JP4616122B2 - Magnetic bearing - Google Patents

Magnetic bearing Download PDF

Info

Publication number
JP4616122B2
JP4616122B2 JP2005239612A JP2005239612A JP4616122B2 JP 4616122 B2 JP4616122 B2 JP 4616122B2 JP 2005239612 A JP2005239612 A JP 2005239612A JP 2005239612 A JP2005239612 A JP 2005239612A JP 4616122 B2 JP4616122 B2 JP 4616122B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic flux
annular portion
axial
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005239612A
Other languages
Japanese (ja)
Other versions
JP2007056892A (en
Inventor
養二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Co Ltd
Original Assignee
Iwaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Co Ltd filed Critical Iwaki Co Ltd
Priority to JP2005239612A priority Critical patent/JP4616122B2/en
Publication of JP2007056892A publication Critical patent/JP2007056892A/en
Application granted granted Critical
Publication of JP4616122B2 publication Critical patent/JP4616122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic bearing with a rotor which is controlled in the axial direction and in the radial direction not to be subjected to magnetic attractive force of a permanent magnet, when machined and assembled. <P>SOLUTION: A stator 1 has: at least a pair of annular portions 12a, 12b; a first magnetic pole 13a and a second magnetic pole 13b provided on the inner peripheries of the annular portions 12a, 12b, respectively; and the annular permanent magnet 3 located between the annular portions 12a, 12b. A radial exciting coil 14 and an axial exciting coil 15 are wound in the first magnetic pole 13a and the second magnetic pole 13b, respectively, which generate a radial exciting magnetic flux &phiv;r and an axial exciting magnetic flux &phiv;a. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、磁気力によってロータを非接触状態で支持する磁気軸受に関し、特にロータ位置を軸方向(アキシャル方向)および径方向(ラジアル方向)に制御可能な磁気軸受に関する。   The present invention relates to a magnetic bearing that supports a rotor in a non-contact state by a magnetic force, and particularly relates to a magnetic bearing capable of controlling the rotor position in an axial direction (axial direction) and a radial direction (radial direction).

磁気軸受は、回転体を非接触で支持することができるため、制御技術の進展に伴って各種の軸受に利用されてきている。しかし、電磁石を利用した磁気軸受は、ロータを浮上させるために大きな電流を必要とするため、消費電力が大きくなってしまう。また、少ない電力で磁気力を大きくするためには、ロータとステータとの間のギャップが小さいことが要求され、高い工作精度が必要となる。   Since the magnetic bearing can support the rotating body in a non-contact manner, it has been used for various bearings as the control technology advances. However, since the magnetic bearing using an electromagnet requires a large current to float the rotor, the power consumption increases. Further, in order to increase the magnetic force with a small amount of electric power, a small gap between the rotor and the stator is required, and high machining accuracy is required.

これらの問題を解決する有力な方法として、近年、性能向上が顕著な永久磁石のバイアス磁束を利用したハイブリッド型の磁気軸受が使用されるようになってきた。このハイブリッド型の磁気軸受は、例えば特許文献1、2により提案されている。
特開2003−021140号公報(段落0053〜0056、図6) 特開2004−232740号公報(段落0011〜0021、図1)
As an effective method for solving these problems, in recent years, a hybrid type magnetic bearing using a bias magnetic flux of a permanent magnet whose performance is remarkably improved has been used. This hybrid type magnetic bearing is proposed by, for example, Patent Documents 1 and 2.
JP 2003-021140 A (paragraphs 0053 to 0056, FIG. 6) JP 2004-232740 A (paragraphs 0011 to 0021, FIG. 1)

しかし、上述した特許文献に開示された磁気軸受は、加工・組立性に難点があるという問題があった。
本発明は、このような問題点に鑑みてなされたもので、加工・組立性の向上を図った磁気軸受を提供することを目的とする。
However, the magnetic bearing disclosed in the above-mentioned patent document has a problem that there is a difficulty in processing and assembly.
The present invention has been made in view of such problems, and an object of the present invention is to provide a magnetic bearing with improved workability and assemblability.

本発明に係る磁気軸受は、ステータと、前記ステータに磁気力によって非接触状態で支持されて回転軸を中心に回転するロータとを有する磁気軸受において、前記ステータは、バイアス磁束を供給するため回転軸周りに環状に成形され軸方向に着磁された永久磁石と、前記永久磁石の軸方向の両端に配置されて回転軸周りに環状に成形された磁性材料からなりその環状の部分の直径が前記永久磁石と略同等である第1環状部及び第2環状部と、前記第1環状部の内周に周方向の所定間隔で接続される一方前記第2環状部とは所定の距離をおいて配置される磁性材料からなる複数の第1磁極と、前記第2環状部の内周に周方向の所定間隔で前記複数の第1磁極を挟むように接続される一方前記第1環状部とは所定の距離をおいて配置される磁性材料からなる複数の第2磁極と、前記第1磁極及び第2磁極に形成され径方向の一方の側においては前記バイアス磁束を強めるように作用し他方の側においては前記バイアス磁束を弱めるように作用するラジアル励磁磁束を発生するラジアル励磁コイルと、前記第1磁極及び第2磁極に形成され前記軸方向の一方の側においては前記バイアス磁束を強めるように作用し他方の側においては前記バイアス磁束を弱めるように作用するアキシャル励磁磁束を発生させるアキシャル励磁コイルとを備えることを特徴とする。   The magnetic bearing according to the present invention is a magnetic bearing having a stator and a rotor that is supported by the stator in a non-contact state by a magnetic force and rotates about a rotation shaft. The stator rotates to supply a bias magnetic flux. A permanent magnet formed in an annular shape around an axis and magnetized in the axial direction, and a magnetic material disposed in both ends of the permanent magnet in the axial direction and formed in an annular shape around the rotation axis, the diameter of the annular portion is The first annular portion and the second annular portion, which are substantially equivalent to the permanent magnet, are connected to the inner circumference of the first annular portion at a predetermined interval in the circumferential direction, while the second annular portion has a predetermined distance. A plurality of first magnetic poles made of a magnetic material disposed on the inner periphery of the second annular portion, and connected to the inner periphery of the second annular portion so as to sandwich the plurality of first magnetic poles at a predetermined interval in the circumferential direction. Is a magnet arranged at a predetermined distance A plurality of second magnetic poles made of a material, and formed on the first magnetic pole and the second magnetic pole so as to increase the bias magnetic flux on one side in the radial direction and weaken the bias magnetic flux on the other side. A radial excitation coil for generating a radial excitation magnetic flux that acts, and a bias magnetic flux formed on the first magnetic pole and the second magnetic pole so as to strengthen the bias magnetic flux on one side in the axial direction and the bias magnetic flux on the other side. And an axial excitation coil that generates an axial excitation magnetic flux that acts to weaken the magnetic field.

本発明によれば、径方向および軸方向の制御性に優れ、さらには、加工・組立性を向上させた永久磁石による磁気吸引力の障害を受けない磁気軸受を提供することが可能になる。   According to the present invention, it is possible to provide a magnetic bearing that is excellent in controllability in the radial direction and the axial direction and that is not affected by a magnetic attractive force by a permanent magnet with improved workability and assembly.

(第1の実施形態)
まず、図1、図2、図3を参照して、本発明の第1の実施形態について説明する。図1は第1の実施の形態に係る磁気軸受の分解斜視図であり、図2はその組立斜視図であり、図3は図2における矢印A方向から見た平面図である。
この磁気軸受は、外側に配置された環状のステータ1と、このステータ1の内側に配置されたロータ2を有する。ロータ2は、ステータ1から与えられる磁束により非接触状態で支持され、位置制御される。
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG. FIG. 1 is an exploded perspective view of the magnetic bearing according to the first embodiment, FIG. 2 is an assembled perspective view thereof, and FIG. 3 is a plan view seen from the direction of arrow A in FIG.
This magnetic bearing has an annular stator 1 disposed on the outside and a rotor 2 disposed on the inside of the stator 1. The rotor 2 is supported in a non-contact state by a magnetic flux applied from the stator 1 and is position-controlled.

ステータ1は継鉄から構成されている。継鉄は、積層鋼板等の磁性材料からなる。図1に示すように、ステータ1は、第1環状部12a、第2環状部12bと、第1環状部12a、第2環状部12bの間に配置され、回転軸まわりに環状に成型され軸方向に着磁された永久磁石3から構成されている。なお、この永久磁石3は環状部12a、12bの直径と略同等に設計されている。
また、第1環状部12aの内周に180°の間隔で、接合部18を介し、第1環状部12aと一体に第1磁極13a(1)、13a(2)が形成されている。同様に、環状部12bの内周に180°の間隔で、接合部18を介し、第2環状部12bと一体に第2磁極13b(1)、13b(2)が形成されている(図2に示すように、組立時に磁極13a、13bは90°の間隔となる)。
一方、ロータ2は、少なくとも外周面に積層鋼板や電磁材料等の磁性体を配したもので、ステータ1の内側に回転軸を中心として回転可能に配置されている。
以下、永久磁石3の中心面と回転軸の軸心の交点を原点とし、第1磁極13a(1)から第1磁極13a(2)の中心を結ぶ直線をx軸、第2磁極13b(1)から第2磁極13b(2)の中心を結ぶ直線をy軸、第2環状部12bから第1環状部12aへ向かう回転軸をz軸とする。
The stator 1 is composed of a yoke. The yoke is made of a magnetic material such as a laminated steel plate. As shown in FIG. 1, the stator 1 is disposed between the first annular portion 12a, the second annular portion 12b, the first annular portion 12a, and the second annular portion 12b, and is formed in an annular shape around the rotation axis. The permanent magnet 3 is magnetized in the direction. The permanent magnet 3 is designed to be approximately equal to the diameter of the annular portions 12a and 12b.
Further, first magnetic poles 13a (1) and 13a (2) are formed integrally with the first annular portion 12a through the joint portion 18 at an interval of 180 ° on the inner periphery of the first annular portion 12a. Similarly, second magnetic poles 13b (1) and 13b (2) are formed integrally with the second annular portion 12b through the joint portion 18 at an interval of 180 ° on the inner periphery of the annular portion 12b (FIG. 2). As shown in FIG. 4, the magnetic poles 13a and 13b are spaced by 90 ° during assembly).
On the other hand, the rotor 2 has a magnetic material such as a laminated steel plate or electromagnetic material disposed on at least an outer peripheral surface thereof, and is disposed inside the stator 1 so as to be rotatable around a rotation axis.
Hereinafter, the intersection of the center plane of the permanent magnet 3 and the axis of the rotation axis is the origin, and a straight line connecting the center of the first magnetic pole 13a (1) to the center of the first magnetic pole 13a (2) is the x-axis, and the second magnetic pole 13b (1 ) To the center of the second magnetic pole 13b (2) is defined as the y-axis, and the rotation axis from the second annular portion 12b to the first annular portion 12a is defined as the z-axis.

上記磁極13は、各々アキシャル励磁コイル14とラジアル励磁コイル15を備えている。
アキシャル励磁コイル14は、磁極13の中心部に、軸方向を軸心として巻回されている(z軸平行に軸心、x−y平面に巻回)。また、ラジアル励磁コイル15は、磁極13に径方向を軸心として巻回されている(x軸平行またはy軸平行に軸心、z−y平面またはz−x平面に巻回)。
Each of the magnetic poles 13 includes an axial excitation coil 14 and a radial excitation coil 15.
The axial excitation coil 14 is wound around the central portion of the magnetic pole 13 with the axial direction as the axis (axial center parallel to the z axis, wound on the xy plane). Further, the radial excitation coil 15 is wound around the magnetic pole 13 with the radial direction as an axial center (axial center in the x-axis parallel or y-axis parallel, wound in the zy plane or the zx plane).

また、各々の磁極13の内周表面には、2つの突極部16a(i)、16a(i)または16b(i)、16b(i)(i=1,2)と、磁束センサ17a(i)、または17b(i)、(i=1,2)が備えられている。
これら突極部16は、磁極13の内側から回転軸中心に向けて突出した形状を有し、ロータ2の軸方向(z軸)の端部よりも軸方向(z軸)に関し、外側である磁極13の縁部に共に離間して形成されている。
磁束センサ17は、2つの突極部16の間に形成されており、この磁束センサ17は、例えばホール素子等である。なお、磁束センサ17は、上記の配置に限定されるものではなく、磁束が検出できる配置であればよい。更には、このような磁束センサ17の代わりにギャップセンサ、インダクタンスセンサを用いることもできる。
この磁束センサ17により検出された磁束の変化に基づき、励磁コイル14、15に流す電流の制御が行われる。この制御は、後述する制御系によって行われる。
Further, on the inner peripheral surface of each magnetic pole 13, two salient pole portions 16a (i), 16a (i) or 16b (i), 16b (i) (i = 1, 2) and a magnetic flux sensor 17a ( i), or 17b (i), (i = 1, 2).
These salient pole portions 16 have a shape protruding from the inside of the magnetic pole 13 toward the center of the rotation axis, and are outside the end in the axial direction (z axis) of the rotor 2 in the axial direction (z axis). Both are formed on the edge of the magnetic pole 13 so as to be separated from each other.
The magnetic flux sensor 17 is formed between two salient pole portions 16, and this magnetic flux sensor 17 is, for example, a Hall element. Note that the magnetic flux sensor 17 is not limited to the above-described arrangement, and may be any arrangement that can detect the magnetic flux. Further, a gap sensor or an inductance sensor can be used in place of the magnetic flux sensor 17.
Based on the change of the magnetic flux detected by the magnetic flux sensor 17, the current flowing through the exciting coils 14 and 15 is controlled. This control is performed by a control system described later.

図2、図3に示すように磁気軸受を組み立てた状態において、環状部12aに接合された第1磁極13a(1)、13a(2)は環状部12bと離間し、同様に環状部12bに接合された第2磁極13b(1)、13b(2)は環状部12aと離間し、空隙19を形成している。この空隙19は、磁束が通過しない構造であればよく、空隙19の代わりに低透磁率の材料を用い磁極13と環状部12を接合することも可能である。これら構成により、後述するロータ2の位置を制御するための特徴的なバイアス磁束φbを生成することが可能となる。
また、上記構成により、環状部12a、12bと、永久磁石3と、磁極13が、それぞれ独立した製作及び加工工程を経て、組み立てられ得る。したがって、加工・組立時において、永久磁石による磁気吸引力の障害を受けない磁気軸受を提供することが可能となる。また、このような構造であれば、各励磁コイル14、15の巻き線工程も容易である。
2 and 3, when the magnetic bearing is assembled, the first magnetic poles 13a (1) and 13a (2) joined to the annular portion 12a are separated from the annular portion 12b, and similarly to the annular portion 12b. The joined second magnetic poles 13 b (1) and 13 b (2) are separated from the annular portion 12 a and form a gap 19. The air gap 19 only needs to have a structure that does not allow magnetic flux to pass through, and the magnetic pole 13 and the annular portion 12 can be joined using a low magnetic permeability material instead of the air gap 19. With these configurations, it is possible to generate a characteristic bias magnetic flux φb for controlling the position of the rotor 2 described later.
In addition, with the above configuration, the annular portions 12a and 12b, the permanent magnet 3, and the magnetic pole 13 can be assembled through independent manufacturing and processing steps. Therefore, it is possible to provide a magnetic bearing that is not affected by the magnetic attractive force of the permanent magnet during processing and assembly. Moreover, with such a structure, the winding process of each exciting coil 14 and 15 is also easy.

次に、図3、図4A、図4B、図4C、図5を用いて、励磁コイル14、15により、軸方向に磁束を形成するアキシャル励磁磁束φaと、径方向に磁束を形成するラジアル励磁磁束φrと、永久磁石3により生じるバイアス磁束φbの関係を説明する。図4Aは磁気軸受のアキシャル励磁コイル14に同じ回転方向の電流を流した場合におけるx−z軸断面図、図4Bは磁気軸受のアキシャル励磁コイル14に同じ回転方向の電流を流した場合におけるy−z軸断面図、図4Cは磁気軸受のアキシャル励磁コイル14に異なる回転方向の電流を流した場合におけるy−z軸断面図であり、図5はy軸の+方向に磁束をかけた場合におけるロータ2、環状部12b、第2磁極13b(1)、13b(2)のx−y断面図である。   Next, with reference to FIGS. 3, 4A, 4B, 4C, and 5, the exciting coils 14 and 15 are used for the axial excitation magnetic flux φa that forms the magnetic flux in the axial direction and the radial excitation that forms the magnetic flux in the radial direction. The relationship between the magnetic flux φr and the bias magnetic flux φb generated by the permanent magnet 3 will be described. 4A is an xz-axis cross-sectional view when current in the same rotational direction flows through the axial excitation coil 14 of the magnetic bearing, and FIG. 4B illustrates y when current in the same rotational direction flows through the axial excitation coil 14 of the magnetic bearing. FIG. 4C is a cross-sectional view taken along the z-axis, and FIG. 4C is a cross-sectional view taken along the z-axis when a current in a different rotational direction is passed through the axial excitation coil 14 of the magnetic bearing. It is xy sectional drawing of the rotor 2, annular part 12b, and 2nd magnetic pole 13b (1), 13b (2) in FIG.

図3、図4A、図4Bに示すように、永久磁石3によるバイアス磁束φbは、永久磁石3のN極から環状部12a、磁極13aに供給される。次に、第1磁極13aに供給されたバイアス磁束φbは空隙19のため、図4Aに示されるS極には戻れず、突極部16aを通り、ロータ2に供給される。
ロータ2に供給されたバイアス磁束φbは、ロータ2中をz軸中心に、x軸からy軸へ径方向に90°進み、ロータ2から突極部16b、磁極13bへと供給され、環状部12bを通り、永久磁石3のS極へと戻る。
ここで、一対の突極部16は磁極13のロータ2と対向する面において回転軸(z軸)方向に並ぶように配置されている。この突極部16の構造から、第1磁極13a側においてバイアス磁束φbはロータ2のz軸方向の縁部からロータ2の中央部へ向かうベクトルを持ち、第2磁極13b側においてバイアス磁束φbはロータ2の中央部からロータ2のz軸方向の縁部へ向かうベクトルを持つ。したがって、バイアス磁束φbはアキシャル方向の成分を含むことになる。
As shown in FIGS. 3, 4A, and 4B, the bias magnetic flux φb by the permanent magnet 3 is supplied from the N pole of the permanent magnet 3 to the annular portion 12a and the magnetic pole 13a. Next, the bias magnetic flux φb supplied to the first magnetic pole 13a cannot be returned to the S pole shown in FIG. 4A because of the air gap 19, and is supplied to the rotor 2 through the salient pole portion 16a.
The bias magnetic flux φb supplied to the rotor 2 advances 90 degrees in the radial direction from the x axis to the y axis around the z axis in the rotor 2, and is supplied from the rotor 2 to the salient pole portion 16b and the magnetic pole 13b. Return to the south pole of the permanent magnet 3 through 12b.
Here, the pair of salient pole portions 16 are arranged so as to be aligned in the rotation axis (z-axis) direction on the surface of the magnetic pole 13 facing the rotor 2. Due to the structure of the salient pole portion 16, the bias magnetic flux φb has a vector from the edge in the z-axis direction of the rotor 2 toward the center of the rotor 2 on the first magnetic pole 13a side, and the bias magnetic flux φb on the second magnetic pole 13b side is It has a vector from the center of the rotor 2 toward the edge of the rotor 2 in the z-axis direction. Therefore, the bias magnetic flux φb includes an axial component.

次に、図4A、図4Bを参照して、ロータ2にアキシャル方向に制御力を発生させる場合を説明する。上記記載のようにバイアス磁束φbはアキシャル方向の成分を含んでいる。ここに、アキシャル励磁コイル14に同方向の励磁電流を流すと、上下逆回転のアキシャル励磁磁束φaが発生し、z軸方向の+側或は−側のどちらか片方の磁束は強め合い、反対側の磁束は弱め合う。その結果、z軸方向にアキシャル並進力Faが生じ、ロータ2のアキシャル制御が可能となる。   Next, with reference to FIG. 4A and FIG. 4B, the case where the control force is generated in the rotor 2 in the axial direction will be described. As described above, the bias magnetic flux φb includes an axial component. Here, when an exciting current in the same direction is passed through the axial exciting coil 14, an axially exciting magnetic flux φa rotating in the reverse direction is generated, and the magnetic flux on either the positive side or the negative side in the z-axis direction is intensified. The magnetic flux on the side weakens. As a result, an axial translational force Fa is generated in the z-axis direction, and axial control of the rotor 2 becomes possible.

また、図4Cのように、励磁電流を逆方向に流すと、y軸+方向かつz軸+方向と、y軸−方向かつz軸−方向に強め合う磁束が生成される。しかし、この磁束は図4Aおよび図4Bとは異なり、互いに逆方向のベクトルを有するので、反時計回りのモーメントMが発生する。従って、このモーメントMにより、ロータ2の傾き制御も可能となる。   Further, as shown in FIG. 4C, when an exciting current is passed in the reverse direction, magnetic fluxes that strengthen in the y-axis + direction and the z-axis + direction, and the y-axis-direction and the z-axis-direction are generated. However, this magnetic flux differs from FIG. 4A and FIG. 4B and has vectors in opposite directions to each other, so that a counterclockwise moment M is generated. Therefore, the inclination of the rotor 2 can be controlled by this moment M.

次に、図5を参照して、ロータ2にラジアル方向に制御力を発生させる場合を説明する。図5に示すように、上記バイアス磁束φbに加え、ラジアル励磁コイル15に励磁電流を流し、ラジアル励磁磁束φrを生成させる。このラジアル励磁磁束φrによって、磁束の片側(y軸+方向)が強め合い、反対側(y軸−方向)が弱め合う。その結果、ラジアル方向(y軸+方向)にラジアル制御力Frが発生する。   Next, with reference to FIG. 5, the case where the rotor 2 generates a control force in the radial direction will be described. As shown in FIG. 5, in addition to the bias magnetic flux φb, an exciting current is passed through the radial exciting coil 15 to generate a radial exciting magnetic flux φr. By this radial excitation magnetic flux φr, one side (y-axis + direction) of the magnetic flux strengthens and the other side (y-axis − direction) weakens. As a result, a radial control force Fr is generated in the radial direction (y-axis + direction).

次に、本発明の第1の実施形態に係るアキシャル励磁コイル14、及びラジアル励磁コイル15に流す励磁電流を制御するための制御系の構成例を図6を参照して説明する。
この制御系は、ラジアル励磁コイル14、及びラジアル励磁コイル15の励磁電流の制御のため、A/D変換器101、制御部102を備えている。A/D変換器101は、磁束センサ17により検出したアナログ信号をデジタル信号に変換し、制御部102に出力する。制御部102は、このデジタル信号に基づき、ラジアル励磁コイル14、アキシャル励磁コイル15の励磁電流を制御する。これにより、ラジアル励磁磁束φr、アキシャル励磁磁束φaが変化し、ロータ2の径方向及び軸方向の位置制御が可能となる。上記図6は、簡略のため第2磁極13b(1)、13b(2)のみを説明したが、同様に、第1磁極13a(1)、13a(2)の磁束も制御される。
Next, a configuration example of a control system for controlling the excitation current flowing in the axial excitation coil 14 and the radial excitation coil 15 according to the first embodiment of the present invention will be described with reference to FIG.
This control system includes an A / D converter 101 and a control unit 102 for controlling the excitation current of the radial excitation coil 14 and the radial excitation coil 15. The A / D converter 101 converts the analog signal detected by the magnetic flux sensor 17 into a digital signal and outputs it to the control unit 102. The control unit 102 controls the excitation current of the radial excitation coil 14 and the axial excitation coil 15 based on this digital signal. As a result, the radial excitation magnetic flux φr and the axial excitation magnetic flux φa change, and the radial and axial position control of the rotor 2 becomes possible. In FIG. 6, only the second magnetic poles 13b (1) and 13b (2) have been described for the sake of simplicity. Similarly, the magnetic fluxes of the first magnetic poles 13a (1) and 13a (2) are also controlled.

(第2の実施形態)
次に、図7を参照して、本発明の第2の実施形態について説明する。図7は本発明の第2の実施形態に係る磁気軸受の分解斜視図である。
図7に示すように、第1の実施形態と異なる箇所は、永久磁石3’とそれを格納するケース30の構成である。ケース30には凸部31と凹部32が形成されている。永久磁石3’は円弧状に分割されており、ケース30の凹部32に格納される。また、永久磁石3’及び凹部32は4つに限定されるものではない。
上記構成により、環状部12a、12b、ケース30を接合した後であっても、円弧状の永久磁石3’を挿入し、磁気軸受を製作することが可能となる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 is an exploded perspective view of a magnetic bearing according to the second embodiment of the present invention.
As shown in FIG. 7, a different point from 1st Embodiment is the structure of permanent magnet 3 'and the case 30 which accommodates it. A convex portion 31 and a concave portion 32 are formed in the case 30. The permanent magnet 3 ′ is divided in an arc shape and is stored in the recess 32 of the case 30. Further, the number of the permanent magnets 3 ′ and the recesses 32 is not limited to four.
With the above configuration, even after the annular portions 12a and 12b and the case 30 are joined, the arc-shaped permanent magnet 3 ′ can be inserted to manufacture a magnetic bearing.

(第3の実施形態)
次に、図8を参照して、本発明の第3の実施形態について説明する。図8は、本発明の第3の実施形態に係る磁気軸受の分解斜視図である。第1の実施形態と異なる箇所は、環状部12aに第1磁極13aが配置されず、環状部12bに第1磁極13a及び第2磁極13bが配置されている点である。
また、環状部12bと磁極13a、磁極13bはそれぞれ別工程で加工され、第2磁極13b(1)、13b(2)は高透磁率の材料からなる接合部18により環状部12bと接合される。一方、磁極13a(1)、13a(2)は低透磁率の材料からなる接合部18’により環状部12bと接合されている。
この接合部18’により、磁極13a(1)と環状部12bの間及び磁極13a(2)と環状部12bの間で磁束が形成されることはない。したがって、接合部18’は第1の実施形態で説明した空隙19と同様の効果を持ち、磁極13と環状部12を接合する。
また、磁極13a(1)、13a(2)の環状部12a方向の外周側には、各々接合部18が備えられている。磁気軸受を組み立てた際、この接合部18に環状部12aが接触し、磁極13a(1)と環状部12bの間及び13a(2)と環状部12bの間で磁束が形成可能となる。
第1磁極13a及び第2磁極13bの配置はこのような配置に限られず、環状部12aに第1磁極13aを一つ、環状部12bに第1磁極13aを一つと第2磁極13bを2つ配置する等の構成であってもよい。
なお、環状部12の形状、永久磁石3の形状は、図7の環状部12a’、円弧状の永久磁石3’を採用することができる。また、磁極13は4つに限られるものでなく、偶数個であれば、さらに複数配置することも可能である。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 8 is an exploded perspective view of a magnetic bearing according to the third embodiment of the present invention. The difference from the first embodiment is that the first magnetic pole 13a is not disposed in the annular portion 12a, and the first magnetic pole 13a and the second magnetic pole 13b are disposed in the annular portion 12b.
Further, the annular portion 12b, the magnetic pole 13a, and the magnetic pole 13b are processed in separate steps, and the second magnetic poles 13b (1) and 13b (2) are joined to the annular portion 12b by the joining portion 18 made of a material having high magnetic permeability. . On the other hand, the magnetic poles 13a (1) and 13a (2) are joined to the annular portion 12b by a joining portion 18 ′ made of a low magnetic permeability material.
Magnetic flux is not formed between the magnetic pole 13a (1) and the annular portion 12b and between the magnetic pole 13a (2) and the annular portion 12b by the joint 18 ′. Therefore, the joining portion 18 ′ has the same effect as the gap 19 described in the first embodiment, and joins the magnetic pole 13 and the annular portion 12.
Moreover, the junction part 18 is provided in the outer peripheral side of the magnetic poles 13a (1) and 13a (2) direction of the annular part 12a, respectively. When the magnetic bearing is assembled, the annular portion 12a comes into contact with the joint portion 18, and a magnetic flux can be formed between the magnetic pole 13a (1) and the annular portion 12b and between 13a (2) and the annular portion 12b.
The arrangement of the first magnetic pole 13a and the second magnetic pole 13b is not limited to this arrangement. One annular pole 12a has one first magnetic pole 13a, and the annular section 12b has one first magnetic pole 13a and two second magnetic poles 13b. It may be a configuration such as arranging.
As the shape of the annular portion 12 and the shape of the permanent magnet 3, the annular portion 12a ′ and the arc-shaped permanent magnet 3 ′ of FIG. 7 can be adopted. Further, the number of magnetic poles 13 is not limited to four, and a plurality of magnetic poles 13 may be arranged as long as the number is even.

以上、発明の実施の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、追加、置換等が可能である。   Although the embodiments of the invention have been described above, the present invention is not limited to these embodiments, and various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention.

本発明の第1の実施形態に係る磁気軸受の分解斜視図である。It is a disassembled perspective view of the magnetic bearing which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁気軸受の組立斜視図である。It is an assembly perspective view of the magnetic bearing which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁気軸受の図2における矢印A方向から見た平面図である。It is the top view seen from the arrow A direction in FIG. 2 of the magnetic bearing which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る磁気軸受において、アキシャル励磁コイルに同じ回転方向の励磁電流を流したx−z面断面図である。In the magnetic bearing which concerns on the 1st Embodiment of this invention, it is the xz surface sectional drawing which sent the exciting current of the same rotation direction to the axial exciting coil. 本発明の第1の実施形態に係る磁気軸受において、アキシャル励磁コイル14に同じ回転方向の励磁電流を流したy−z面断面図である。In the magnetic bearing which concerns on the 1st Embodiment of this invention, it is the yz surface sectional drawing which sent the exciting current of the same rotation direction to the axial exciting coil 14. FIG. 本発明の第1の実施形態に係る磁気軸受において、アキシャル励磁コイル14に異なる回転方向の励磁電流を流したy−z面軸断面図である。In the magnetic bearing which concerns on the 1st Embodiment of this invention, FIG. 本発明の第1の実施形態に係る磁気軸受において、y軸の+方向に磁束をかけた場合における、ロータ2、環状部12b、磁極13b(1)、磁極13b(2)のx−y断面図である。In the magnetic bearing according to the first embodiment of the present invention, the xy section of the rotor 2, the annular portion 12b, the magnetic pole 13b (1), and the magnetic pole 13b (2) when a magnetic flux is applied in the + direction of the y-axis. FIG. 本発明の第1の実施形態に係る磁気軸受において、アキシャル励磁コイル14、及びラジアル励磁コイル15に流す励磁電流を制御するための制御系の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a control system for controlling an excitation current flowing in an axial excitation coil 14 and a radial excitation coil 15 in the magnetic bearing according to the first embodiment of the present invention. 本発明の第2の実施形態に係る磁気軸受の分解斜視図である。It is a disassembled perspective view of the magnetic bearing which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る磁気軸受の分解斜視図である。It is a disassembled perspective view of the magnetic bearing which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1・・・ステータ
12a・・・第1環状部
12b・・・第2環状部
13a・・・第1磁極
13b・・・第2磁極
14・・・アキシャル励磁コイル
15・・・ラジアル励磁コイル
16a、16b・・・突極部
17・・・磁束センサ
18、18’・・・接合部
19・・・空隙
2・・・ロータ
3、3’・・・永久磁石
30・・・ケース
31・・・凸部
32・・・凹部
101・・・A/D変換器
102・・・制御部
φa・・・アキシャル励磁磁束
φr・・・ラジアル励磁磁束
φb・・・バイアス磁束
DESCRIPTION OF SYMBOLS 1 ... Stator 12a ... 1st annular part 12b ... 2nd annular part 13a ... 1st magnetic pole 13b ... 2nd magnetic pole 14 ... Axial exciting coil 15 ... Radial exciting coil 16a , 16b ... salient pole part 17 ... magnetic flux sensor 18, 18 '... joint 19 ... air gap 2 ... rotor 3, 3' ... permanent magnet 30 ... case 31 ... -Convex part 32 ... Concave part 101 ... A / D converter 102 ... Control part φa ... Axial excitation magnetic flux φr ... Radial excitation magnetic flux φb ... Bias magnetic flux

Claims (3)

ステータと、前記ステータに磁気力によって非接触状態で支持されて回転軸を中心に回転するロータとを有する磁気軸受において、
前記ステータは、
バイアス磁束を供給するため回転軸周りに環状に成形され軸方向に着磁された永久磁石と、
前記永久磁石の軸方向の両端に配置されて回転軸周りに環状に成形された磁性材料からなりその環状の部分の直径が前記永久磁石と略同等である第1環状部及び第2環状部と、
前記第1環状部の内周に周方向の所定間隔で接続される一方前記第2環状部とは所定の距離をおいて配置される磁性材料からなる複数の第1磁極と、
前記第2環状部の内周に周方向の所定間隔で前記複数の第1磁極を挟むように接続される一方前記第1環状部とは所定の距離をおいて配置される磁性材料からなる複数の第2磁極と、
前記第1磁極及び第2磁極に形成され径方向の一方の側においては前記バイアス磁束を強めるように作用し他方の側においては前記バイアス磁束を弱めるように作用するラジアル励磁磁束を発生するラジアル励磁コイルと、
前記第1磁極及び第2磁極に形成され前記軸方向の一方の側においては前記バイアス磁束を強めるように作用し他方の側においては前記バイアス磁束を弱めるように作用するアキシャル励磁磁束を発生させるアキシャル励磁コイルと
を備えることを特徴とする磁気軸受。
In a magnetic bearing having a stator and a rotor that is supported by the stator in a non-contact state by a magnetic force and rotates about a rotation axis,
The stator is
A permanent magnet formed in an annular shape around the rotation axis and magnetized in the axial direction to supply a bias magnetic flux;
A first annular portion and a second annular portion, which are made of a magnetic material which is arranged at both ends in the axial direction of the permanent magnet and which is formed in an annular shape around the rotation axis, and the diameter of the annular portion is substantially equal to that of the permanent magnet; ,
A plurality of first magnetic poles made of a magnetic material, which is connected to the inner periphery of the first annular portion at a predetermined interval in the circumferential direction, while being arranged at a predetermined distance from the second annular portion;
A plurality of magnetic materials that are connected to an inner periphery of the second annular portion so as to sandwich the plurality of first magnetic poles at predetermined intervals in the circumferential direction, and are made of a magnetic material arranged at a predetermined distance from the first annular portion. A second magnetic pole of
Radial excitation that is formed in the first magnetic pole and the second magnetic pole and that generates a radial excitation magnetic flux that acts to strengthen the bias magnetic flux on one side in the radial direction and acts to weaken the bias magnetic flux on the other side. Coils,
An axial that is formed in the first magnetic pole and the second magnetic pole and generates an axial excitation magnetic flux that acts to strengthen the bias magnetic flux on one side in the axial direction and acts to weaken the bias magnetic flux on the other side. A magnetic bearing comprising: an exciting coil.
前記ロータを流れる磁束の大きさを検出するセンサと、
前記センサの検出信号に基づいて前記ラジアル励磁コイル及び前記アキシャル励磁コイルに流れる励磁電流を制御する制御部と
を備えることを特徴とする請求項1に記載の磁気軸受。
A sensor for detecting the magnitude of magnetic flux flowing through the rotor;
The magnetic bearing according to claim 1, further comprising: a control unit that controls an excitation current flowing through the radial excitation coil and the axial excitation coil based on a detection signal of the sensor.
前記環状に形成された永久磁石は、複数の円弧状の永久磁石であることを特徴とする請求項1又は請求項2に記載の磁気軸受。

The magnetic bearing according to claim 1, wherein the annular permanent magnet is a plurality of arc-shaped permanent magnets.

JP2005239612A 2005-08-22 2005-08-22 Magnetic bearing Active JP4616122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239612A JP4616122B2 (en) 2005-08-22 2005-08-22 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239612A JP4616122B2 (en) 2005-08-22 2005-08-22 Magnetic bearing

Publications (2)

Publication Number Publication Date
JP2007056892A JP2007056892A (en) 2007-03-08
JP4616122B2 true JP4616122B2 (en) 2011-01-19

Family

ID=37920559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239612A Active JP4616122B2 (en) 2005-08-22 2005-08-22 Magnetic bearing

Country Status (1)

Country Link
JP (1) JP4616122B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455832C (en) * 2007-06-25 2009-01-28 江苏大学 Three phase hybrid magnetic bearing of three-freedom and two-slices
JP4920687B2 (en) * 2007-10-18 2012-04-18 株式会社イワキ Magnetic levitation motor and pump
CN102269221B (en) * 2011-05-18 2013-05-08 哈尔滨工业大学 Mixed excitation shaft radial magnetic suspension bearing
CN102384162B (en) * 2011-11-11 2013-04-17 北京奇峰聚能科技有限公司 Inner rotor radial magnetic bearing
CN102506070B (en) * 2011-11-11 2013-09-25 北京奇峰聚能科技有限公司 Outer rotor radial magnetic bearing
CN102537048A (en) * 2012-02-08 2012-07-04 南京信息工程大学 Axial magnetic bearing capable of controlling radial twisting
CN105020270B (en) * 2015-06-05 2017-05-24 中国人民解放军国防科学技术大学 Combined five-freedom-degree electromagnetic bearing
CN104989727B (en) * 2015-06-05 2017-05-24 中国人民解放军国防科学技术大学 Combined-type five-degree-of-freedom electromagnetic bearing
CN106812797B (en) * 2017-04-11 2019-01-22 华中科技大学 A kind of double layered stator permanent magnet offset radial magnetic bearing
CN106838005B (en) * 2017-04-11 2019-02-05 华中科技大学 A kind of heteropolarity permanent magnetic offset mixed radial magnetic bearing
CN107327483B (en) * 2017-07-27 2019-02-05 江苏大学 A kind of vehicle-mounted flying wheel battery double spherical surface hybrid magnetic bearings of alternating current-direct current five degree of freedom
CN110131314B (en) * 2019-06-12 2020-06-30 珠海格力电器股份有限公司 Magnetic suspension bearing, motor, compressor and air conditioner
CN111075838A (en) * 2020-01-17 2020-04-28 淮阴工学院 Radial non-coupling quadrupole hybrid magnetic bearing
CN111173837B (en) * 2020-01-17 2023-06-30 淮阴工学院 Four-degree-of-freedom heteropolarity multi-disc structure magnetic bearing
CN111075839B (en) * 2020-01-17 2024-03-26 淮阴工学院 New structure radial two-freedom six-pole alternating current/direct current hybrid magnetic bearing
CN111043156B (en) * 2020-01-17 2024-04-16 淮阴工学院 Novel structure crossed tooth quadrupole hybrid magnetic bearing
CN112065854B (en) * 2020-09-17 2023-06-30 淮阴工学院 Combined three-degree-of-freedom hybrid magnetic bearing with novel structure
KR102431600B1 (en) * 2021-07-30 2022-08-11 주식회사 마그네타 Radial Magnetic Bearing Module with Magnetic Flux Blocker
CN115045913A (en) * 2022-05-26 2022-09-13 珠海格力电器股份有限公司 Magnetic suspension bearing, compressor and air conditioner
CN115059690B (en) * 2022-07-15 2023-12-22 中国人民解放军战略支援部队航天工程大学 Oblique three-orthogonal three-degree-of-freedom translational magnetic bearing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749920U (en) * 1980-09-09 1982-03-20
JPS6117741A (en) * 1984-06-30 1986-01-25 Toshiba Corp Fly wheel device
JPH0231020A (en) * 1988-07-18 1990-02-01 Mitsui Eng & Shipbuild Co Ltd Magnetic bearing device
JPH0587141A (en) * 1991-03-26 1993-04-06 Ebara Corp Electromagnetic actuator
JPH08296643A (en) * 1995-04-25 1996-11-12 Hitachi Ltd Control device of magnetic bearing
JP2001041238A (en) * 1999-07-28 2001-02-13 Seiko Seiki Co Ltd Composite type electromagnet and radial magnetic bearing
JP2003021140A (en) * 2001-07-06 2003-01-24 Sankyo Seiki Mfg Co Ltd Control type radial magnetic bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1933031C3 (en) * 1969-06-30 1978-10-26 Karl 5170 Juelich Boden Magnetic storage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749920U (en) * 1980-09-09 1982-03-20
JPS6117741A (en) * 1984-06-30 1986-01-25 Toshiba Corp Fly wheel device
JPH0231020A (en) * 1988-07-18 1990-02-01 Mitsui Eng & Shipbuild Co Ltd Magnetic bearing device
JPH0587141A (en) * 1991-03-26 1993-04-06 Ebara Corp Electromagnetic actuator
JPH08296643A (en) * 1995-04-25 1996-11-12 Hitachi Ltd Control device of magnetic bearing
JP2001041238A (en) * 1999-07-28 2001-02-13 Seiko Seiki Co Ltd Composite type electromagnet and radial magnetic bearing
JP2003021140A (en) * 2001-07-06 2003-01-24 Sankyo Seiki Mfg Co Ltd Control type radial magnetic bearing

Also Published As

Publication number Publication date
JP2007056892A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4616122B2 (en) Magnetic bearing
EP2209186B1 (en) Magnetically-levitated motor and pump
JP4934140B2 (en) Magnetic levitation motor and pump
JP6069693B2 (en) 3-axis active control type magnetic bearing
JP7469291B2 (en) Magnetic bearing, drive device and pump equipped with same
JP2007089270A (en) Axial motor and its rotor
JP2005061578A (en) Magnetic bearing
JP2007267565A (en) Coreless motor
JP2010226937A (en) Core member for rotating machine and rotating machine
JP2009219312A (en) Rotating electric machine and spindle unit using same
US11204038B2 (en) Vacuum pump, and magnetic bearing device and annular electromagnet used in vacuum pump
JP2007009949A (en) Hybrid type magnetic bearing
JP2008086166A (en) Motor for driving sewing machine
JP5192271B2 (en) Magnetic bearing device
JP5359452B2 (en) Brushless motor
JP2005333762A (en) Rotating electric machine and its rotor
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
JP2007221877A (en) Magnet rotor
WO2022004144A1 (en) Rotary drive device and pump
JP6609138B2 (en) Axial gap type rotating electrical machine
JP6696855B2 (en) Magnetic bearing
JP2010141991A (en) Rotating motor
WO2006098500A1 (en) Magnetic device
JP2006162049A (en) Magnetic bearing
JPS5854285B2 (en) Five-axis controlled magnetic bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Ref document number: 4616122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250