal-controlled magnetic bearing Granted JPS5943220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153774A JPS5943220A (en) 1982-09-03 1982-09-03 Gimbal-controlled magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153774A JPS5943220A (en) 1982-09-03 1982-09-03 Gimbal-controlled magnetic bearing

Publications (2)

Publication Number Publication Date
JPS5943220A true JPS5943220A (en) 1984-03-10
JPS6146684B2 JPS6146684B2 (en) 1986-10-15

Family

ID=15569839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153774A Granted JPS5943220A (en) 1982-09-03 1982-09-03 Gimbal-controlled magnetic bearing

Country Status (1)

Country Link
JP (1) JPS5943220A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159919U (en) * 1984-09-27 1986-04-22
JPS61122423U (en) * 1985-01-18 1986-08-01
US4983869A (en) * 1989-08-08 1991-01-08 Sundstrand Corporation Magnetic bearing
US5111102A (en) * 1989-05-25 1992-05-05 Meeks Crawford R Magnetic bearing structure
US5216308A (en) * 1989-05-25 1993-06-01 Avcon-Advanced Controls Technology, Inc. Magnetic bearing structure providing radial, axial and moment load bearing support for a rotatable shaft
US5250865A (en) * 1992-04-30 1993-10-05 Avcon - Advanced Controls Technology, Inc. Electromagnetic thrust bearing for coupling a rotatable member to a stationary member
US5315197A (en) * 1992-04-30 1994-05-24 Avcon - Advance Controls Technology, Inc. Electromagnetic thrust bearing using passive and active magnets, for coupling a rotatable member to a stationary member
US5514924A (en) * 1992-04-30 1996-05-07 AVCON--Advanced Control Technology, Inc. Magnetic bearing providing radial and axial load support for a shaft
EP1942282A1 (en) * 2005-10-28 2008-07-09 Iwaki Co., Ltd. Hybrid magnetic bearing
JP2012251662A (en) * 2007-08-28 2012-12-20 Tokyo Univ Of Science Magnetic bearing device, and solid-liquid separator with the same mounted thereon
CN104265761A (en) * 2014-09-11 2015-01-07 江苏大学 Novel axial-radial three-degree-of-freedom hybrid magnetic bearing
CN106321631A (en) * 2016-09-12 2017-01-11 南京科技职业学院 Five-degree-of-freedom magnetic suspension bearing system
WO2020183884A1 (en) * 2019-03-14 2020-09-17 株式会社イワキ Magnetic bearing, drive device equipped with same, and pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347974Y2 (en) * 1985-01-14 1988-12-09
JPS6347975Y2 (en) * 1985-03-04 1988-12-09
JPH0537340Y2 (en) * 1985-11-07 1993-09-21
JPS62212894A (en) * 1986-03-14 1987-09-18 三洋電機株式会社 Goods storage rack unit for vending machine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159919U (en) * 1984-09-27 1986-04-22
JPS61122423U (en) * 1985-01-18 1986-08-01
US5111102A (en) * 1989-05-25 1992-05-05 Meeks Crawford R Magnetic bearing structure
US5216308A (en) * 1989-05-25 1993-06-01 Avcon-Advanced Controls Technology, Inc. Magnetic bearing structure providing radial, axial and moment load bearing support for a rotatable shaft
US4983869A (en) * 1989-08-08 1991-01-08 Sundstrand Corporation Magnetic bearing
US5250865A (en) * 1992-04-30 1993-10-05 Avcon - Advanced Controls Technology, Inc. Electromagnetic thrust bearing for coupling a rotatable member to a stationary member
US5315197A (en) * 1992-04-30 1994-05-24 Avcon - Advance Controls Technology, Inc. Electromagnetic thrust bearing using passive and active magnets, for coupling a rotatable member to a stationary member
US5514924A (en) * 1992-04-30 1996-05-07 AVCON--Advanced Control Technology, Inc. Magnetic bearing providing radial and axial load support for a shaft
US7683514B2 (en) 2005-10-28 2010-03-23 Iwaki Co., Ltd Hybrid magnetic bearing
EP1942282A4 (en) * 2005-10-28 2009-08-26 Iwaki Co Ltd Hybrid magnetic bearing
EP1942282A1 (en) * 2005-10-28 2008-07-09 Iwaki Co., Ltd. Hybrid magnetic bearing
US7800269B2 (en) 2005-10-28 2010-09-21 Iwaki Co., Ltd. Hybrid magnetic bearing
JP2012251662A (en) * 2007-08-28 2012-12-20 Tokyo Univ Of Science Magnetic bearing device, and solid-liquid separator with the same mounted thereon
CN104265761A (en) * 2014-09-11 2015-01-07 江苏大学 Novel axial-radial three-degree-of-freedom hybrid magnetic bearing
CN106321631A (en) * 2016-09-12 2017-01-11 南京科技职业学院 Five-degree-of-freedom magnetic suspension bearing system
CN106321631B (en) * 2016-09-12 2019-06-14 南京科技职业学院 A kind of suspension of five-freedom degree magnetic bearing arrangement
WO2020183884A1 (en) * 2019-03-14 2020-09-17 株式会社イワキ Magnetic bearing, drive device equipped with same, and pump
US20220247266A1 (en) * 2019-03-14 2022-08-04 Iwaki Co., Ltd. Magnetic bearing, drive device equipped with the same, and pump
US11876431B2 (en) 2019-03-14 2024-01-16 Iwaki Co., Ltd. Magnetic bearing, drive device equipped with the same, and pump
TWI834809B (en) * 2019-03-14 2024-03-11 日商岩城股份有限公司 Magnetic bearing, drive device and pump including the magnetic bearing

Also Published As

Publication number Publication date
JPS6146684B2 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
JPS5943220A (en) Gimbal-controlled magnetic bearing
US11378090B2 (en) Compact centrifugal pump with magnetically suspended impeller
EP0191225B1 (en) Magnetic bearing device
US3976339A (en) Magnetic suspension apparatus
EP0662262B1 (en) Magnetic bearing system and method
US4316394A (en) Magnetically suspended free rotor gyroscope
JP2644374B2 (en) Magnetic bearing structure
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US4000929A (en) Magnetic bearing system
US4285552A (en) Torquer apparatus for magnetically suspended members
JPS6014931B2 (en) Axial electromagnetic bearing for large diameter smooth shaft
JPH09105414A (en) Magnetic bearing pivotally supporting rotor
EP0025446B1 (en) Two degree of freedom gyro having a permanent magnet motor
JPS62270824A (en) Radial control type magnetic bearing with high rigidity in axial direction
JPS6211218B2 (en)
JP2004316756A (en) Five-axis control magnetic bearing
JPS5854284B2 (en) magnetic bearing
JPH0371569B2 (en)
JPS598010Y2 (en) magnetic bearing
JPS5854285B2 (en) Five-axis controlled magnetic bearing
JPS60256620A (en) Magnetic bearing having rigidity variable mechanism
JPS5832113A (en) Magnetic bearing ginbal wheel for artificial satellite
JPS5839251B2 (en) magnetic bearing device
JPH0155682B2 (en)
JPS62270823A (en) Magnetic bearing