JPS6211218B2 - - Google Patents

Info

Publication number
JPS6211218B2
JPS6211218B2 JP57160376A JP16037682A JPS6211218B2 JP S6211218 B2 JPS6211218 B2 JP S6211218B2 JP 57160376 A JP57160376 A JP 57160376A JP 16037682 A JP16037682 A JP 16037682A JP S6211218 B2 JPS6211218 B2 JP S6211218B2
Authority
JP
Japan
Prior art keywords
yokes
stator
rotor
magnetic
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57160376A
Other languages
Japanese (ja)
Other versions
JPS5950220A (en
Inventor
Tsutomu Murakami
Atsushi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKU UCHU GIJUTSU KENKYU SHOCHO
Original Assignee
KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKU UCHU GIJUTSU KENKYU SHOCHO filed Critical KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority to JP57160376A priority Critical patent/JPS5950220A/en
Publication of JPS5950220A publication Critical patent/JPS5950220A/en
Publication of JPS6211218B2 publication Critical patent/JPS6211218B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0487Active magnetic bearings for rotary movement with active support of four degrees of freedom

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 本発明は、永久磁石の吸引力と電磁コイルの制
御吸引力との相互作用により、ステータ部に対し
ロータ部を非接触で支持すると共に、半径方向の
位置制御を可能とする多軸制御型磁気軸受に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables non-contact support of the rotor section with respect to the stator section, as well as radial position control, through the interaction of the attraction force of the permanent magnets and the control attraction force of the electromagnetic coils. This invention relates to a multi-axis controlled magnetic bearing.

磁気軸受とは回転している物体を支持する力と
して、磁気力を利用する軸受である。この磁気軸
受は摩擦・疲労による寿命の制限がないこと、摩
擦トルクが極めて小さいこと、真空・高温・低温
等の特殊な環境に対する適合性が優れていること
等の著しい特色があるために近年盛んに研究がな
されている。そして、この用途としては例えば遠
心分離器、真空ポンプ、ジヤイロ、精密測定器、
人工衛星用制御機器等への使用が有望視されてい
る。
A magnetic bearing is a bearing that uses magnetic force to support a rotating object. These magnetic bearings have become popular in recent years due to their remarkable characteristics, such as no life limit due to friction or fatigue, extremely low friction torque, and excellent compatibility with special environments such as vacuum, high temperature, and low temperature. Research is being conducted on Examples of this use include centrifuges, vacuum pumps, gyroscopes, precision measuring instruments,
It is seen as promising for use in control equipment for artificial satellites.

一般に多くの磁気軸受には永久磁石が用いられ
ていて、その着磁の方向は半径方向になされてい
るものが多いが、実際には永久磁石を軸方向着磁
ならば磁石材料を平板ヨークで挟んで済むのに対
し、半径方向に着磁するには2つの半径の異なる
円筒ヨークを用いて磁石材料を挟まなければなら
ず製造がなかなか困難である。また、半径方向に
着磁した永久磁石を用いた磁気回路では、永久磁
石の磁束の出入部に密着する正確な寸法の円筒部
分を有するヨークを必要とし、永久磁石とヨーク
の間の磁気的接続には機構的な困難性を伴う。
In general, many magnetic bearings use permanent magnets, and the direction of magnetization is often radial. However, in reality, if a permanent magnet is magnetized in the axial direction, the magnet material is a flat yoke. However, in order to magnetize in the radial direction, the magnet material must be sandwiched between two cylindrical yokes with different radii, which is quite difficult to manufacture. In addition, magnetic circuits using radially magnetized permanent magnets require a yoke with a cylindrical portion of precise dimensions that closely contacts the magnetic flux entry and exit points of the permanent magnet, and a magnetic connection between the permanent magnet and the yoke. involves mechanical difficulties.

本発明の目的は、永久磁石に軸方向に着磁した
ものを用いると共に、性能のよい多軸制御型磁気
軸受を提供することにあり、その要旨は、軸を中
心に一方の周囲を他方が非接触で相対的に回転す
るロータ部とステータ部とから成り、ロータ部と
ステータ部は、それぞれ両側の第1、第2の平板
円環状ヨークとこれらの間の第3の平板円環状ヨ
ークとを平行に配列し、前記第1、第3のヨーク
間及び第2、第3のヨーク間の2個所の間隙に軸
方向に着磁した永久磁石を挟着し、これら永久磁
石の磁極はロータ部、ステータ部の前記第1、第
2、第3のヨーク同士の対向部分同士がそれぞれ
吸引し、かつ永久磁石からの磁束が両側の第1、
第2のヨークの流れ方向と中央の第3のヨークの
流れ方向とで半径方向に逆になるよう配置し、ス
テータ部の第1、第2のヨークに電磁コイルを設
け、ロータ部、ステータ部の対向する第3のヨー
ク間の空隙磁路には永久磁石のみの磁束が存在
し、第1、第2のヨーク間同士の空隙磁路には永
久磁石と電磁コイルの両者の磁束が共存するよう
にして、永久磁石によつてロータ部とステータ部
の前記ヨーク間同士に作用する吸引力を前記電磁
コイルによる制御吸引力によつて調整し、ロータ
部のステータ部に対する半径方向位置の制御を行
うようにしたことを特徴とするものである。
An object of the present invention is to use a permanent magnet magnetized in the axial direction and to provide a multi-axis controlled magnetic bearing with good performance. It consists of a rotor part and a stator part that rotate relative to each other in a non-contact manner, and the rotor part and the stator part each have first and second flat annular yokes on both sides and a third flat annular yoke between them. are arranged in parallel, and permanent magnets magnetized in the axial direction are sandwiched in two gaps between the first and third yokes and between the second and third yokes, and the magnetic poles of these permanent magnets are aligned with the rotor. The opposing portions of the first, second, and third yokes of the stator section are attracted to each other, and the magnetic flux from the permanent magnets is applied to the first, second, and third yokes on both sides.
The flow direction of the second yoke and the flow direction of the central third yoke are arranged so as to be opposite in the radial direction, and electromagnetic coils are provided in the first and second yokes of the stator part, and the rotor part and the stator part The magnetic flux of only the permanent magnet exists in the air gap magnetic path between the opposing third yokes, and the magnetic flux of both the permanent magnet and the electromagnetic coil coexists in the air gap magnetic path between the first and second yokes. In this way, the attractive force acting between the yokes of the rotor part and the stator part by the permanent magnet is adjusted by the controlled attractive force by the electromagnetic coil, and the radial position of the rotor part with respect to the stator part is controlled. It is characterized by the fact that it is designed to be carried out.

本発明を図示の実施例に基づいて詳細に説明す
る。
The present invention will be explained in detail based on illustrated embodiments.

第1図は全体の縦断面図、第2図はステータ部
1及びロータ部2の平面図である。この実施例に
おいてはステータ部1は軸3に一体的に固定され
ており、その周囲をロータ部2が回転するような
構成とされ、ロータ部2にはフライホイール4が
取付けられている。ステータ部1は内径、外径を
共に同じくする平板円環状の3個のヨーク、即ち
外側に配置された第1、第2のステータヨーク1
1,12と、これらに挟まれた第3のステータヨ
ーク13とを有し、第1、第3のステータヨーク
11,13の間及び第3、第2のステータヨーク
13,12の間には、それぞれ円環状の永久磁石
14,15が挟設されている。これらの永久磁石
14,15は軸方向に着磁されており、永久磁石
14,15同士の極性は第3のステータヨーク1
3を中心に上下に対称的となるようにされてい
る。第1、第2のステータヨーク11,12は例
えば第2図に示すように、放射状に磁気的に8分
割されており、それぞれ十文字状の第1、第2の
電磁ヨーク16,17が取付けられている。これ
らの電磁ヨーク16,17は第2図におけるX軸
及びY軸上にある第1、第2のステータヨーク1
1,12の分割部に磁気的に接続し、X軸及びY
軸上に存在しない分割部は電磁ヨーク16,17
及び他の分割部とは磁気的にほぼ絶縁されてい
る。また、電磁ヨーク16及び17の各脚部16
a,16b,16c,16d及び17a,17
b,17c,17d(17b,17dは図示せ
ず)には、それぞれ1個ずつ計8個の電磁コイル
18a,18b,18c,18d及び19a,1
9b,19c,19d(19b,19dは図示せ
ず)が巻回されている。
FIG. 1 is a longitudinal sectional view of the entire structure, and FIG. 2 is a plan view of the stator section 1 and rotor section 2. In this embodiment, a stator section 1 is integrally fixed to a shaft 3, and a rotor section 2 is configured to rotate around the stator section 1, and a flywheel 4 is attached to the rotor section 2. The stator section 1 consists of three flat annular yokes having the same inner and outer diameters, that is, first and second stator yokes 1 disposed on the outside.
1 and 12, and a third stator yoke 13 sandwiched between them, and between the first and third stator yokes 11 and 13 and between the third and second stator yokes 13 and 12. , annular permanent magnets 14 and 15 are sandwiched between them. These permanent magnets 14 and 15 are magnetized in the axial direction, and the polarity of the permanent magnets 14 and 15 is the same as that of the third stator yoke 1.
It is designed to be vertically symmetrical with 3 as the center. For example, as shown in FIG. 2, the first and second stator yokes 11 and 12 are radially magnetically divided into eight parts, and cross-shaped first and second electromagnetic yokes 16 and 17 are attached to them, respectively. ing. These electromagnetic yokes 16 and 17 are connected to the first and second stator yokes 1 on the X-axis and Y-axis in FIG.
Magnetically connected to the divided parts 1 and 12, X axis and Y axis
The divided parts that do not exist on the axis are electromagnetic yokes 16 and 17.
and the other divided portions are almost magnetically insulated. In addition, each leg portion 16 of the electromagnetic yokes 16 and 17
a, 16b, 16c, 16d and 17a, 17
A total of eight electromagnetic coils 18a, 18b, 18c, 18d and 19a, 1 are installed in each of the electromagnetic coils 18a, 17c, 17d (17b, 17d are not shown).
9b, 19c, and 19d (19b and 19d are not shown) are wound.

一方、ロータ部2にはステータヨーク11,1
2,13の周囲を非接触で回転するためのステー
タヨーク11,12,13よりも大径の3個の平
板円環状ヨークが設けられており、第1、第2の
ステータヨーク21,22の内周面が第1、第2
のステータヨーク11,12の外周面とそれぞれ
対向し、第3のロ−タヨーク23の内周面が第3
のステータヨーク13の外周面と対向するように
配置されている。また、ロータヨーク21,2
2,23同士の間にもステータ部1と同様に軸方
向に着磁された永久磁石24,25が、第3のロ
−タヨーク23を中心に極性を対称とするように
配置されている。なお、このロータ部2の永久磁
石24,25の極性はステータ部1の永久磁石1
4,15の極性の向きとは逆方向となつている。
26はロータ部2のX軸方向の変位を検出するた
めの位置センサであり、Y軸方向用の位置センサ
は図面においては省略されている。X軸用位置セ
ンサ26の出力は図示しない制御回路、パワーア
ンプを経て、電磁ヨーク16及び17のX軸方向
の脚部16a,16c及び17a,17cに巻回
された電磁コイル18a,18c及び19a,1
9cに電流を流すようにされている。同様にし
て、図示しないY軸用位置センサからはY軸方向
の脚部16b,16d及び17b,17dに巻回
された電磁コイル18b,18d及び19b,1
9dに電流が供与される。なお、27はロータ部
2の浮上制御が不能になつたときや停止時等にロ
ータ部2を支持するための玉軸受である。
On the other hand, stator yokes 11 and 1 are provided in the rotor section 2.
Three flat annular yokes with a larger diameter than the stator yokes 11, 12, 13 are provided to rotate around the first and second stator yokes 21, 22 without contact. The inner peripheral surface is the first and second
The inner circumferential surface of the third rotor yoke 23 faces the outer circumferential surfaces of the stator yokes 11 and 12, respectively, and the inner circumferential surface of the third rotor yoke 23
The stator yoke 13 is disposed so as to face the outer circumferential surface of the stator yoke 13 . In addition, the rotor yoke 21, 2
Permanent magnets 24 and 25, which are magnetized in the axial direction similarly to the stator section 1, are arranged between the rotor yoke 23 and the stator 23 so that their polarities are symmetrical with respect to the third rotor yoke 23. Note that the polarity of the permanent magnets 24 and 25 of the rotor section 2 is the same as that of the permanent magnet 1 of the stator section 1.
The direction of polarity is opposite to that of 4 and 15.
26 is a position sensor for detecting displacement of the rotor portion 2 in the X-axis direction, and a position sensor for the Y-axis direction is omitted in the drawing. The output of the X-axis position sensor 26 passes through a control circuit and a power amplifier (not shown) to electromagnetic coils 18a, 18c, and 19a wound around the legs 16a, 16c, 17a, and 17c of the electromagnetic yokes 16 and 17 in the X-axis direction. ,1
A current is made to flow through 9c. Similarly, from the Y-axis position sensor (not shown), the electromagnetic coils 18b, 18d and 19b, 1 are wound around the legs 16b, 16d, 17b, 17d in the Y-axis direction.
A current is applied to 9d. Note that 27 is a ball bearing for supporting the rotor section 2 when the floating control of the rotor section 2 becomes impossible or when the rotor section 2 is stopped.

本実施例は上述の構成を有するので、第1、第
2のステータヨーク11,12及び第1、第2の
ロータヨーク21,22には、永久磁石14,1
5,24,25からの磁束φと電磁コイル18
a,……,19a,……から発生する磁束φ
共存し、これらの間の空隙磁路G1,G2は所謂
変調ギヤツプであるのに対し、第3のステータヨ
ーク13及び第3のロ−タヨーク23は、永久磁
石14,15,24,25のみによる磁束φ
か存在せず、この第3のステータヨーク13と第
3のロ−タヨーク23間の空隙磁路G3は非変調
ギヤツプとなつている。作動時においては永久磁
石14,15,24,25のN極からS極へ磁束
φが通過し、即ち第3のロ−タヨーク23から
第3のステータヨーク13へ磁束φが流れ込む
と同時に、第1のステータヨーク11から第1の
ロータヨーク21へ、また第2ステータヨーク1
2から第2のロータヨーク22へ磁束φが流れ
込むことになる。従つて、この磁束φの通過に
よりステータヨーク11,12,13とロータヨ
ーク21,22,23との空隙磁路G1,G2,
G3には磁気吸引力が作用することになる。
Since this embodiment has the above-described configuration, the first and second stator yokes 11 and 12 and the first and second rotor yokes 21 and 22 have permanent magnets 14 and 1.
Magnetic flux φ 1 from 5, 24, 25 and electromagnetic coil 18
The magnetic flux φ 2 generated from a, ..., 19a, ... coexists, and the air gap magnetic path G1, G2 between them is a so-called modulation gap, whereas the third stator yoke 13 and the third rotor - In the stator yoke 23, there is only a magnetic flux φ1 due to only the permanent magnets 14, 15, 24, 25, and the air gap magnetic path G3 between the third stator yoke 13 and the third rotor yoke 23 is a non-modulating gap. It's summery. During operation, magnetic flux φ1 passes from the N pole to the S pole of the permanent magnets 14, 15, 24, 25, that is, at the same time as magnetic flux φ1 flows from the third rotor yoke 23 to the third stator yoke 13. , from the first stator yoke 11 to the first rotor yoke 21, and from the second stator yoke 1
The magnetic flux φ 1 flows from the rotor yoke 2 to the second rotor yoke 22 . Therefore, due to the passage of this magnetic flux φ1 , air gap magnetic paths G1, G2,
A magnetic attraction force will act on G3.

この吸引力は理想的な状態を考えてみれば、あ
らゆる方向において相殺され、ロータ部2は半径
方向の或る方向に偏位することなく不安定に平衡
した状態にあり得るが、実際には製作上の精度等
からロータ部2が一方向に変位することは避けら
れない。例えば、ロータ部2がX軸正方向に微少
量移動すると、第1図におけるステータ部1とロ
ータ部2との左側の空隙磁路G1,G2,G3が
狭く、右側の空隙磁路G1,G2,G3が大きく
なる。従つて、左側の空隙磁路G1,G2,G3
の磁気抵抗が小さくなるために、この部分におけ
る永久磁石14,15,24,25からの磁束φ
は更に増加し、この間の吸引力が増加し、右側
の空隙磁路G1,G2,G3の磁束φは減少す
るので、ロータ部2は益々右側に引寄せられるこ
とになる。
If we consider an ideal situation, this attractive force would be canceled out in all directions, and the rotor section 2 could be in an unstable state of equilibrium without being displaced in a certain radial direction, but in reality it is It is unavoidable that the rotor section 2 is displaced in one direction due to manufacturing precision and the like. For example, when the rotor section 2 moves a small amount in the positive direction of the X-axis, the left air gap magnetic paths G1, G2, and G3 between the stator section 1 and the rotor section 2 in FIG. , G3 becomes larger. Therefore, the left air gap magnetic paths G1, G2, G3
The magnetic flux φ from the permanent magnets 14, 15, 24, 25 in this part
1 further increases, the attractive force increases during this time, and the magnetic flux φ 1 of the right air gap magnetic paths G1, G2, G3 decreases, so that the rotor portion 2 is further drawn to the right side.

この変位はX軸用位置センサ26により検出さ
れ、電磁ヨーク16及び17のX軸方向の脚部1
6a,16c及び17a,17cに設けられた電
磁コイル18a,18c及び19a,19cに制
御回路の制御信号に基づく電流を流し、永久磁石
14,15,24,25による磁束φの吸引力
の変化を打ち消すような方向、つまり右側の空隙
磁路G1,G2をステータヨーク11,12から
ロータヨーク21,22に通過し、それぞれのロ
ータヨーク21,22を半周し、左側の空隙磁路
G1,G2をロータヨーク21,22からステー
タヨーク11,12に戻るような点線で示す方向
の磁束φを流すことになる。この磁束φによ
つて、永久磁石14,15,24,25からの磁
束φの変位による変化を相殺し、左側の空隙磁
路G1,G2においては吸引力を減少させ、右側
の空隙磁路G1,G2では吸引力を増加すること
によつて全体の吸引力を平衡させ、ロータ部2を
元の中立状態に復元させることができる。この場
合、ロータ部2がたとえ軸方向に変位しても、磁
束φ,φの流れにより、ステータヨーク1
1,12,13とロータヨーク21,22,23
の周面同士が正対するように復元することにな
る。これらの動作はY軸方向についても全く同様
である。
This displacement is detected by the X-axis position sensor 26, and the legs 1 of the electromagnetic yokes 16 and 17 in the X-axis direction are
A current is applied to the electromagnetic coils 18a, 18c and 19a, 19c provided in the electromagnetic coils 6a, 16c, 17a, 17c based on the control signal of the control circuit, and the attraction force of the magnetic flux φ 1 by the permanent magnets 14, 15, 24, 25 changes. In other words, the air gap magnetic paths G1 and G2 on the right side pass from the stator yokes 11 and 12 to the rotor yokes 21 and 22, and the air gap magnetic paths G1 and G2 on the left side pass through the rotor yokes 21 and 22, and the air gap magnetic paths G1 and G2 on the left side pass through the rotor yokes 21 and 22. A magnetic flux φ 2 is caused to flow in the direction shown by the dotted line from 21, 22 back to the stator yokes 11, 12. This magnetic flux φ 2 cancels the change due to the displacement of the magnetic flux φ 1 from the permanent magnets 14, 15, 24, 25, reduces the attractive force in the left air gap magnetic paths G1 and G2, and By increasing the suction force in paths G1 and G2, the overall suction force can be balanced and the rotor section 2 can be restored to its original neutral state. In this case, even if the rotor part 2 is displaced in the axial direction, the stator yoke 1 is caused by the flow of magnetic fluxes φ 1 and φ 2 .
1, 12, 13 and rotor yokes 21, 22, 23
will be restored so that their circumferential surfaces are directly facing each other. These operations are exactly the same in the Y-axis direction.

この場合、第1、第2のステータヨーク11,
12は磁気的に分割しておくことにより、磁気コ
イル18,19からの磁束φはX軸、Y軸上に
存在する分割部のみを通過することになり、その
他の分割部には流入することが少ないので、磁束
φを効率良く吸引のために作用させることが可
能となる。
In this case, the first and second stator yokes 11,
12 is magnetically divided, so that the magnetic flux φ 2 from the magnetic coils 18 and 19 passes only through the divided portions existing on the X-axis and Y-axis, and flows into the other divided portions. Therefore, it becomes possible to efficiently cause the magnetic flux φ 2 to act for attraction.

第1、第2のステータヨーク11,12及びロ
ータヨーク21,22の間隔を大きく、即ちステ
ータ部1、ロータ部2の厚さを或る程度厚くし、
X軸方向或いはY軸方向に並んだ電磁コイル18
及び19に電流を差動的に供与、つまり上下の制
御力を逆方向にすれば、微小ジンバリング制御を
行なうことができる。
The distance between the first and second stator yokes 11 and 12 and the rotor yokes 21 and 22 is increased, that is, the thickness of the stator section 1 and the rotor section 2 is increased to a certain extent,
Electromagnetic coils 18 arranged in the X-axis direction or Y-axis direction
By differentially supplying current to and 19, that is, by making the upper and lower control forces in opposite directions, minute jimbering control can be performed.

なお、永久磁石は一体のリング状ではなく、複
数個の例えば円筒形などの単純な形状の永久磁石
をリング状に並べてもよい。また、空隙磁路に面
するヨーク部分は第1図に示すように1枚の歯と
しているが、これを複数枚の歯にして、軸方向の
剛性を向上させることも可能である。
Note that the permanent magnet is not in the form of a single ring, but a plurality of permanent magnets having a simple shape, such as a cylindrical shape, may be arranged in a ring shape. Furthermore, although the yoke portion facing the air gap magnetic path has one tooth as shown in FIG. 1, it is also possible to use a plurality of teeth to improve the axial rigidity.

また、第3のステータヨーク13及び第3のロ
−タヨーク23は必ずしも1枚の電磁板ではな
く、例えば第3図に示すように2枚のヨーク13
a,13b及び23a,23b間に磁気的に絶縁
する介在物30を設けてもその作用は同じであ
る。また、第4図に示すように第1図に示すステ
ータ部1とロータ部2との上下に永久磁石1
4′,15′,24′,25′及び非変調ヨーク1
3′,23′を軸方向に並列すれば軸方向の剛性が
向上する。
Further, the third stator yoke 13 and the third rotor yoke 23 are not necessarily one electromagnetic plate, but, for example, two yokes 13 as shown in FIG.
Even if a magnetically insulating inclusion 30 is provided between a, 13b and 23a, 23b, the effect is the same. In addition, as shown in FIG. 4, permanent magnets 1 are placed above and below the stator section 1 and rotor section 2 shown in FIG.
4', 15', 24', 25' and non-modulating yoke 1
If 3' and 23' are arranged in parallel in the axial direction, the rigidity in the axial direction will be improved.

従つて、本発明に係る多軸制御型磁気軸受は次
のような効果を有する。
Therefore, the multi-axis controlled magnetic bearing according to the present invention has the following effects.

(1) 永久磁石は軸方向に着磁して使用しているの
で、永久磁石の製造が容易になり、かつヨーク
との磁気的接続が容易になる。
(1) Since the permanent magnet is used while being magnetized in the axial direction, it is easy to manufacture the permanent magnet, and it is also easy to magnetically connect it to the yoke.

(2) ステータ部、ロータ部の双方に永久磁石を配
置しているので軸方向の剛性が高い。
(2) Permanent magnets are placed in both the stator and rotor sections, resulting in high axial rigidity.

(3) 中央のステータヨーク及びロ−タヨーク間の
空隙磁路は、永久磁石のみよる非変調ギヤツプ
なので磁束密度を増加することができ、そのた
めに軸方向の剛性、及び半径方向軸周りの剛性
を大きくすることができる。
(3) The air gap magnetic path between the central stator yoke and the rotor yoke is a non-modulated gap made only of permanent magnets, so the magnetic flux density can be increased, and therefore the axial stiffness and the radial stiffness around the axis can be increased. Can be made larger.

(4) 両側のステータヨークとロータヨーク間の空
隙磁路を差動的に制御することにより、この磁
気軸受一組だけで4軸制御型の磁気軸受ともな
り、微小ジンバリング制御も可能となる。
(4) By differentially controlling the air gap magnetic path between the stator yoke and the rotor yoke on both sides, this single set of magnetic bearings can be used as a 4-axis control type magnetic bearing, and minute jimbering control is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る多軸制御型磁気軸受の実施
例を示し、第1図はその縦断面図、第2図はステ
ータ部、ロータ部の平面図、第3図、第4図はス
テータヨーク、ロ−タヨークの組合わせの変形例
の説明図である。 符号1はステータ部、2はロータ部、3は軸、
11,12,13はステータヨーク、14,1
5,24,25は永久磁石、16,17は電磁ヨ
ーク、18,19は電磁コイル、21,22,2
3はロータヨーク、26は位置センサ、φ,φ
は磁束、G1,G2,G3は空隙磁路である。
The drawings show an embodiment of a multi-axis controlled magnetic bearing according to the present invention, in which FIG. 1 is a longitudinal sectional view thereof, FIG. 2 is a plan view of the stator section and rotor section, and FIGS. 3 and 4 are stator yoke. , is an explanatory diagram of a modification example of a combination of rotor yokes. 1 is the stator part, 2 is the rotor part, 3 is the shaft,
11, 12, 13 are stator yokes, 14, 1
5, 24, 25 are permanent magnets, 16, 17 are electromagnetic yokes, 18, 19 are electromagnetic coils, 21, 22, 2
3 is a rotor yoke, 26 is a position sensor, φ 1 , φ
2 is a magnetic flux, and G1, G2, and G3 are air gap magnetic paths.

Claims (1)

【特許請求の範囲】 1 軸を中心に一方の周囲を他方が非接触で相対
的に回転するロータ部とステータ部とから成り、
ロータ部とステータ部は、それぞれ両側の第1、
第2の平板円環状ヨークとこれらの間の第3の平
板円環状ヨークとを平行に配列し、前記第1、第
3のヨーク間及び第2、第3のヨーク間の2個所
の間隙に軸方向に着磁した永久磁石を挟着し、こ
れら永久磁石の磁極はロータ部、ステータ部の前
記第1、第2、第3のヨーク同士の対向部分同士
がそれぞれ吸引し、かつ永久磁石からの磁束が両
側の第1、第2のヨークの流れ方向と中央の第3
のヨークの流れ方向とで半径方向に逆になるよう
に配置し、ステータ部の第1、第2のヨークに電
磁コイルを設け、ロータ部、ステータ部の対向す
る第3のヨークの間の空隙磁路には永久磁石のみ
の磁束が存在し、第1、第2のヨーク間同士の空
隙磁路には永久磁石と電磁コイルの両者の磁束が
共存するようにして、永久磁石によつてロータ部
とステータ部の前記ヨーク間同士に作用する吸引
力を前記電磁コイルによる制御吸引力によつて調
整し、ロータ部のステータ部に対する半径方向位
置の制御を行うようにしたことを特徴とする多軸
制御型磁気軸受。 2 前記ステータ部の第1、第2のヨークは、放
射状に少なくとも3個に磁気的に分割した特許請
求の範囲第1項に記載の多軸制御型磁気軸受。
[Claims] 1. Consisting of a rotor part and a stator part, each of which rotates relatively around one axis without contact with the other,
The rotor part and the stator part are respectively connected to the first
A second flat annular yoke and a third flat annular yoke between them are arranged in parallel, and the second flat annular yoke and the third flat annular yoke are arranged in two spaces between the first and third yokes and between the second and third yokes. Permanent magnets magnetized in the axial direction are sandwiched, and the magnetic poles of these permanent magnets are attracted to each other by the opposing parts of the first, second, and third yokes of the rotor and stator parts, and are separated from the permanent magnets. The magnetic flux flows in the flow direction of the first and second yokes on both sides and the third
The first and second yokes of the stator section are arranged so as to be radially opposite to the flow direction of the yokes, and the electromagnetic coils are provided in the first and second yokes of the stator section. The magnetic flux of only the permanent magnet exists in the magnetic path, and the magnetic flux of both the permanent magnet and the electromagnetic coil coexists in the air gap magnetic path between the first and second yokes. The attraction force acting between the yokes of the stator section and the stator section is adjusted by the controlled attraction force of the electromagnetic coil, and the radial position of the rotor section with respect to the stator section is controlled. Axis-controlled magnetic bearing. 2. The multi-axis controlled magnetic bearing according to claim 1, wherein the first and second yokes of the stator section are magnetically divided into at least three parts radially.
JP57160376A 1982-09-14 1982-09-14 Multi-spindle control type magnetic bearing Granted JPS5950220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160376A JPS5950220A (en) 1982-09-14 1982-09-14 Multi-spindle control type magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160376A JPS5950220A (en) 1982-09-14 1982-09-14 Multi-spindle control type magnetic bearing

Publications (2)

Publication Number Publication Date
JPS5950220A JPS5950220A (en) 1984-03-23
JPS6211218B2 true JPS6211218B2 (en) 1987-03-11

Family

ID=15713625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160376A Granted JPS5950220A (en) 1982-09-14 1982-09-14 Multi-spindle control type magnetic bearing

Country Status (1)

Country Link
JP (1) JPS5950220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201825B2 (en) 2018-02-01 2021-12-14 Nippon Telegraph And Telephone Corporation Transfer device and transfer method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2750749B1 (en) * 1996-07-05 1998-11-20 Aerospatiale MAGNETIC BEARING FOR ACTIVE CENTERING AT LEAST ONE AXIS OF A MOBILE BODY IN RELATION TO ANOTHER
CN105114457B (en) * 2015-08-24 2017-06-09 南京邮电大学 A kind of axial-radial electrical excitation magnetic bearing
CN105422623B (en) * 2015-12-28 2018-03-09 宁波达奋精工轴承有限公司 Self-power generation type magnetic bearing
CN105465175B (en) * 2015-12-28 2018-03-09 宁波达奋精工轴承有限公司 A kind of active magnetic bearing
CN105508425B (en) * 2015-12-28 2018-03-09 宁波达奋精工轴承有限公司 A kind of self-power generation type magnetic bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201825B2 (en) 2018-02-01 2021-12-14 Nippon Telegraph And Telephone Corporation Transfer device and transfer method

Also Published As

Publication number Publication date
JPS5950220A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
US6563244B1 (en) Composite-type electromagnet and radial magnetic bearing
US4634191A (en) Radial and torsionally controlled magnetic bearing
US4918345A (en) Magnetic bearing for active centering of a body movable relative to a static body with respect to at least one axis
EP2209186B1 (en) Magnetically-levitated motor and pump
WO2002035108A1 (en) Magnetic suspension bearing
JPH0137608B2 (en)
JPS5943220A (en) Gimbal-controlled magnetic bearing
JPS58184319A (en) Magnetic bearing
JPS6211218B2 (en)
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
JPS6146683B2 (en)
JPH0242127B2 (en)
JP6696855B2 (en) Magnetic bearing
JP2004316756A (en) Five-axis control magnetic bearing
US20050253473A1 (en) Alternative magnetic bearing
JPH0226310A (en) Magnetic thrust bearing
JPS5854285B2 (en) Five-axis controlled magnetic bearing
JPS5854284B2 (en) magnetic bearing
JP2520416Y2 (en) Spindle motor
JPH0126404B2 (en)
JPS598010Y2 (en) magnetic bearing
JPS58137618A (en) Magnetic bearing
JPH0242126B2 (en)
JP2002257135A (en) Magnetic bearing device
JPS5888222A (en) Yoke for magnetic bearing