JPH0126404B2 - - Google Patents

Info

Publication number
JPH0126404B2
JPH0126404B2 JP58118699A JP11869983A JPH0126404B2 JP H0126404 B2 JPH0126404 B2 JP H0126404B2 JP 58118699 A JP58118699 A JP 58118699A JP 11869983 A JP11869983 A JP 11869983A JP H0126404 B2 JPH0126404 B2 JP H0126404B2
Authority
JP
Japan
Prior art keywords
stator
rotor
yoke
section
yokes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58118699A
Other languages
Japanese (ja)
Other versions
JPS6011716A (en
Inventor
Tsutomu Murakami
Atsushi Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP58118699A priority Critical patent/JPS6011716A/en
Publication of JPS6011716A publication Critical patent/JPS6011716A/en
Publication of JPH0126404B2 publication Critical patent/JPH0126404B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 本発明は、永久磁石の吸引力と電磁コイルの制
御吸引力との相互作用により、ステータ部に対し
ロータ部を非接触で支持すると共に、半径方向の
位置制御を可能とするラジアル制御型磁気軸受に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables non-contact support of the rotor section with respect to the stator section, as well as radial position control, through the interaction of the attraction force of the permanent magnets and the control attraction force of the electromagnetic coils. This invention relates to a radially controlled magnetic bearing.

磁気軸受とは回転している物体を支持する力と
して、磁気力を利用する軸受である。この磁気軸
受は摩擦・疲労による寿命の制限がないこと、摩
擦トルクが極めて小さいこと、真空・高温・低温
等の特殊な環境に対する適合性が優れていること
等の著しい特色があるために近年盛んに研究がな
されている。そして、この用途としては例えば遠
心分離器、真空分子ポンプ、ジヤイロ、精密測定
器、人工衛星用制御機器等への使用が有望視され
ている。
A magnetic bearing is a bearing that uses magnetic force to support a rotating object. These magnetic bearings have become popular in recent years due to their remarkable characteristics, such as no life limit due to friction or fatigue, extremely low friction torque, and excellent compatibility with special environments such as vacuum, high temperature, and low temperature. Research is being conducted on As for this application, for example, use in centrifugal separators, vacuum molecular pumps, gyroscopes, precision measuring instruments, control equipment for artificial satellites, etc. is considered to be promising.

一般に低消費型の磁気軸受には永久磁石が用い
られることが多く、アキシヤル制御型においては
その着磁の方向は半径方向になされているものが
多いが、実際には半径方向に着磁した永久磁石の
製造と、ヨークとの磁気的接続には困難を伴う。
In general, permanent magnets are often used in low-consumption type magnetic bearings, and in many axial control types, the direction of magnetization is radial, but in reality, permanent magnets are magnetized in the radial direction. Manufacturing the magnet and magnetically connecting it to the yoke is difficult.

本出願人は先に、このような観点から特願昭57
−160376号によつて軸方向に着磁した磁気軸受を
出願したが、永久磁石と電磁石を共に2段に積み
重ねているので厚さが大きいものであつた。しか
し、半径軸廻りの制御が不要の場合には、より単
純な形状で構成することが可能である。
The present applicant previously filed a patent application filed in 1983 from this perspective.
A magnetic bearing magnetized in the axial direction was filed in No. 160376, but the thickness was large because both permanent magnets and electromagnets were stacked in two stages. However, if control around the radial axis is not required, it is possible to configure it with a simpler shape.

本発明の目的は、永久磁石に軸方向に着磁した
ものを用いると共に、部品が少なくかつ厚さが薄
く性能の良好なラジアル制御型磁気軸受を提供す
ることにあり、この要旨は、軸を中心に一方の周
囲を他方が非接触で相対的に回転するロータ部と
ステータ部とから成り、前記ロータ部と前記ステ
ータ部は、それぞれ2枚の平行に配列した平板円
環状ヨークを有すると共に、これらの2枚のロー
タ部ヨークと2枚のステータ部ヨークとはそれぞ
れ半径方向に空隙磁路を隔てて対向し、前記ステ
ータ部又は前記ロータ部と前記ステータ部の両者
の前記ヨーク間に軸方向に着磁した永久磁石を挟
着し、前記ステータ部ヨークと磁気的に接合する
電磁ヨークに電磁コイルを設け、前記2つの空隙
磁路のうちの一方は前記永久磁石のみの磁束が存
在し、他方は前記永久磁石と前記電磁コイルの両
者の磁束が共存するようにして、前記永久磁石に
よつて前記ロータ部と前記ステータ部の前記ヨー
ク間に作用する吸引力を前記電磁コイルによる制
御吸引力によつて調整し、前記ロータ部の前記ス
テータ部に対する半径方向位置の制御を行うよう
にしたことを特徴とするものである。
An object of the present invention is to provide a radially controlled magnetic bearing that uses a permanent magnet magnetized in the axial direction, has few parts, is thin, and has good performance. It consists of a rotor part and a stator part, each of which rotates around one center without contact with the other, and each of the rotor part and the stator part has two flat annular yokes arranged in parallel, and These two rotor part yokes and two stator part yokes face each other in the radial direction with an air gap magnetic path in between, and the yokes of the stator part or both of the rotor part and the stator part are arranged in an axial direction. sandwiching a magnetized permanent magnet, an electromagnetic coil is provided on an electromagnetic yoke that is magnetically joined to the stator section yoke, and one of the two air gap magnetic paths has magnetic flux only from the permanent magnet, On the other hand, the magnetic fluxes of both the permanent magnet and the electromagnetic coil coexist, so that the attractive force exerted by the permanent magnet between the yokes of the rotor part and the stator part is controlled by the attractive force by the electromagnetic coil. The invention is characterized in that the radial position of the rotor portion with respect to the stator portion is controlled by adjusting the stator portion.

本発明を図示の実施例に基づいて詳細に説明す
る。
The present invention will be explained in detail based on illustrated embodiments.

第1図は第1の実施例の縦断面図、第2図はス
テータ部1及びロータ部2の平面図である。この
実施例においては、ステータ部1は軸に一体的に
固定されており、その周囲をロータ部2が回転す
るような構成とされ、ロータ部2にはフライホイ
ールが取付けられているが、これらの軸、フライ
ホイールは図示を省略されている。ステータ部1
は内径、外径を共に同じくする平板円環状の2個
のヨーク、即ち第1、第2のステータヨーク1
1,12とを有し、これらの間には円環状で軸方
向に着磁された永久磁石13が挟設されている。
第2のステータヨーク12は例えば第2図に示す
ように、等角度の4個所に磁気抵抗の大きなくび
れ部14を有しており、更に十字状の電磁ヨーク
15が取付けられている。この電磁ヨーク15は
第2のステータヨーク12のくびれ部14により
分離された分離部に磁気的に接続されている。ま
た、電磁ヨーク15の各脚部15a,15b,1
5c,15dには、それぞれ1個ずつ計4個の電
磁コイル16a,16b,16c,16dが巻回
されている。
FIG. 1 is a longitudinal sectional view of the first embodiment, and FIG. 2 is a plan view of the stator section 1 and rotor section 2. In this embodiment, a stator section 1 is integrally fixed to a shaft, and a rotor section 2 is configured to rotate around the stator section 1, and a flywheel is attached to the rotor section 2. The shaft and flywheel are not shown. Stator part 1
are two flat annular yokes with the same inner and outer diameters, that is, the first and second stator yokes 1.
1 and 12, and a permanent magnet 13 having an annular shape and magnetized in the axial direction is sandwiched between them.
As shown in FIG. 2, for example, the second stator yoke 12 has constrictions 14 having large magnetic resistance at four equiangular locations, and further has a cross-shaped electromagnetic yoke 15 attached thereto. This electromagnetic yoke 15 is magnetically connected to a separation section separated by a constriction section 14 of the second stator yoke 12. In addition, each leg portion 15a, 15b, 1 of the electromagnetic yoke 15
A total of four electromagnetic coils 16a, 16b, 16c, and 16d are wound around the coils 5c and 15d, one each.

一方、ロータ部2には第1、第2のステータヨ
ーク11,12の周囲を非接触で回転するため
に、これらのヨーク11,12よりも大径の2個
の平板円環状の第1、第2のロータヨーク21,
22が設けられており、これらの内周面の極磁が
ステータヨーク11,12の外周面の磁極とそれ
ぞれ対向するように配置されている。また、ロー
タヨーク21,22同士の間にもステータ部1と
同様に軸方向に着磁された永久磁石23が挟設さ
れている。なお、このロータ部2の永久磁石23
の極性は、ステータ部1の永久磁石13の極性の
向きとは逆方向となつている。
On the other hand, in order to rotate around the first and second stator yokes 11 and 12 without contact, the rotor section 2 has two flat annular first and second rotor yoke 21,
22 are provided, and the pole magnets on the inner peripheral surfaces thereof are arranged so as to face the magnetic poles on the outer peripheral surfaces of the stator yokes 11 and 12, respectively. Further, a permanent magnet 23 magnetized in the axial direction is also sandwiched between the rotor yokes 21 and 22, similarly to the stator section 1. Note that the permanent magnet 23 of this rotor portion 2
The polarity of the permanent magnet 13 of the stator section 1 is opposite to that of the permanent magnet 13 of the stator section 1.

第1図、第2図において30,31はそれぞれ
ロータ部2のX軸方向、Y軸方向の変位を検出す
るための位置センサであり、X軸用位置センサ3
0の出力は補償回路32、電力増幅器33を経
て、電磁ヨーク15のX軸方向の脚部15a,1
5cに巻回された電磁コイル16a,16cに電
流を流すようにされている。同様にして、Y軸用
位置センサ31からはY軸方向の脚部15b,1
5dに巻回された電磁コイル16b,16dに電
流が供与される。
In FIGS. 1 and 2, 30 and 31 are position sensors for detecting the displacement of the rotor section 2 in the X-axis direction and the Y-axis direction, respectively, and the X-axis position sensor 3
The output of 0 passes through the compensation circuit 32 and the power amplifier 33, and is then sent to the legs 15a, 1 of the electromagnetic yoke 15 in the X-axis direction.
A current is caused to flow through electromagnetic coils 16a and 16c wound around the coil 5c. Similarly, the Y-axis position sensor 31 detects the legs 15b, 1 in the Y-axis direction.
A current is supplied to electromagnetic coils 16b and 16d wound around 5d.

本実施例は上述の構成を有するので、第1のス
テータヨーク11及び第1のロータヨーク21
は、永久磁石13,23のみによる磁束φ1しか
存在せず、この第1のステータヨーク11と第1
のロータヨーク21間の空隙磁路G1は非変調ギ
ヤツプとなつている。これに対し、第2のステー
タヨーク12及び第2のロータヨーク22には、
永久磁石13,23からの磁束φ1と電磁コイル
16a,…から発生する磁束φ2が共存し、これ
らの間の空隙磁路G2は所謂変調ギヤツプであ
る。
Since this embodiment has the above-described configuration, the first stator yoke 11 and the first rotor yoke 21
There is only a magnetic flux φ 1 due to only the permanent magnets 13 and 23, and the first stator yoke 11 and the first
The air gap magnetic path G1 between the rotor yokes 21 is a non-modulated gap. On the other hand, the second stator yoke 12 and the second rotor yoke 22 have
The magnetic flux φ 1 from the permanent magnets 13, 23 and the magnetic flux φ 2 generated from the electromagnetic coils 16a, . . . coexist, and the air gap magnetic path G2 between them is a so-called modulation gap.

作動時においては、永久磁石13,23のN極
からS極へ磁束φ1が通過し、即ち第1のロータ
ヨーク21から第1のステータヨーク11へ磁束
φ1が流れ込むと同時に、第2のステータヨーク
12から第2のロータヨーク22へ磁束φ1が流
れ込むことになる。従つて、この磁束φ1の通過
によりステータヨーク11,12とロータヨーク
21,22との空隙磁路G1,G2には磁気吸引
力が作用することになる。
During operation, magnetic flux φ 1 passes from the N pole to the S pole of the permanent magnets 13 and 23, that is, the magnetic flux φ 1 flows from the first rotor yoke 21 to the first stator yoke 11, and at the same time the second stator The magnetic flux φ 1 flows from the yoke 12 to the second rotor yoke 22 . Therefore, due to the passage of this magnetic flux φ 1 , a magnetic attraction force acts on the air gap magnetic paths G1 and G2 between the stator yokes 11 and 12 and the rotor yokes 21 and 22.

理想的な状態を考えてみれば、この吸引力は全
ゆる方向において相殺され、ロータ部2は半径方
向の特定な方向に偏位することなく不安定に平衡
した状態にある。しかし、実際には製作上の精度
等からロータ部2が一方向に偏位することは避け
られない。例えば、ロータ部2がX軸の正方向に
微少量移動すると、第1図におけるステータ部1
とロータ部2との左側の空隙磁路G1,G2が狭
く、右側の空隙磁路G1,G2が大きくなる。従
つて、左側の空隙磁路G1,G2の磁気抵抗が小
くなるために、この部分における永久磁石13,
23からの磁束φ1は更に増加し、この間の吸引
力が増加し、右側の空隙磁路G1,G2の磁束
φ1は減少するので、ロータ部2は益々右側に引
寄せられることになる。
Considering an ideal situation, this attractive force is canceled out in all directions, and the rotor section 2 is in an unstable equilibrium state without being displaced in any particular radial direction. However, in reality, it is unavoidable that the rotor portion 2 deviates in one direction due to manufacturing precision and the like. For example, when the rotor section 2 moves a small amount in the positive direction of the X-axis, the stator section 1 in FIG.
The air gap magnetic paths G1, G2 on the left side between and the rotor portion 2 are narrow, and the air gap magnetic paths G1, G2 on the right side are large. Therefore, since the magnetic resistance of the left air gap magnetic paths G1 and G2 becomes small, the permanent magnets 13 and
The magnetic flux φ 1 from the rotor 23 increases further, the attraction force increases during this time, and the magnetic flux φ 1 of the right air gap magnetic paths G1 and G2 decreases, so that the rotor portion 2 is further drawn to the right side.

この偏位はX軸用位置センサ30により検出さ
れ、電磁ヨーク15のX軸方向の脚部15a,1
5cに設けられた電磁コイル16a,16cに補
償回路32の制御信号に基づく電流を流すことに
なる。その結果、永久磁石13,23による磁束
φ1の吸引力の変化を打ち消すような方向、つま
り右側の空隙磁路G2を第2のステータヨーク1
2から第2のロータヨーク22に通過し、ロータ
ヨーク22を半周し、左側の空隙磁路G2をロー
タヨーク22からステータヨーク12に戻るよう
な磁束φ2を流す。この磁束φ2によつて、ロータ
ヨーク21,22の偏位による永久磁石13,2
3からの磁束φ1の変化を相殺し、左側の空隙磁
束G1,G2においては吸引力を減少させ、右側
の空隙磁路G1,G2では吸引力を増加させるこ
とによつて、ロータ部2を元の中立状態に復元さ
せ全体の吸引力を平衡させることができる。この
場合、ロータ部2がたとえ軸方向に偏位しても、
磁束φ1,φ2の流れにより、ステータヨーク11,
12とロータヨーク21,22との磁極周面同士
が正対するように復元することになる。これらの
動作はY軸方向についても全く同様である。
This deviation is detected by the X-axis position sensor 30, and the legs 15a, 1 of the electromagnetic yoke 15 in the X-axis direction are
A current based on the control signal of the compensation circuit 32 is caused to flow through the electromagnetic coils 16a and 16c provided in the electromagnetic coil 5c. As a result, the direction that cancels the change in the attractive force of the magnetic flux φ 1 caused by the permanent magnets 13 and 23, that is, the air gap magnetic path G2 on the right side is directed to the second stator yoke 1.
The magnetic flux φ 2 passes from the rotor yoke 2 to the second rotor yoke 22, makes a half-circle around the rotor yoke 22, and returns from the rotor yoke 22 to the stator yoke 12 through the left air gap magnetic path G2 . Due to this magnetic flux φ 2 , the permanent magnets 13 and 2 are caused by the deflection of the rotor yokes 21 and 22.
By canceling the change in the magnetic flux φ 1 from 3, reducing the attractive force in the left air gap magnetic fluxes G1 and G2, and increasing the attractive force in the right air gap magnetic paths G1 and G2, the rotor part 2 is It is possible to restore the original neutral state and balance the overall suction force. In this case, even if the rotor part 2 is deviated in the axial direction,
Due to the flow of magnetic flux φ 1 and φ 2 , the stator yoke 11,
12 and the rotor yokes 21 and 22 are restored so that their magnetic pole circumferential surfaces directly face each other. These operations are exactly the same in the Y-axis direction.

この場合、第2のステータヨーク12にはくび
れ部14を設け、相互に磁気的に分離した複数個
の分離部を設けておくことにより、電磁コイル1
6からの磁束φ2はX軸、Y軸上に存在する分離
部のみを主に通過することになり、ステータヨー
ク12を環流することが少ないので、磁束φ2
効率良くステータ部1、ロータ部2のヨーク同士
の吸引のために作用させることが可能となる。
In this case, the second stator yoke 12 is provided with a constricted portion 14 and a plurality of separating portions magnetically separated from each other are provided, so that the electromagnetic coil 1
The magnetic flux φ 2 from 6 mainly passes only through the separation parts on the X-axis and Y-axis, and rarely circulates through the stator yoke 12, so the magnetic flux φ 2 is efficiently distributed between the stator section 1 and the rotor. It becomes possible to cause the yokes of part 2 to attract each other.

第3図は第2の実施例の縦断面図であり、先の
実施例と異なるところは、ロータ部2の永久磁石
23を使用していないことである。この場合にロ
ータ部2の第1、第2のロータヨーク21,22
同士は、外側部で連結された一体構造とされてい
る。
FIG. 3 is a longitudinal sectional view of the second embodiment, which differs from the previous embodiment in that the permanent magnet 23 of the rotor section 2 is not used. In this case, the first and second rotor yokes 21 and 22 of the rotor section 2
They have an integral structure connected to each other at the outside.

作用的には、先の実施例と同様に空隙磁路G1
は非変調ギヤツプ、G2は変調ギヤツプであつ
て、永久磁石13のN極から出た磁束φ1は、第
2のステータヨーク12から第2のロータヨーク
22、第1のロータヨーク21及び第1のステー
タヨーク11を経由してS極に戻ることになる。
Functionally, the air gap magnetic path G1 is similar to the previous embodiment.
is a non-modulating gap, G2 is a modulating gap, and the magnetic flux φ 1 emitted from the N pole of the permanent magnet 13 is transferred from the second stator yoke 12 to the second rotor yoke 22, the first rotor yoke 21, and the first stator. It returns to the S pole via the yoke 11.

なお、永久磁石は一体のリング状ではなく、第
4図に示すように複数個の例えば円筒形などの単
純な形状の永久磁石40をリング状に並べ、これ
を収容する筒部を有する部材を非磁性体である
銅、アルミニウムなどで製作してもよい。また、
空隙磁路に面するヨーク11,12,21,22
の磁極は第1図、第3図に示すように1枚の歯と
しているが、これを第5図に示すような複数枚の
歯にして、軸方向の剛性を向上させるようにする
ことも可能である。なお、24はロータ部2の補
強用非磁性リングである。
Note that the permanent magnet is not in the form of an integral ring, but as shown in FIG. It may be made of non-magnetic material such as copper or aluminum. Also,
Yokes 11, 12, 21, 22 facing the air gap magnetic path
The magnetic pole is made of one tooth as shown in Figures 1 and 3, but it may also be made of multiple teeth as shown in Figure 5 to improve the rigidity in the axial direction. It is possible. Note that 24 is a non-magnetic ring for reinforcing the rotor portion 2.

なお、ステータヨーク12のくびれ部14は、
電磁ヨーク15を十字状としたために4個設けた
が、電磁ヨーク15は等間隔に3本脚のものとし
てベクトル比によつて制御することもでき、この
場合のくびれ部14の数は3個とすればよい。ま
た、このくびれ部14の代りに磁気的に完全に切
断するようにしてもよい。
Note that the constricted portion 14 of the stator yoke 12 is
Although four electromagnetic yokes 15 are provided to make the electromagnetic yokes 15 cross-shaped, the electromagnetic yokes 15 can also have three legs equally spaced and be controlled by vector ratio, and in this case, the number of constrictions 14 is three. And it is sufficient. Further, instead of this constricted portion 14, it may be completely cut magnetically.

以上説明したように、本発明に係るラジアル制
御型磁気軸受は次のような効果を有する。
As explained above, the radial control type magnetic bearing according to the present invention has the following effects.

(1) 永久磁石は軸方向に着磁して使用しているの
で、永久磁石の製造が容易になり、かつヨーク
との磁気的接続が容易になる。
(1) Since the permanent magnet is used while being magnetized in the axial direction, it is easy to manufacture the permanent magnet, and it is also easy to magnetically connect it to the yoke.

(2) 永久磁石と電磁石との数が少なく、容積も縮
小され偏平な形状とすることができる。
(2) The number of permanent magnets and electromagnets is small, the volume is reduced, and a flat shape can be achieved.

(3) 第1ステータヨーク及び第1のロータヨーク
間の空隙磁路は、永久磁石のみによる非変調ギ
ヤツプなので磁束密度を増加することができ、
そのために軸方向の剛性、及び半径方向軸周り
の剛性を大きくすることができる。
(3) The air gap magnetic path between the first stator yoke and the first rotor yoke is a non-modulated gap made only of permanent magnets, so the magnetic flux density can be increased.
Therefore, the rigidity in the axial direction and the rigidity around the radial axis can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係るラジアル制御型磁気軸受の
実施例を示し、第1図はその縦断面図、第2図は
ステータ部、ロータ部の平面図、第3図は他の実
施例の縦断面図、第4図は永久磁石の配置の変形
例の一部平面図、第5図はヨークの断面図であ
る。 符号1はステータ部、2はロータ部、11,1
2はステータヨーク、13,23は永久磁石、1
4はくびれ部、15は電磁ヨーク、16は電磁コ
イル、21,22はロータヨーク、30,31は
位置センサ、φ1,φ2は磁束、G1,G2は空隙
磁路である。
The drawings show an embodiment of a radially controlled magnetic bearing according to the present invention, with FIG. 1 being a longitudinal sectional view thereof, FIG. 2 being a plan view of the stator section and rotor section, and FIG. 3 being a longitudinal sectional view of another embodiment. FIG. 4 is a partial plan view of a modified example of the arrangement of permanent magnets, and FIG. 5 is a sectional view of the yoke. 1 is a stator part, 2 is a rotor part, 11,1
2 is a stator yoke, 13 and 23 are permanent magnets, 1
4 is a constriction, 15 is an electromagnetic yoke, 16 is an electromagnetic coil, 21 and 22 are rotor yokes, 30 and 31 are position sensors, φ 1 and φ 2 are magnetic fluxes, and G1 and G2 are air gap magnetic paths.

Claims (1)

【特許請求の範囲】 1 軸を中心に一方の周囲を他方が非接触で相対
的に回転するロータ部とステータ部とから成り、
前記ロータ部と前記ステータ部は、それぞれ2枚
の平行に配列した平板円環状ヨークを有すると共
に、これらの2枚のロータ部ヨークと2枚のステ
ータ部ヨークとはそれぞれ半径方向に空隙磁路を
隔てて対向し、前記ステータ部又は前記ロータ部
と前記ステータ部の両者の前記ヨーク間に軸方向
に着磁した永久磁石を挟着し、前記ステータ部ヨ
ークと磁気的に接合する電磁ヨークに電磁コイル
を設け、前記2つの空隙磁路のうちの一方は前記
永久磁石のみの磁束が存在し、他方は前記永久磁
石と前記電磁コイルの両者の磁束が共存するよう
にして、前記永久磁石によつて前記ロータ部と前
記ステータ部の前記ヨーク間に作用する吸引力を
前記電磁コイルによる制御吸引力によつて調整
し、前記ロータ部の前記ステータ部に対する半径
方向位置の制御を行うようにしたことを特徴とす
るラジアル制御型磁気軸受。 2 前記電磁ヨークと接合する前記ステータ部ヨ
ークは、等角度に少なくとも3個に相互間の磁気
抵抗が大きくなるように分離した分離部を有する
特許請求の範囲第1項に記載のラジアル制御型磁
気軸受。
[Claims] 1. Consisting of a rotor part and a stator part, each of which rotates relatively around one axis without contact with the other,
The rotor section and the stator section each have two flat annular yokes arranged in parallel, and these two rotor section yokes and two stator section yokes each have an air gap magnetic path in the radial direction. A permanent magnet magnetized in the axial direction is sandwiched between the yokes of the stator section or both of the rotor section and the stator section, and the electromagnetic yokes are connected to the electromagnetic yoke magnetically connected to the stator section yoke. A coil is provided, and one of the two air-gap magnetic paths has the magnetic flux of only the permanent magnet, and the other has the magnetic flux of both the permanent magnet and the electromagnetic coil coexisting. The attraction force acting between the rotor part and the yoke of the stator part is adjusted by the controlled attraction force by the electromagnetic coil, and the radial position of the rotor part with respect to the stator part is controlled. A radially controlled magnetic bearing featuring: 2. The radial control type magnetism according to claim 1, wherein the stator portion yoke that joins the electromagnetic yoke has at least three separation portions separated at equal angles so as to increase mutual magnetic resistance. bearing.
JP58118699A 1983-06-30 1983-06-30 Radially-controlled magnetic bearing Granted JPS6011716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58118699A JPS6011716A (en) 1983-06-30 1983-06-30 Radially-controlled magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58118699A JPS6011716A (en) 1983-06-30 1983-06-30 Radially-controlled magnetic bearing

Publications (2)

Publication Number Publication Date
JPS6011716A JPS6011716A (en) 1985-01-22
JPH0126404B2 true JPH0126404B2 (en) 1989-05-23

Family

ID=14742955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58118699A Granted JPS6011716A (en) 1983-06-30 1983-06-30 Radially-controlled magnetic bearing

Country Status (1)

Country Link
JP (1) JPS6011716A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175314A (en) * 1985-01-31 1986-08-07 Natl Aerospace Lab Magnetic bearing

Also Published As

Publication number Publication date
JPS6011716A (en) 1985-01-22

Similar Documents

Publication Publication Date Title
US4918345A (en) Magnetic bearing for active centering of a body movable relative to a static body with respect to at least one axis
JP4616122B2 (en) Magnetic bearing
US10177627B2 (en) Homopolar, flux-biased hysteresis bearingless motor
US7977838B2 (en) Magnetic levitation motor and pump
US6563244B1 (en) Composite-type electromagnet and radial magnetic bearing
US6359357B1 (en) Combination radial and thrust magnetic bearing
US5179308A (en) High-speed, low-loss antifriction bearing assembly
US4285553A (en) Magnetic suspension momentum device
JP7469291B2 (en) Magnetic bearing, drive device and pump equipped with same
JPS5943220A (en) Gimbal-controlled magnetic bearing
JPH10159849A (en) Magnetic bearing, active in vertical and lateral direction
US5804899A (en) Miniature magnetic bearing with at least one active axis
US5763972A (en) Magnetic bearing with alternating actuators and sensors
JPH0242127B2 (en)
JPS6211218B2 (en)
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
JPH0126404B2 (en)
JP6696855B2 (en) Magnetic bearing
JPS5854284B2 (en) magnetic bearing
JPH0242126B2 (en)
JPS5839251B2 (en) magnetic bearing device
JPS5854285B2 (en) Five-axis controlled magnetic bearing
JPH0226310A (en) Magnetic thrust bearing
JPH01145420A (en) High rigid magnetic bearing
JPH02102919A (en) Magnetic bearing device