JP2010112512A - Axial magnetic bearing - Google Patents

Axial magnetic bearing Download PDF

Info

Publication number
JP2010112512A
JP2010112512A JP2008287312A JP2008287312A JP2010112512A JP 2010112512 A JP2010112512 A JP 2010112512A JP 2008287312 A JP2008287312 A JP 2008287312A JP 2008287312 A JP2008287312 A JP 2008287312A JP 2010112512 A JP2010112512 A JP 2010112512A
Authority
JP
Japan
Prior art keywords
permanent magnet
stator
rotor
polarity
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008287312A
Other languages
Japanese (ja)
Other versions
JP5074356B2 (en
Inventor
Yoji Okada
養二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OITAKEN SANGYO SOZO KIKO
Original Assignee
OITAKEN SANGYO SOZO KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OITAKEN SANGYO SOZO KIKO filed Critical OITAKEN SANGYO SOZO KIKO
Priority to JP2008287312A priority Critical patent/JP5074356B2/en
Publication of JP2010112512A publication Critical patent/JP2010112512A/en
Application granted granted Critical
Publication of JP5074356B2 publication Critical patent/JP5074356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a further miniaturizable axial magnetic bearing obtaining sufficient bias magnetic flux, excellent in controllability, and achieving reduction of the weight and power consumption. <P>SOLUTION: The axial magnetic bearing includes a stator 10, and a rotor 20 supported in a non-contact state and rotated by the stator 10 by magnetic force. The rotor 20 includes an annular bias permanent magnet 24 magnetized in the radial direction. A magnetic flux convergence permanent magnet 25 is attached to an outer peripheral surface of the bias permanent magnet 24, and has a V shaped groove 26 extended in a circumferential direction on an outer peripheral surface. The magnetic flux convergence permanent magnet 25 is magnetized in the axial direction so that both sides of the V shaped groove 26 have polarity same with the polarity on the outer peripheral surface of the bias permanent magnet 24, and a magnet flux concentration part is formed in the vicinity of the V shaped groove 26. The stator 10 has a yoke 12 opposed to the V shaped groove 26, and a control winding 13 wound around the yoke 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気力によってロータを非接触状態で軸方向に支持しロータの軸方向の位置制御を可能とするアキシャル磁気軸受に関し、特に永久磁石によるバイアス磁束を用いて電磁石の消費電力を低減させるようにしたハイブリッド型のアキシャル磁気軸受に関する。   The present invention relates to an axial magnetic bearing that enables axial control of a rotor by supporting the rotor in a non-contact state by a magnetic force and, in particular, reducing the power consumption of the electromagnet using a bias magnetic flux by a permanent magnet. The present invention relates to a hybrid type axial magnetic bearing.

一般的なアキシャル磁気軸受は、スラスト磁気軸受とも呼ばれ、ロータの一部に外径の大きなディスクを設け、その両側にステータを設ける構造が多い。ロータディスクの外側に円形の吸引力を発揮させる電磁石を設けたステータホルダを配置し、両側の吸引力を制御することでアキシャル方向の制御力を発生させる。このような従来型のアキシャル磁気軸受は、製作及び組立が困難で、ステータを分解しないとロータを取り外すことができないため、メンテナンスも困難であるという問題がある。これらの問題を解決するために、ロータの最大径がステータの最大径よりも小さく、ロータを軸方向に抜くことができる方式が幾つか提案されている(特許文献1、特許文献2等)。
特開平11−101235号公報(段落0009〜0011、図13) 特開平08−232955号公報(段落0025〜0027、図1)
A general axial magnetic bearing is also called a thrust magnetic bearing and has a structure in which a disk having a large outer diameter is provided in a part of a rotor and a stator is provided on both sides thereof. A stator holder provided with an electromagnet that exerts a circular attractive force on the outer side of the rotor disk is arranged, and a control force in the axial direction is generated by controlling the attractive force on both sides. Such a conventional type axial magnetic bearing is difficult to manufacture and assemble, and the rotor cannot be removed unless the stator is disassembled, so that maintenance is also difficult. In order to solve these problems, several methods have been proposed in which the maximum diameter of the rotor is smaller than the maximum diameter of the stator and the rotor can be pulled out in the axial direction (Patent Document 1, Patent Document 2, etc.).
JP-A-11-101235 (paragraphs 0009 to 0011, FIG. 13) Japanese Patent Laid-Open No. 08-232955 (paragraphs 0025 to 0027, FIG. 1)

しかしながら、従来の上述したアキシャル磁気軸受は、アキシャル方向力が小さく、充分大きな制御力を得ることが困難であるため、電力消費量も大きいという問題がある。   However, the conventional axial magnetic bearing described above has a problem that the axial direction force is small and it is difficult to obtain a sufficiently large control force, so that the power consumption is also large.

本発明は、このような問題点に鑑みてなされたもので、充分なバイアス磁束が得られ、制御性に優れ、より一層の小型化、軽量化及び低消費電力化が図れるハイブリッド型のアキシャル磁気軸受を提供することを目的とする。   The present invention has been made in view of such problems, and is a hybrid type axial magnet that can obtain a sufficient bias magnetic flux, has excellent controllability, and can be further reduced in size, weight, and power consumption. An object is to provide a bearing.

本発明に係るアキシャル磁気軸受は、ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有しロータの軸方向の位置制御を行うアキシャル磁気軸受において、前ロータが、ロータ本体と、このロータ本体に装着されて前記ロータの径方向に着磁された環状のバイアス用永久磁石と、このバイアス用永久磁石の外周面に装着されると共に外周面側に周方向に延びる溝を有し、この溝の両側が前記バイアス用永久磁石の外周面に現れる極性と同一極性となるように軸方向に着磁されて前記溝の近傍に磁束集中部を形成する環状の磁束収束用永久磁石とを有し、前記ステータが、前記溝と所定のギャップを介して対向する先端部を有するヨークと、このヨークに巻回された制御用巻線とを有することを特徴とする。   An axial magnetic bearing according to the present invention is an axial magnetic bearing that includes a stator and a rotor that is supported and rotated in a non-contact state by the magnetic force in the stator and performs axial position control of the rotor. A rotor body, an annular biasing permanent magnet attached to the rotor body and magnetized in the radial direction of the rotor, and attached to the outer peripheral surface of the biasing permanent magnet and extending circumferentially toward the outer peripheral surface side An annular magnetic flux converging that has a groove and is magnetized in the axial direction so that both sides of the groove have the same polarity as the polarity appearing on the outer peripheral surface of the biasing permanent magnet to form a magnetic flux concentrating portion in the vicinity of the groove The stator has a yoke having a tip portion facing the groove with a predetermined gap, and a control winding wound around the yoke. .

本発明の一つの実施形態では、前記バイアス用永久磁石は、前記ロータの軸方向の一方の側の外周面を第1極性、他方の側の外周面を第2極性として径方向に着磁され、前記磁束収束用永久磁石は、前記バイアス用永久磁石の第1極性の部分と第2極性の部分にそれぞれ前記溝としてV溝を有し、前記第1極性の部分に配置されたV溝の両側はそれぞれ第1極性、前記第2極性の部分に配置されたV溝の両側はそれぞれ第2極性となるように軸方向に着磁されたものであり、前記ステータのヨークは、前記V溝に対向する部分にそれぞれ周方向に延びる溝を形成した断面E字型の磁性体からなり、前記ステータの制御用巻線は、前記ヨークの溝に収容されていることを特徴とする。   In one embodiment of the present invention, the permanent magnet for bias is magnetized in the radial direction with the outer peripheral surface on one side in the axial direction of the rotor as the first polarity and the outer peripheral surface on the other side as the second polarity. The magnetic flux converging permanent magnet has a V-groove as the groove in each of the first polarity portion and the second polarity portion of the bias permanent magnet, and the V-groove arranged in the first polarity portion. Both sides of the V-groove arranged at the first polarity and the second polarity are magnetized in the axial direction so that both sides of the V-polarity are at the second polarity, respectively, and the yoke of the stator has the V-groove It is made of a magnetic body having an E-shaped cross section in which a groove extending in the circumferential direction is formed in a portion facing each other, and the control winding of the stator is housed in the groove of the yoke.

本発明の他の実施形態では、前記ロータ本体と前記バイアス用永久磁石との間に環状の磁性体からなるバックヨークを設けたことを特徴とする。   In another embodiment of the present invention, a back yoke made of an annular magnetic body is provided between the rotor body and the biasing permanent magnet.

本発明の更に他の実施形態では、前記ステータは、前記ロータの周囲に配置された複数のステータユニットにより構成され、前記各ステータユニットは、軸方向と直交する方向に積層された積層鋼板からなるヨークを有する。   In still another embodiment of the present invention, the stator is composed of a plurality of stator units arranged around the rotor, and each stator unit is composed of laminated steel plates laminated in a direction orthogonal to the axial direction. Has a yoke.

本発明によれば、バイアス用永久磁石の外周面に磁束収束用永久磁石を装着し、この磁束収束用永久磁石の外周面側に周方向に延びる溝を形成すると共に、この溝の両側がバイアス用永久磁石の外周面に現れる極性と同一極性となるように磁束収束用永久磁石を軸方向に着磁しているので、溝の近傍に磁束集中部を形成することができ、この磁束集中部をステータ側のヨークと結合することにより、アキシャル方向の支持力を充分大きくすることができ、大きな制御力を得ることができる。   According to the present invention, the magnetic flux concentrating permanent magnet is mounted on the outer peripheral surface of the bias permanent magnet, the groove extending in the circumferential direction is formed on the outer peripheral surface side of the magnetic flux converging permanent magnet, and both sides of the groove are biased. Since the magnetic flux concentrating permanent magnet is magnetized in the axial direction so as to have the same polarity as that appearing on the outer peripheral surface of the permanent magnet for magnetic flux, a magnetic flux concentrating portion can be formed in the vicinity of the groove. Is coupled to the stator side yoke, the supporting force in the axial direction can be sufficiently increased, and a large control force can be obtained.

また、本発明によれば、バイアス磁束の磁束密度を高められるので、制御コイルに大きな支持力を担わせる必要が無く、その結果、電力消費量も削減することができる。   Further, according to the present invention, since the magnetic flux density of the bias magnetic flux can be increased, it is not necessary to give a large supporting force to the control coil, and as a result, the power consumption can be reduced.

以下、添付の図面を参照して、この発明の好ましい実施の形態を説明する。
図1は、本発明の第1の実施形態に係るアキシャル磁気軸受の構成を示す断面図、図2は、図1のA−A断面図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view showing a configuration of an axial magnetic bearing according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

このアキシャル磁気軸受は、外側に配置されたステータ10と、このステータ10の内側に配置されたロータ20とを有する。   This axial magnetic bearing has a stator 10 disposed outside and a rotor 20 disposed inside the stator 10.

ステータ10は、この例では、ロータ20の外周に周方向に配置された8個のステータユニット11により構成されている。各ステータユニット11は、磁性体で形成されたヨーク12と、このヨーク12に巻回された制御用巻線13とを有する。ヨーク12は、高周波性能を高めるために横方向に積層された積層鋼板により形成されている。ヨーク12は、ロータ20との対向面がロータ20と所定のギャップG1を介して対向するように円弧状に形成され、その対向面の軸方向2箇所に周方向に延びる溝14a,14bが形成されることにより断面がE字状に形成されている。つまり、軸方向に3つの突極が形成される。溝14のロータ20側端部は、それぞれ内側に張り出してギャップG2を介して対向している。そして、ヨーク12の真ん中の突極に制御用巻線13が巻回されている。   In this example, the stator 10 is composed of eight stator units 11 arranged on the outer periphery of the rotor 20 in the circumferential direction. Each stator unit 11 has a yoke 12 formed of a magnetic material and a control winding 13 wound around the yoke 12. The yoke 12 is formed of laminated steel plates laminated in the lateral direction in order to enhance high frequency performance. The yoke 12 is formed in an arc shape so that the surface facing the rotor 20 faces the rotor 20 via a predetermined gap G1, and grooves 14a and 14b extending in the circumferential direction are formed at two axial positions of the facing surface. As a result, the cross section is formed in an E shape. That is, three salient poles are formed in the axial direction. The end portions of the grooves 14 on the side of the rotor 20 project inward and face each other via a gap G2. A control winding 13 is wound around the salient pole in the middle of the yoke 12.

一方、ロータ20は、ロータ本体21と、このロータ本体21の外周に形成された溝22に内周側から順に同軸的に取り付けられた環状のバックヨーク23、バイアス用永久磁石24及び磁束収束用永久磁石25を備えて構成されている。バックヨーク23は、高磁性体からなる。バイアス用永久磁石24は、バックヨーク23の外周面の軸方向の一方の側と他方の側とに2分されており、更に組立の容易性を考慮して周方向に4分割されている。軸方向の一方の側のバイアス用永久磁石24aは外周面側をN極とし、軸方向の他方の側のバイアス用永久磁石24bは外周面側をS極とするようにそれぞれ径方向に着磁されている。   On the other hand, the rotor 20 includes a rotor main body 21, an annular back yoke 23 coaxially attached in order from the inner peripheral side to a groove 22 formed on the outer periphery of the rotor main body 21, a bias permanent magnet 24, and a magnetic flux converging element. A permanent magnet 25 is provided. The back yoke 23 is made of a high magnetic material. The permanent magnet 24 for bias is divided into two on one side and the other side in the axial direction of the outer peripheral surface of the back yoke 23, and further divided into four in the circumferential direction in consideration of ease of assembly. The biasing permanent magnet 24a on one side in the axial direction is magnetized in the radial direction so that the outer peripheral surface side is N pole, and the biasing permanent magnet 24b on the other side in the axial direction is S pole on the outer peripheral surface side. Has been.

磁束収束用永久磁石25は、バイアス用永久磁石24a,24bの各中央部分にそれぞれV溝26a,26bが形成されるように軸方向に3分割されており、バイアス用永久磁石24aの部分に配置されたV溝26aの両側はそれぞれN極、バイアス用永久磁石24bの部分に配置されたV溝26bの両側はそれぞれS極となるように軸方向に着磁されている。そして、このV溝26a,26bが、ステータ10のヨーク12のギャップ部G2と対向するように構成されている。なお、V溝26a,26bの代わりに、矩形状の溝、その他の形状の溝を用いても良い。   The magnetic flux concentrating permanent magnet 25 is divided into three in the axial direction so that the V grooves 26a and 26b are formed in the central portions of the biasing permanent magnets 24a and 24b, respectively, and is disposed in the portion of the biasing permanent magnet 24a. Both sides of the V-groove 26a are magnetized in the axial direction so as to be N-poles, and both sides of the V-groove 26b arranged in the bias permanent magnet 24b are respectively S-poles. The V grooves 26 a and 26 b are configured to face the gap portion G 2 of the yoke 12 of the stator 10. Instead of the V grooves 26a and 26b, rectangular grooves or other shapes may be used.

このようなアキシャル磁気軸受によれば、図3(a)に実線矢印で示すように、バイアス用永久磁石24によって生成されるバイアス磁束が、磁束収束用永久磁石25によってV溝26a,26bの付近に収束させられ、この部分に極めて高い密度の磁束が形成される。この磁束は、V溝26a,26bの部分とステータ10側のヨーク12の軸方向両側の先端との間に強力な磁気吸引力を発生させる。この状態で、ヨーク12の中央の突極に巻回された制御用巻線13に同図(a)に示すような制御電流を流すと、図中点線矢印で示すような方向の制御磁束が生成され、図中左側の突極では磁束は強められ、図中右側の突極では磁束は弱められる。これにより、左側の突極とV溝26aとの磁気吸引力が、右側の突極とV溝26bとの磁気吸引力に勝り、ロータ20は、図中白抜き矢印で示すように、左側(L方向)に移動する。   According to such an axial magnetic bearing, as indicated by the solid line arrow in FIG. 3A, the bias magnetic flux generated by the biasing permanent magnet 24 is generated by the magnetic flux converging permanent magnet 25 in the vicinity of the V grooves 26a and 26b. And a very high density magnetic flux is formed in this portion. This magnetic flux generates a strong magnetic attractive force between the V-grooves 26a and 26b and the axially opposite ends of the yoke 12 on the stator 10 side. In this state, when a control current as shown in FIG. 6A is passed through the control winding 13 wound around the central salient pole of the yoke 12, the control magnetic flux in the direction shown by the dotted arrow in FIG. The magnetic flux is strengthened at the left salient pole in the figure, and the magnetic flux is weakened at the right salient pole in the figure. As a result, the magnetic attraction force between the left salient pole and the V groove 26a is superior to the magnetic attraction force between the right salient pole and the V groove 26b, and the rotor 20 has a left side ( (L direction).

一方、ヨーク12の中央の突極に巻回された制御用巻線13に同図(b)に示すような向きの制御電流を流すと、同図(a)とは逆向きの図中点線矢印で示すような方向の制御磁束が生成され、図中左側の突極では磁束は弱められ、図中右側の突極では磁束は強められる。これにより、右側の突極とV溝26bとの磁気吸引力が、左側の突極とV溝26aとの磁気吸引力に勝り、ロータ20は、図中白抜き矢印で示すように、右側(R方向)に移動する。   On the other hand, when a control current having a direction as shown in FIG. 6B is passed through the control winding 13 wound around the center salient pole of the yoke 12, the dotted line in the figure opposite to that shown in FIG. A control magnetic flux in the direction shown by the arrow is generated, and the magnetic flux is weakened at the left salient pole in the figure, and the magnetic flux is strengthened at the right salient pole in the figure. Thereby, the magnetic attraction force between the right salient pole and the V groove 26b is superior to the magnetic attraction force between the left salient pole and the V groove 26a, and the rotor 20 has the right side ( R direction).

このように、本実施形態のアキシャル磁気軸受によれば、磁束収束用永久磁石25の存在によって、V溝26a,26b付近に、例えば2T程度の極めて高いバイアス磁束を得ることができ、100N程度のアキシャル方向の支持力が得られるという効果を奏する。   As described above, according to the axial magnetic bearing of the present embodiment, an extremely high bias magnetic flux of, for example, about 2T can be obtained in the vicinity of the V grooves 26a and 26b due to the presence of the magnetic flux converging permanent magnet 25. An effect is obtained that a supporting force in the axial direction can be obtained.

なお、上記実施形態では、8つのステータユニット11をロータ20の周囲に配置する構成を採用したが、ステータユニット11の数をいくつにするかは、磁気軸受の大きさやギャップ等に応じて適宜決定すれば良い。このように、ステータ10を分割構造とすると、ヨーク12を積層鋼板で製作することができるので、高周波性能を向上させることができる。   In the above embodiment, the configuration in which the eight stator units 11 are arranged around the rotor 20 is adopted. However, the number of the stator units 11 is appropriately determined according to the size of the magnetic bearing, the gap, and the like. Just do it. As described above, when the stator 10 has a divided structure, the yoke 12 can be made of laminated steel plates, so that high frequency performance can be improved.

しかしながら、ステータ11は、分割構造としなくても構成可能である。
図4は、そのような本発明の第2の実施形態に係るアキシャル磁気軸受の構成を示す断面図である。この実施形態では、ステータ30が、環状のヨーク31により構成されている。ヨーク31の断面は、先の実施形態と同様にE字型である。制御用巻線32は、ヨーク31の2つの溝にそれぞれ周方向に巻回されている。両方の巻線に互いに異なる方向の電流を流すことにより、先の実施形態と同様の作用効果を得ることができる。
However, the stator 11 can be configured without a divided structure.
FIG. 4 is a sectional view showing the configuration of such an axial magnetic bearing according to the second embodiment of the present invention. In this embodiment, the stator 30 is constituted by an annular yoke 31. The cross section of the yoke 31 is E-shaped as in the previous embodiment. The control winding 32 is wound around the two grooves of the yoke 31 in the circumferential direction. By causing currents in different directions to flow through both windings, it is possible to obtain the same effects as in the previous embodiment.

本実施形態によれば、ステータ30の構成を更に簡素化することができる。   According to the present embodiment, the configuration of the stator 30 can be further simplified.

本発明の第1の実施形態に係るアキシャル磁気軸受の断面図である。It is sectional drawing of the axial magnetic bearing which concerns on the 1st Embodiment of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. 同実施形態の作用を説明するための要部を示す図である。It is a figure which shows the principal part for demonstrating the effect | action of the embodiment. 本発明の第2の実施形態に係るアキシャル磁気軸受の断面図である。It is sectional drawing of the axial magnetic bearing which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10,30…ステータ、11…ステータユニット、12,31…ヨーク、13,32…制御用巻線、20…ロータ、21…ロータ本体、23…バックヨーク、24…バイアス用永久磁石、25…磁束収束用永久磁石、26a,26b…V溝。   DESCRIPTION OF SYMBOLS 10,30 ... Stator, 11 ... Stator unit, 12, 31 ... Yoke, 13, 32 ... Control winding, 20 ... Rotor, 21 ... Rotor body, 23 ... Back yoke, 24 ... Permanent magnet for bias, 25 ... Magnetic flux Permanent magnet for convergence, 26a, 26b ... V-groove.

Claims (4)

ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有しロータの軸方向の位置制御を行うアキシャル磁気軸受において、
前ロータは、
ロータ本体と、
このロータ本体に装着されて前記ロータの径方向に着磁された環状のバイアス用永久磁石と、
このバイアス用永久磁石の外周面に装着されると共に外周面側に周方向に延びる溝を有し、この溝の両側が前記バイアス用永久磁石の外周面に現れる極性と同一極性となるように軸方向に着磁されて前記溝の近傍に磁束集中部を形成する環状の磁束収束用永久磁石と
を有し、
前記ステータは、
前記溝と所定のギャップを介して対向する先端部を有するヨークと、
このヨークに巻回された制御用巻線と
を有する
ことを特徴とするアキシャル磁気軸受。
In an axial magnetic bearing that has a stator and a rotor that is supported by the stator in a non-contact state and rotated by magnetic force and performs axial position control of the rotor,
The front rotor
A rotor body;
An annular biasing permanent magnet mounted on the rotor body and magnetized in the radial direction of the rotor;
A groove is provided on the outer peripheral surface of the biasing permanent magnet and has a groove extending in the circumferential direction on the outer peripheral surface side. An annular magnetic flux concentrating permanent magnet that is magnetized in the direction and forms a magnetic flux concentrating portion in the vicinity of the groove,
The stator is
A yoke having a tip portion facing the groove through a predetermined gap;
An axial magnetic bearing comprising: a control winding wound around the yoke.
前記バイアス用永久磁石は、前記ロータの軸方向の一方の側の外周面を第1極性、他方の側の外周面を第2極性として径方向に着磁され、
前記磁束収束用永久磁石は、前記バイアス用永久磁石の第1極性の部分と第2極性の部分にそれぞれ前記溝としてV溝を有し、前記第1極性の部分に配置されたV溝の両側はそれぞれ第1極性、前記第2極性の部分に配置されたV溝の両側はそれぞれ第2極性となるように軸方向に着磁されたものであり、
前記ステータのヨークは、前記V溝に対向する部分にそれぞれ周方向に延びる溝を形成した断面E字型の磁性体からなり、
前記ステータの制御用巻線は、前記ヨークの溝に収容されている
ことを特徴とする請求項1記載のアキシャル磁気軸受。
The permanent magnet for bias is magnetized in the radial direction with the outer peripheral surface on one side in the axial direction of the rotor as the first polarity and the outer peripheral surface on the other side as the second polarity,
The magnetic flux concentrating permanent magnet has V grooves as the grooves in the first polarity portion and the second polarity portion of the bias permanent magnet, and both sides of the V groove arranged in the first polarity portion. Are magnetized in the axial direction so that both sides of the V-grooves arranged in the first polarity and the second polarity are respectively in the second polarity,
The stator yoke is made of a magnetic material having an E-shaped cross section in which grooves extending in the circumferential direction are formed in portions facing the V groove,
The axial magnetic bearing according to claim 1, wherein the control winding of the stator is accommodated in a groove of the yoke.
前記ロータ本体と前記バイアス用永久磁石との間に環状の磁性体からなるバックヨークを設けたことを特徴とする請求項1又は2記載のアキシャル磁気軸受。   The axial magnetic bearing according to claim 1, wherein a back yoke made of an annular magnetic body is provided between the rotor main body and the biasing permanent magnet. 前記ステータは、前記ロータの周囲に配置された複数のステータユニットにより構成され、
前記各ステータユニットは、軸方向と直交する方向に積層された積層鋼板からなるヨークを有する
ことを特徴とする請求項1〜3のいずれか1項記載のアキシャル磁気軸受。
The stator is composed of a plurality of stator units arranged around the rotor,
The axial magnetic bearing according to claim 1, wherein each stator unit has a yoke made of laminated steel plates laminated in a direction orthogonal to the axial direction.
JP2008287312A 2008-11-10 2008-11-10 Axial magnetic bearing Active JP5074356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287312A JP5074356B2 (en) 2008-11-10 2008-11-10 Axial magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287312A JP5074356B2 (en) 2008-11-10 2008-11-10 Axial magnetic bearing

Publications (2)

Publication Number Publication Date
JP2010112512A true JP2010112512A (en) 2010-05-20
JP5074356B2 JP5074356B2 (en) 2012-11-14

Family

ID=42301211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287312A Active JP5074356B2 (en) 2008-11-10 2008-11-10 Axial magnetic bearing

Country Status (1)

Country Link
JP (1) JP5074356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216527A (en) * 2013-03-15 2013-07-24 浙江大学 Magnetic bearing based on radial rejection and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609036A (en) * 2020-04-27 2020-09-01 黄尉欢 Magnetic fluid bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272537A (en) * 1991-03-26 1993-10-19 Ebara Corp Electromagnetic actuator
JP2003314550A (en) * 2002-04-18 2003-11-06 Sankyo Seiki Mfg Co Ltd Magnetic bearing unit
JP2004316756A (en) * 2003-04-15 2004-11-11 Canon Inc Five-axis control magnetic bearing
JP2006162049A (en) * 2004-12-10 2006-06-22 Iwaki Co Ltd Magnetic bearing
JP2008182823A (en) * 2007-01-25 2008-08-07 Edwards Kk Electromagnetic actuator and vacuum pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272537A (en) * 1991-03-26 1993-10-19 Ebara Corp Electromagnetic actuator
JP2003314550A (en) * 2002-04-18 2003-11-06 Sankyo Seiki Mfg Co Ltd Magnetic bearing unit
JP2004316756A (en) * 2003-04-15 2004-11-11 Canon Inc Five-axis control magnetic bearing
JP2006162049A (en) * 2004-12-10 2006-06-22 Iwaki Co Ltd Magnetic bearing
JP2008182823A (en) * 2007-01-25 2008-08-07 Edwards Kk Electromagnetic actuator and vacuum pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216527A (en) * 2013-03-15 2013-07-24 浙江大学 Magnetic bearing based on radial rejection and application thereof

Also Published As

Publication number Publication date
JP5074356B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US8723375B2 (en) Linear actuator
RU2371828C1 (en) Magnetic power rotary device
KR100674286B1 (en) Rotary electric motor having at least two axially air gaps separating stator and rotor segments
KR101492172B1 (en) Radial and Axial Flux Motor using Integrated Windings
JP4616122B2 (en) Magnetic bearing
JP5074350B2 (en) Magnetic bearing
JP2005143276A (en) Axial gap rotating electric machine
JP5726386B1 (en) Permanent magnet motor rotor
JP2011239650A (en) Rotator embedded with permanent magnet
JP2005061578A (en) Magnetic bearing
JP5826596B2 (en) Rotor and motor
JP2000083364A (en) Movable core linear motor
JP5074356B2 (en) Axial magnetic bearing
JP2007236130A (en) Rotary electric machine
JP2019201441A (en) Electric motor and manufacturing method for the same
JP2010158140A (en) Linear motor
JP2009195063A (en) Stator structure, motor, and disc type recording apparatus
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
JP2011182576A (en) Axial gap motor
JP5525416B2 (en) Linear actuator
JP2011030411A (en) Linear motor
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
JP2009247111A (en) Limited angle motor
JP6062991B2 (en) Rotor and motor
JP2005287262A (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Ref document number: 5074356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250