JP2006162049A - Magnetic bearing - Google Patents

Magnetic bearing Download PDF

Info

Publication number
JP2006162049A
JP2006162049A JP2004358871A JP2004358871A JP2006162049A JP 2006162049 A JP2006162049 A JP 2006162049A JP 2004358871 A JP2004358871 A JP 2004358871A JP 2004358871 A JP2004358871 A JP 2004358871A JP 2006162049 A JP2006162049 A JP 2006162049A
Authority
JP
Japan
Prior art keywords
magnetic flux
magnetic
axial
rotor
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004358871A
Other languages
Japanese (ja)
Other versions
JP4138739B2 (en
Inventor
Yoji Okada
養二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Co Ltd
Original Assignee
Iwaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Co Ltd filed Critical Iwaki Co Ltd
Priority to JP2004358871A priority Critical patent/JP4138739B2/en
Publication of JP2006162049A publication Critical patent/JP2006162049A/en
Application granted granted Critical
Publication of JP4138739B2 publication Critical patent/JP4138739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • F16C32/0491Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing with electromagnets acting in axial and radial direction, e.g. with conical magnets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic bearing having superior axial controllability and capable of reducing its size and weight. <P>SOLUTION: A rotor 2 comprises a rotating shaft 2a, and a pair of discs 2b, 2b' held by the rotating shaft 2a in a state of being located on positions axially shifted inside with respect to a main pole 3. An axial control coil 15 is wound on a connecting portion 21 constituting a part of a stator 1, thereby axial control magnetic flux ψca is generated. Radial control magnetic flux ψr is enhanced at one side of a pair of annular portions 12, 12' and weakened at the other side by the axial control magnetic flux ψca to control an axial position of the rotor 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁気力によってロータを非接触状態で支持する磁気軸受に関し、特にロータを軸方向(アキシャル方向)に制御することを可能にした磁気軸受に関する。   The present invention relates to a magnetic bearing that supports a rotor in a non-contact state by a magnetic force, and more particularly to a magnetic bearing that can control the rotor in an axial direction (axial direction).

磁気軸受は、回転体を非接触で支持することができるため、制御技術の発展に伴って各種の軸受に利用されてきている。最近では、超小型回転体用の磁気軸受が要望されてきている。しかし、電磁石を利用した磁気軸受は、ロータを浮上させるために大きな電流を必要とするため、消費電力が大きくなってしまう。また、少ない電流で磁気力を大きくするためには、ロータとステータとの間のギャップが小さいことが要求され、高い工作精度が必要となる。   Since the magnetic bearing can support the rotating body in a non-contact manner, it has been used for various bearings with the development of control technology. Recently, there has been a demand for magnetic bearings for micro rotating bodies. However, since the magnetic bearing using an electromagnet requires a large current to float the rotor, the power consumption increases. Further, in order to increase the magnetic force with a small current, it is required that the gap between the rotor and the stator is small, and high machining accuracy is required.

これらの問題を解決する有力な手法として、近年、性能向上が顕著な永久磁石のバイアス磁束を利用したハイブリッド型の磁気軸受が使用されるようになってきた。このハイブリッド型の磁気軸受は、例えば特許文献1〜3により提案されている。
特開2003−21140号公報(段落0053〜0056、図6) 特開2001−41138号公報(段落0011〜0014、図1) 特開平2001−101234号公報(段落0009、図1)
As a promising method for solving these problems, in recent years, a hybrid type magnetic bearing using a bias magnetic flux of a permanent magnet whose performance has been remarkably improved has been used. This hybrid type magnetic bearing is proposed by patent documents 1-3, for example.
JP 2003-21140 (paragraphs 0053 to 0056, FIG. 6) Japanese Patent Laid-Open No. 2001-41138 (paragraphs 0011 to 0014, FIG. 1) Japanese Patent Laid-Open No. 2001-101234 (paragraph 0009, FIG. 1)

しかし、上述した特許文献に開示された磁気軸受では、軸方向(アキシャル)方向の安定性については受動安定に頼らざるを得ず、そのためにロータに軸方向の負荷がかかると、傾いて回転したり、振動が発生したりして制御が困難になるという問題がある。   However, in the magnetic bearing disclosed in the above-mentioned patent document, it is necessary to rely on passive stability for the stability in the axial direction (axial direction). For this reason, when an axial load is applied to the rotor, the magnetic bearing is inclined and rotated. There is a problem that control becomes difficult due to vibration or vibration.

本発明は、このような問題点に鑑みてなされたもので、軸方向の制御性に優れ、小型化及び軽量化が可能な磁気軸受を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a magnetic bearing that is excellent in axial controllability and can be reduced in size and weight.

本発明に係る磁気軸受は、ステータと、このステータに磁気力によって非接触状態で支持されて回転軸を中心に回転するロータとを有する磁気軸受において、 前記ステータは、軸方向に所定間隔を空けて同軸配置された磁性材料からなる少なくとも一対の環状部と、前記一対の環状部の各々の内周において周方向に関し所定の間隔で配置される磁性材料からなり前記ロータの径方向の位置を制御するためのバイアス磁束及びラジアル制御磁束が通過する複数の主極と、前記一対の環状部の間を磁気的に接続する磁性材料からなる接続部とを備え、前記ロータは、磁性材料からなる回転軸と、前記主極よりも軸方向に関し内側にずれた位置に位置するように前記回転軸に保持される磁性材料からなる一対の円板とを備え、前記バイアス磁束を供給する永久磁石と、前記ラジアル制御磁束を生成するラジアル制御コイルと、前記接続部に巻回されて前記環状部、前記接続部、及び前記ロータによる閉回路を磁気回路としたアキシャル制御磁束を発生させ、このアキシャル制御磁束により前記ラジアル制御磁束を前記一対の環状部の一方の側においては強め他方の側においては弱めて前記ロータの軸方向の位置を制御するアキシャル制御コイルとを備えたことを特徴とする。   A magnetic bearing according to the present invention is a magnetic bearing having a stator and a rotor that is supported by the stator in a non-contact state by a magnetic force and rotates about a rotating shaft. The stator has a predetermined interval in the axial direction. And controlling the radial position of the rotor made of a magnetic material arranged at a predetermined interval in the circumferential direction on the inner circumference of each of the pair of annular portions. A plurality of main poles through which a bias magnetic flux and a radial control magnetic flux pass, and a connection portion made of a magnetic material that magnetically connects the pair of annular portions, and the rotor is a rotation made of a magnetic material. And a pair of discs made of a magnetic material held by the rotating shaft so as to be positioned inwardly with respect to the axial direction from the main pole, and the bias magnetic flux A permanent magnet to be fed, a radial control coil that generates the radial control magnetic flux, and an axial control magnetic flux that is wound around the connection portion and uses a closed circuit by the annular portion, the connection portion, and the rotor as a magnetic circuit An axial control coil for controlling the position of the rotor in the axial direction by strengthening the radial control magnetic flux on one side of the pair of annular portions and weakening the other side by the axial control magnetic flux. Features.

本発明によれば、軸方向の制御性に優れ、小型化及び軽量化が可能な磁気軸受を提供することが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the magnetic bearing which is excellent in controllability of an axial direction, and can be reduced in size and weight.

まず、図1を参照して、本発明の第1の実施の形態に係る磁気軸受を説明する。図1(a)は、この磁気軸受の軸方向からみた平面図であり、同図(b)は同図(a)におけるA−A’断面図である。
この磁気軸受は、外側に配置された環状のステータ1と、このステータ1の内側に配置されたロータ2とを有する。ロータ2は、回転駆動部100より回転を制御されるとともに、ステータ1から与えられる磁束により保持され位置制御される。
First, a magnetic bearing according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1A is a plan view of the magnetic bearing as viewed from the axial direction, and FIG. 1B is a cross-sectional view taken along the line AA ′ in FIG.
This magnetic bearing has an annular stator 1 disposed outside and a rotor 2 disposed inside the stator 1. The rotor 2 is controlled in rotation by the rotation driving unit 100 and is held and controlled in position by a magnetic flux applied from the stator 1.

ステータ1は継鉄11から構成されている。継鉄11は、積層鋼板等の磁性材料からなる。図1(b)に示すように、この継鉄11により、2つの環状部12、12’と、環状部12、12’の内周に中心に向かって突設される複数(図1では2×4極=8個)の主突極部13(i)、13’(i)(i=1〜4)と、環状部12の内周に中心に向かって突設される複数(図1では2×4極=8個)の補突極部14(i)、14’(i)(i=1〜4)と、2つの環状部12、12’を接続する接続部21とが形成されている。   The stator 1 is composed of a yoke 11. The yoke 11 is made of a magnetic material such as a laminated steel plate. As shown in FIG. 1 (b), by this yoke 11, two annular portions 12, 12 ′ and a plurality of (2 in FIG. 1) projecting toward the center on the inner periphery of the annular portions 12, 12 ′. × 4 poles = 8) main salient pole portions 13 (i), 13 ′ (i) (i = 1 to 4) and a plurality of projections toward the center on the inner periphery of the annular portion 12 (FIG. 1). Then, 2 × 4 poles = 8) complementary salient pole parts 14 (i) and 14 ′ (i) (i = 1 to 4) and a connection part 21 connecting the two annular parts 12 and 12 ′ are formed. Has been.

主突極部13(i)、13’(i)は、ロータ2の外周面と所定のギャップを介して対向する磁気集中部を有しており、周方向に90°の間隔で配置されている。主突極部13(i)、13’(i)には、径方向を軸心として巻回されたラジアル制御コイル18が設置されている。このラジアル制御コイル18は、磁束集中部の磁極を強めたり弱めたりするためのラジアル励磁磁束φrを発生させるためのものである。主突極部13(i)、13’(i)とラジアル制御コイル18とにより主極3(i)、3’(i)が形成されている。ラジアル励磁磁束φrの変化に基づいて主極3の磁極が制御されることにより、ロータ2の径方向の位置制御が行われる。この制御は、後述する制御系によって行われる。   The main salient pole portions 13 (i) and 13 ′ (i) have a magnetic concentration portion facing the outer peripheral surface of the rotor 2 with a predetermined gap, and are arranged at intervals of 90 ° in the circumferential direction. Yes. A radial control coil 18 wound around the radial direction as an axis is installed on the main salient pole portions 13 (i) and 13 '(i). The radial control coil 18 is for generating a radial excitation magnetic flux φr for strengthening or weakening the magnetic pole of the magnetic flux concentrating portion. The main salient pole portions 13 (i), 13 '(i) and the radial control coil 18 form main poles 3 (i), 3' (i). The position of the rotor 2 in the radial direction is controlled by controlling the magnetic pole of the main pole 3 based on the change in the radial excitation magnetic flux φr. This control is performed by a control system described later.

また、補突極部14(i)、14’(i)は、環状部12、12’の内周の、主突極部13(i)、13’(i)から周方向に45°ずれた位置に形成されており、その先端には永久磁石16が装着されている。この補突極部14(i)又は14’(i)と永久磁石16とにより、補極4(i)、4’(i)が形成されている。永久磁石16は、主極3(i)、3’(i)にバイアス磁束φbを提供するためのものである。永久磁石16は、第1の極性(例えばS極)をロータ2に向かう先端側にして装着されている。S極が先端側の場合、バイアス磁束φbは、補突極部14(i)又は14’(i)の底部から環状部12又は12’を介して隣接する主突極部13(i)又は13’(i)に至り、更にロータ2を介して補突極部14(i)又は14’(i)に戻る経路に形成される。これにより、主極3(i)、3’(i)の先端である磁束集中部はN極となる。   Further, the complementary salient pole portions 14 (i) and 14 ′ (i) are shifted by 45 ° in the circumferential direction from the main salient pole portions 13 (i) and 13 ′ (i) on the inner circumference of the annular portions 12 and 12 ′. The permanent magnet 16 is attached to the tip of the tip. The complementary salient poles 14 (i) or 14 '(i) and the permanent magnets 16 form complementary poles 4 (i) and 4' (i). The permanent magnet 16 is for providing a bias magnetic flux φb to the main poles 3 (i), 3 '(i). The permanent magnet 16 is mounted with the first polarity (for example, the S pole) set to the tip side toward the rotor 2. When the south pole is on the tip side, the bias magnetic flux φb is changed from the bottom of the auxiliary salient pole part 14 (i) or 14 ′ (i) to the adjacent main salient pole part 13 (i) or via the annular part 12 or 12 ′. 13 ′ (i), and is further formed in a path returning to the complementary salient pole portion 14 (i) or 14 ′ (i) via the rotor 2. As a result, the magnetic flux concentrating portion that is the tip of the main pole 3 (i), 3 '(i) becomes the N pole.

また、各補極4(i)の先端すなわち永久磁石16の先端には、磁束を検出するための磁束センサ17A(i)、17B(i)が装着されている(i=1〜4)。同様に、各補極4’(i)の先端には磁束センサ17A’(i)、17B’(i)が装着されている。これらの磁束センサ17は、例えばホール素子等である。1つの永久磁石16に装着される磁束センサ17A(i)、17B(i)は、図1(b)に示すように、軸方向(Z方向)に関し異なる位置に装着されている。ここでは、磁束センサ17A(i)が、17B(i)よりもZ方向に関し内側に存在するものとする。磁束センサ17A’(i)、17B’(i)も同様である。   Further, magnetic flux sensors 17A (i) and 17B (i) for detecting magnetic flux are attached to the tip of each auxiliary pole 4 (i), that is, the tip of the permanent magnet 16 (i = 1 to 4). Similarly, magnetic flux sensors 17A '(i) and 17B' (i) are attached to the tips of the respective complementary poles 4 '(i). These magnetic flux sensors 17 are, for example, Hall elements. The magnetic flux sensors 17A (i) and 17B (i) attached to one permanent magnet 16 are attached at different positions in the axial direction (Z direction) as shown in FIG. 1 (b). Here, it is assumed that the magnetic flux sensor 17A (i) is present inside the Z direction with respect to 17B (i). The same applies to the magnetic flux sensors 17A '(i) and 17B' (i).

一方、ロータ2は、少なくとも外周部に積層鋼板や電磁材料等の磁性体を配したもので、回転軸2aと、2つの円板2b、2b’を有する。2つの円板2b、2b’は、ステータ1の内側に回転軸2aを軸心として回転可能に配置されており、その軸方向の位置は、環状部12、12’よりも若干内側とされている。すなわち、2つの円板2b、2b’間の軸方向の距離は、2つの環状部12、12’間の距離よりも短くされている。このため、主極3と円板2b又は2b’との間のラジアル励磁磁束φrは、軸方向成分(アキシャル成分)を有する磁束φra、φrbとなる(図1(b)参照)。この実施の形態では、この磁束φra、φrbを強めたり弱めたりすることにより、ロータ2の軸方向の位置制御(アキシャル制御)を行う。   On the other hand, the rotor 2 is provided with a magnetic material such as a laminated steel plate or an electromagnetic material at least on the outer periphery, and has a rotating shaft 2a and two disks 2b and 2b '. The two discs 2b and 2b ′ are disposed inside the stator 1 so as to be rotatable around the rotation shaft 2a, and the axial position thereof is slightly inside the annular portions 12 and 12 ′. Yes. That is, the axial distance between the two disks 2b and 2b 'is shorter than the distance between the two annular portions 12 and 12'. For this reason, the radial excitation magnetic flux φr between the main pole 3 and the disc 2b or 2b ′ becomes magnetic fluxes φra and φrb having axial components (axial components) (see FIG. 1B). In this embodiment, the position control (axial control) of the rotor 2 in the axial direction is performed by increasing or decreasing the magnetic fluxes φra and φrb.

この磁束φra、φrbを強めたり弱めたりするため、また、図1(a)に示すように、接続部21には、ロータ2の軸方向(Z軸方向)と平行な軸を中心にアキシャル励磁コイル15が巻回されている。このアキシャル制御コイル15に励磁電流が流れると、接続部21、上下の環状部12、12’、主極3、3’及びロータ2の閉回路により形成される磁気回路にアキシャル制御磁束φcaが発生する。この磁束φcaの向き及び大きさは、アキシャル制御コイル15に流れる励磁電流の向き及び大きさにより変化する。アキシャル制御磁束は、磁束φra又はφrbのいずれか一方を強め、いずれか一方を弱めるように作用する。これにより、ロータ2に軸方向の力Fが加わり、ロータ2の軸方向の位置が制御される。   In order to strengthen or weaken the magnetic fluxes φra and φrb, and as shown in FIG. 1A, the connection portion 21 is axially excited around an axis parallel to the axial direction of the rotor 2 (Z-axis direction). A coil 15 is wound. When an exciting current flows through the axial control coil 15, an axial control magnetic flux φca is generated in a magnetic circuit formed by the connection portion 21, the upper and lower annular portions 12, 12 ′, the main poles 3, 3 ′, and the rotor 2. To do. The direction and magnitude of the magnetic flux φca varies depending on the direction and magnitude of the excitation current flowing in the axial control coil 15. The axial control magnetic flux acts to strengthen either one of the magnetic fluxes φra or φrb and weaken either one. As a result, an axial force F is applied to the rotor 2 to control the axial position of the rotor 2.

次に、ラジアル制御コイル18、及びアキシャル制御コイル15の励磁電流を制御する制御系の構成例を図2を参照して説明する。
この制御系は、ラジアル制御コイル18の励磁電流の制御のため、コンパレータ101、102、座標変換回路103、及びコントローラ104、105を備えている。また、アキシャル制御コイル15の励磁電流の制御のため、加算器106、107、コンパレータ108、及びコントローラ109を備えている。
Next, a configuration example of a control system for controlling the excitation current of the radial control coil 18 and the axial control coil 15 will be described with reference to FIG.
This control system includes comparators 101 and 102, a coordinate conversion circuit 103, and controllers 104 and 105 for controlling the excitation current of the radial control coil 18. Further, adders 106 and 107, a comparator 108, and a controller 109 are provided for controlling the excitation current of the axial control coil 15.

コンパレータ101は、対向する補極4(1)、4(3)に形成される磁束センサ17A(1)、17A(3)の差分信号を出力する。同様に、コンパレータ102は、対向する補極4(2)、4(4)に形成される磁束センサ17A(2)、17A(4)の差分信号を出力する。座標変換回路103は、これらの差分信号を座標変換して、y方向変位信号、x方向変位信号を生成し、これをコントローラ104、105に出力する。コントローラ104、105は、これらの変位信号に基づき、ラジアル制御コイル18の励磁電流を制御する。これにより、ラジアル励磁磁束φrが変化し、ロータ2の径方向の位置制御が可能になる。   The comparator 101 outputs a differential signal of the magnetic flux sensors 17A (1) and 17A (3) formed on the opposing complementary electrodes 4 (1) and 4 (3). Similarly, the comparator 102 outputs a differential signal of the magnetic flux sensors 17A (2) and 17A (4) formed on the opposing complementary electrodes 4 (2) and 4 (4). The coordinate conversion circuit 103 performs coordinate conversion of these difference signals to generate a y-direction displacement signal and an x-direction displacement signal, and outputs them to the controllers 104 and 105. The controllers 104 and 105 control the excitation current of the radial control coil 18 based on these displacement signals. Thereby, the radial excitation magnetic flux φr changes, and the radial position control of the rotor 2 becomes possible.

加算器106は、環状部12側に設けられた補極4(i)に形成された磁束センサ17B(i)の総和を求めるものであり、一方、加算器107は、環状部12’側に設けられた補極4’(i)に形成された磁束センサ17B’(i)の総和を求めるものである。コンパレータ108は、この1つの加算器106、107の出力信号の差分信号であるz変位信号を出力する。コントローラ109は、このz変位信号に基づいて、アキシャル制御コイル15の励磁電流を制御する。これにより、アキシャル励磁磁束φcaが変化し、磁束φra、φrbの一方が強められ、他方が弱められることにより、ロータ2に軸方向の力が加わり、ロータ2の軸方向の位置制御が可能になる。この実施の形態では、アキシャル制御コイル15は環状部12、12’の間の接続部21に巻回されているので、大型化、重量化が回避されている。   The adder 106 calculates the sum of the magnetic flux sensors 17B (i) formed on the complementary pole 4 (i) provided on the annular portion 12 side, while the adder 107 is on the annular portion 12 ′ side. The total of the magnetic flux sensors 17B ′ (i) formed on the provided complementary poles 4 ′ (i) is obtained. The comparator 108 outputs a z displacement signal that is a difference signal between the output signals of the one adders 106 and 107. The controller 109 controls the excitation current of the axial control coil 15 based on this z displacement signal. As a result, the axial excitation magnetic flux φca is changed, and one of the magnetic fluxes φra and φrb is strengthened and the other is weakened, so that an axial force is applied to the rotor 2 and the axial position control of the rotor 2 becomes possible. . In this embodiment, since the axial control coil 15 is wound around the connection portion 21 between the annular portions 12 and 12 ', an increase in size and weight is avoided.

なお、図2では、磁束センサ17A(i)の検出出力をラジアル制御コイル18の励磁電流の制御に利用し、磁束センサ17B(i)の検出出力をアキシャル制御コイル15の励磁電流の制御に利用していたが、これとは逆に、磁束センサ17B(i)の検出出力をラジアル制御コイル18の励磁電流の制御に利用し、磁束センサ17A(i)の検出出力をアキシャル制御コイル15の励磁電流の制御に利用してもよい。   In FIG. 2, the detection output of the magnetic flux sensor 17A (i) is used for controlling the excitation current of the radial control coil 18, and the detection output of the magnetic flux sensor 17B (i) is used for controlling the excitation current of the axial control coil 15. However, conversely, the detection output of the magnetic flux sensor 17B (i) is used for controlling the excitation current of the radial control coil 18, and the detection output of the magnetic flux sensor 17A (i) is used for the excitation of the axial control coil 15. You may utilize for control of an electric current.

以上、発明の実施の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、追加、置換等が可能である。例えば、上記の実施の形態では、補極4(i)、4’(i)の先端部に永久磁石16を形成していたが、図3に示すように、補極4(i)、4’(i)を廃止し、永久磁石16を主極3(i)、3’(i)の先端部に形成し、更に磁束センサ17A(i)、17B(i)、17A’(i)、17B’(i)を永久磁石16の先端部に形成するようにしてもよい。図3では、主極3(i)、3’(i)の左側に切り欠き部を形成し、この切り欠き部に、主極3(i)、3’(i)に対してギャップgを残しつつ永久磁石16を設けている。この構成によれば、永久磁石16によるバイアス磁束φbは、永久磁石16のN極から発して主極(i)、3’(i)の右側(切り欠き部でない部分)を通り、S極に戻る磁束となる。ギャップgは、このようなバイアス磁束φbの回路が形成されるよう、十分な大きさに設定される。   Although the embodiments of the invention have been described above, the present invention is not limited to these embodiments, and various modifications, additions, substitutions, and the like can be made without departing from the spirit of the invention. For example, in the above embodiment, the permanent magnet 16 is formed at the tip of the complementary poles 4 (i) and 4 ′ (i). However, as shown in FIG. '(I) is abolished, the permanent magnet 16 is formed at the tip of the main pole 3 (i), 3' (i), and the magnetic flux sensors 17A (i), 17B (i), 17A '(i), 17B ′ (i) may be formed at the tip of the permanent magnet 16. In FIG. 3, a notch is formed on the left side of the main poles 3 (i) and 3 ′ (i), and a gap g is formed in the notch with respect to the main poles 3 (i) and 3 ′ (i). The permanent magnet 16 is provided while remaining. According to this configuration, the bias magnetic flux φb generated by the permanent magnet 16 is emitted from the N pole of the permanent magnet 16, passes through the right side of the main poles (i) and 3 ′ (i) (the portion that is not a notch), and goes to the S pole. Returning magnetic flux. The gap g is set to a sufficient size so that such a circuit of the bias magnetic flux φb is formed.

本発明の実施の形態に係る磁気軸受の平面図及び断面図である。It is the top view and sectional drawing of the magnetic bearing which concern on embodiment of this invention. 図1のコイル15及び18の励磁電流を制御するための制御系の構成例を示す。2 shows a configuration example of a control system for controlling the excitation current of coils 15 and 18 in FIG. 本発明の実施の形態の変形例を示す。The modification of embodiment of this invention is shown.

符号の説明Explanation of symbols

1・・・ステータ、 2・・・ロータ、 3・・・主極、 4・・・補極、 11・・・継鉄、 12・・・環状部、 13・・・主突極部、 14・・・補突極部、 15・・・アキシャル制御コイル、 16・・・永久磁石、 17・・・磁束センサ、 18・・・ラジアル制御コイル。
DESCRIPTION OF SYMBOLS 1 ... Stator, 2 ... Rotor, 3 ... Main pole, 4 ... Supplementary pole, 11 ... Relay, 12 ... Annular part, 13 ... Main salient pole part, 14・ ・ ・ Supplementary salient pole part, 15 ... Axial control coil, 16 ... Permanent magnet, 17 ... Magnetic flux sensor, 18 ... Radial control coil.

Claims (6)

ステータと、このステータに磁気力によって非接触状態で支持されて回転軸を中心に回転するロータとを有する磁気軸受において、
前記ステータは、
軸方向に所定間隔を空けて同軸配置された磁性材料からなる少なくとも一対の環状部と、
前記一対の環状部の各々の内周において周方向に関し所定の間隔で配置される磁性材料からなり前記ロータの径方向の位置を制御するためのバイアス磁束及びラジアル制御磁束が通過する複数の主極と、
前記一対の環状部の間を磁気的に接続する磁性材料からなる接続部と
を備え、
前記ロータは、
磁性材料からなる回転軸と、
前記主極よりも軸方向に関し内側にずれた位置に位置するように前記回転軸に保持される磁性材料からなる一対の円板と
を備え、
前記バイアス磁束を供給する永久磁石と、
前記ラジアル制御磁束を生成するラジアル制御コイルと、
前記接続部に巻回されて前記環状部、前記接続部、及び前記ロータによる閉回路を磁気回路としたアキシャル制御磁束を発生させ、このアキシャル制御磁束により前記ラジアル制御磁束を前記一対の環状部の一方の側においては強め他方の側においては弱めて前記ロータの軸方向の位置を制御するアキシャル制御コイルと
を備えたことを特徴とする磁気軸受。
In a magnetic bearing having a stator and a rotor that is supported by the stator in a non-contact state by a magnetic force and rotates about a rotation axis,
The stator is
At least a pair of annular portions made of a magnetic material coaxially arranged at a predetermined interval in the axial direction;
A plurality of main poles made of a magnetic material arranged at a predetermined interval in the circumferential direction on the inner circumference of each of the pair of annular portions, through which a bias magnetic flux and a radial control magnetic flux for controlling the radial position of the rotor pass When,
A connecting portion made of a magnetic material for magnetically connecting between the pair of annular portions,
The rotor is
A rotating shaft made of magnetic material;
A pair of discs made of a magnetic material held by the rotating shaft so as to be located at a position shifted inward in the axial direction from the main pole,
A permanent magnet for supplying the bias magnetic flux;
A radial control coil for generating the radial control magnetic flux;
An axial control magnetic flux that is wound around the connection portion and uses a closed circuit by the annular portion, the connection portion, and the rotor as a magnetic circuit is generated, and the radial control magnetic flux is generated by the axial control magnetic flux between the pair of annular portions. A magnetic bearing comprising: an axial control coil that controls the position of the rotor in the axial direction while strengthening on one side and weakening on the other side.
磁束を検知するための磁束センサと、
この磁束センサの検知出力に基づき、前記アキシャル制御コイルに流れる励磁電流を制御する制御部と
を更に備えたことを特徴とする請求項1記載の磁気軸受。
A magnetic flux sensor for detecting magnetic flux;
The magnetic bearing according to claim 1, further comprising: a control unit that controls an exciting current flowing in the axial control coil based on a detection output of the magnetic flux sensor.
前記制御部は、前記一対の環状部の一方の側に設けられる前記磁束センサの検出出力の総和と、前記一対の環状部の他方の側に設けられる前記磁束センサの検出出力の総和との差分に基づいて前記アキシャル制御コイルの励磁電流を制御する
ことを特徴とする請求項2記載の磁気軸受。
The control unit includes a difference between a sum of detection outputs of the magnetic flux sensors provided on one side of the pair of annular portions and a sum of detection outputs of the magnetic flux sensors provided on the other side of the pair of annular portions. The magnetic bearing according to claim 2, wherein an excitation current of the axial control coil is controlled based on the magnetic field.
前記一対の環状部の各々の内周に前記複数の主極に隣接するように周方向に関し所定の間隔で配置される磁性材料からなる複数の補極を更に備え、
前記磁束センサは、前記補極の先端部に設けられたことを特徴とする請求項2記載の磁気軸受。
A plurality of complementary poles made of a magnetic material arranged at predetermined intervals in the circumferential direction so as to be adjacent to the plurality of main poles on the inner circumference of each of the pair of annular portions;
The magnetic bearing according to claim 2, wherein the magnetic flux sensor is provided at a tip portion of the auxiliary pole.
前記永久磁石は、前記補極の先端部を第1極性とし隣接する前記主極の磁束集中部を第2極性とするような前記バイアス磁束を供給する請求項4記載の磁気軸受。   5. The magnetic bearing according to claim 4, wherein the permanent magnet supplies the bias magnetic flux so that a tip end portion of the auxiliary pole has a first polarity and a magnetic flux concentration portion of the adjacent main pole has a second polarity. 前記永久磁石は、前記主極の一部に設けられた請求項1記載の磁気軸受。


The magnetic bearing according to claim 1, wherein the permanent magnet is provided on a part of the main pole.


JP2004358871A 2004-12-10 2004-12-10 Magnetic bearing Active JP4138739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358871A JP4138739B2 (en) 2004-12-10 2004-12-10 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358871A JP4138739B2 (en) 2004-12-10 2004-12-10 Magnetic bearing

Publications (2)

Publication Number Publication Date
JP2006162049A true JP2006162049A (en) 2006-06-22
JP4138739B2 JP4138739B2 (en) 2008-08-27

Family

ID=36664280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358871A Active JP4138739B2 (en) 2004-12-10 2004-12-10 Magnetic bearing

Country Status (1)

Country Link
JP (1) JP4138739B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043684A (en) * 2008-08-12 2010-02-25 Meidensha Corp Magnetic bearing displacement detecting method and detection device
JP2010106908A (en) * 2008-10-29 2010-05-13 Oitaken Sangyo Sozo Kiko Magnetic bearing
JP2010112512A (en) * 2008-11-10 2010-05-20 Oitaken Sangyo Sozo Kiko Axial magnetic bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043684A (en) * 2008-08-12 2010-02-25 Meidensha Corp Magnetic bearing displacement detecting method and detection device
JP2010106908A (en) * 2008-10-29 2010-05-13 Oitaken Sangyo Sozo Kiko Magnetic bearing
JP2010112512A (en) * 2008-11-10 2010-05-20 Oitaken Sangyo Sozo Kiko Axial magnetic bearing

Also Published As

Publication number Publication date
JP4138739B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
JP4616122B2 (en) Magnetic bearing
US6885121B2 (en) Controlled radial magnetic bearing
EP2209186B1 (en) Magnetically-levitated motor and pump
US8169118B2 (en) High-aspect-ratio homopolar magnetic actuator
US8288906B2 (en) Maglev motor and pump
JP6193456B1 (en) Synchronous motor
KR100403857B1 (en) Motor of magnetic lifting type
US6426577B1 (en) Thrust-controllable rotary synchronous machine
JP5045067B2 (en) Forward salient pole motor applied to bearingless motor
JP2005061578A (en) Magnetic bearing
JP3981901B2 (en) Rotating synchronous machine with thrust control
EP3940235B1 (en) Magnetic bearing, drive device equipped with same, and pump
JP2016188700A (en) Electric motor, control device and motor control system
JP5192271B2 (en) Magnetic bearing device
JP2007009949A (en) Hybrid type magnetic bearing
JP4138735B2 (en) Magnetic bearing
JP4138739B2 (en) Magnetic bearing
JP2008069964A (en) Hybrid-type magnetic bearing
JP4220859B2 (en) Magnetic bearing
US7719152B2 (en) Magnetic levitation actuator
JPH11101233A (en) Magnetic bearing device
JP2011024385A (en) Double rotor structure magnetic support motor and turntable mounted with the same
JP4153468B2 (en) Magnetic levitation motor and turbo pump
JP4138606B2 (en) Magnetic bearing
JP5359108B2 (en) Magnetic bearing displacement detection method and detection apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Ref document number: 4138739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250