JP5074350B2 - Magnetic bearing - Google Patents

Magnetic bearing Download PDF

Info

Publication number
JP5074350B2
JP5074350B2 JP2008277874A JP2008277874A JP5074350B2 JP 5074350 B2 JP5074350 B2 JP 5074350B2 JP 2008277874 A JP2008277874 A JP 2008277874A JP 2008277874 A JP2008277874 A JP 2008277874A JP 5074350 B2 JP5074350 B2 JP 5074350B2
Authority
JP
Japan
Prior art keywords
polarity
connecting portion
rotor
magnetic flux
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008277874A
Other languages
Japanese (ja)
Other versions
JP2010106908A (en
Inventor
養二 岡田
Original Assignee
公益財団法人大分県産業創造機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人大分県産業創造機構 filed Critical 公益財団法人大分県産業創造機構
Priority to JP2008277874A priority Critical patent/JP5074350B2/en
Publication of JP2010106908A publication Critical patent/JP2010106908A/en
Application granted granted Critical
Publication of JP5074350B2 publication Critical patent/JP5074350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

本発明は、磁気力によってロータを非接触状態で支持する磁気軸受に関し、特に永久磁石によるバイアス磁束を用いて電磁石の消費電力を低減させるようにしたハイブリッド型の磁気軸受に関する。   The present invention relates to a magnetic bearing that supports a rotor in a non-contact state by a magnetic force, and more particularly, to a hybrid type magnetic bearing that uses a bias magnetic flux from a permanent magnet to reduce power consumption of an electromagnet.

磁気軸受は、回転体を非接触で支持することができるため、制御技術の発展に伴って各種の軸受に利用されてきている。最近では、性能向上が顕著な永久磁石のバイアス磁束を利用したハイブリッド型の磁気軸受が使用されるようになってきた。ハイブリッド型の磁気軸受は、永久磁石によるバイアス磁束を利用するため、消費電力を低減でき、制御特性の面でも優れているという利点がある。   Since the magnetic bearing can support the rotating body in a non-contact manner, it has been used for various bearings with the development of control technology. Recently, a hybrid type magnetic bearing using a bias magnetic flux of a permanent magnet whose performance is significantly improved has been used. Since the hybrid magnetic bearing uses a bias magnetic flux generated by a permanent magnet, there is an advantage that power consumption can be reduced and control characteristics are excellent.

このハイブリッド型の磁気軸受として、例えば、特許文献1に開示された磁気軸受が知られている。この磁気軸受は、中心部でロータを支持する環状のステータが、中心のロータに向かって突出し周方向に所定間隔で配設された複数の突極(電磁石コア)を有し、これら突極の基端部を長手方向に着磁された円弧状の永久磁石で結合することにより、平面内でバイアス磁束の磁気回路を形成している。   As this hybrid magnetic bearing, for example, a magnetic bearing disclosed in Patent Document 1 is known. This magnetic bearing has a plurality of salient poles (electromagnet cores) in which an annular stator that supports a rotor at the center portion projects toward the center rotor and is disposed at a predetermined interval in the circumferential direction. A magnetic circuit for bias magnetic flux is formed in a plane by coupling the base end portions with arc-shaped permanent magnets magnetized in the longitudinal direction.

しかし、この磁気軸受は、磁気回路に沿って延びる長い永久磁石によって磁気回路の大部分が占められているため、全体的に磁気抵抗が大きく、制御磁束のステータ外部への漏れ量が多く、制御効率が悪いという問題がある。   However, since this magnetic bearing is mostly occupied by long permanent magnets extending along the magnetic circuit, the overall magnetic resistance is large and the amount of leakage of control flux to the outside of the stator is large. There is a problem of inefficiency.

そこで、薄型で面積の大きなバイアス用永久磁石を使用することにより、主極の磁束密度を高めると共に、磁気回路の全体的な磁気抵抗を低減して外部への漏れ磁束を低減するようにしたハイブリッド型磁気軸受も提案されている(非特許文献1)。   Therefore, by using a bias permanent magnet with a thin and large area, the magnetic flux density of the main pole is increased, and the overall magnetic resistance of the magnetic circuit is reduced to reduce the leakage flux to the outside. A type magnetic bearing has also been proposed (Non-Patent Document 1).

図6は、このタイプの磁気軸受を示す断面図である。
ステータ110を構成する継鉄111は、中心に配置されたロータ120に先端部が対向するようにロータ120の周囲に90°の角度をなして配置された4つの主突極112と、これら主突極112の基端部を連結する環状の連結部113とを有する。主突極112には、励磁コイル114が巻回されて主極を構成している。連結部113は、隣接する主突極112間で分割されており、この分割端113a間に板状のバイアス用永久磁石116が挿入されている。永久磁石116は、図中点線矢印で示すバイアス磁束を充分に確保することと、図中実線矢印で示す制御磁束への磁気抵抗を低下させるため、薄く広いものを用いており、連結部113の分割端もバイアス用永久磁石116の両面全体を覆うように内側に張り出した形状となっている。この磁気軸受では、励磁コイル114をコントロールして対向する2つの主極間に磁気吸引力の差を発生させることでロータ120の支承制御を行うようにしている。
特開2001−041238公報(段落0011〜0014、図1) 「並列永久磁石型ハイブリッド磁気軸受の開発と応用」,佐川幸治他、日本機械学会論文集、別刷、73巻733号C編,p81〜87,(社)日本機械学会
FIG. 6 is a cross-sectional view showing this type of magnetic bearing.
The yoke 111 constituting the stator 110 includes four main salient poles 112 arranged at an angle of 90 ° around the rotor 120 so that the tip thereof faces the rotor 120 arranged at the center, and these main salient poles 112. And an annular connecting portion 113 that connects the base end portions of the salient poles 112. An excitation coil 114 is wound around the main salient pole 112 to constitute the main pole. The connecting portion 113 is divided between adjacent main salient poles 112, and a plate-like biasing permanent magnet 116 is inserted between the divided ends 113a. The permanent magnet 116 is thin and wide so as to sufficiently secure the bias magnetic flux indicated by the dotted arrow in the figure and to reduce the magnetic resistance to the control magnetic flux indicated by the solid arrow in the figure. The divided ends also have a shape projecting inward so as to cover both surfaces of the permanent magnet 116 for bias. In this magnetic bearing, the excitation control of the rotor 120 is performed by controlling the exciting coil 114 to generate a difference in magnetic attraction force between two opposing main poles.
JP 2001-041238 A (paragraphs 0011 to 0014, FIG. 1) “Development and Application of Parallel Permanent Magnet Type Hybrid Magnetic Bearing”, Koji Sagawa et al., Transactions of the Japan Society of Mechanical Engineers, Reprint, Volume 73, 733C, p81-87, Japan Society of Mechanical Engineers

上述した従来の磁気軸受では、充分なバイアス磁束を確保するためには、永久磁石をロータ側に張り出して永久磁石の磁極面を増やす必要があるが、永久磁石をあまりロータ側に張り出しすぎると、ロータ側への漏れ磁束が増加してバイアス磁束を強められなくなると同時に、漏れ磁束による負ばね力が増加して電磁石による制御に悪影響を与えるという問題がある。
また、継鉄の永久磁石を挟持する分割端もロータ側に大きく張り出す必要があるため、主突極への励磁コイルの装着も困難になるという問題がある。
In the conventional magnetic bearing described above, in order to secure a sufficient bias magnetic flux, it is necessary to extend the permanent magnet to the rotor side and increase the magnetic pole surface of the permanent magnet. There is a problem that the leakage magnetic flux to the rotor side increases and the bias magnetic flux cannot be strengthened, and at the same time, the negative spring force due to the leakage magnetic flux increases and adversely affects the control by the electromagnet.
In addition, since the split end that sandwiches the yoke permanent magnet needs to be extended to the rotor side, there is a problem that it is difficult to attach the exciting coil to the main salient pole.

本発明は、このような問題点に鑑みてなされたもので、充分なバイアス磁束が得られ、制御性に優れ、より一層の小型化及び軽量化が図れるハイブリッド型の磁気軸受を提供することを目的とする。   The present invention has been made in view of such problems, and provides a hybrid type magnetic bearing that can obtain a sufficient bias magnetic flux, has excellent controllability, and can be further reduced in size and weight. Objective.

本発明に係る磁気軸受は、ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有する磁気軸受において、前記ステータは、前記ロータに向けて径方向に突設されて先端の磁束集中部が前記ロータに対して所定のギャップを介して対向する励磁コイルを有する複数の主極と、前記複数の主極の基端を周方向に連結する連結部と、前記連結部に挿入されて一端が前記ロータに向けて前記連結部から突出するように前記径方向に沿って配置され一方の面を第1極性、他方の面を第2極性として厚み方向に着磁された板状のバイアス用永久磁石と、前記バイアス用永久磁石の前記連結部からの径方向突出部の前記一方の面側に配置され前記ロータ側を第2極性、前記連結部側を第1極性とする第1の磁束吸収用磁石と、前記バイアス用永久磁石の前記連結部からの径方向突出部の前記他方の面側に配置され前記ロータ側を第1極性、前記連結部側を第2極性とする第2の磁束吸収用磁石とを有することを特徴とする。   A magnetic bearing according to the present invention is a magnetic bearing having a stator and a rotor that is supported by the stator in a non-contact state and rotated in a non-contact state, and the stator projects in a radial direction toward the rotor. A plurality of main poles having exciting coils whose leading magnetic flux concentrating portions face the rotor via a predetermined gap; a connecting part that connects base ends of the plurality of main poles in the circumferential direction; and the connecting part And is arranged along the radial direction so that one end protrudes from the connecting portion toward the rotor, and one surface is magnetized in the thickness direction with the first surface as the first polarity and the other surface as the second polarity. A plate-shaped biasing permanent magnet, and the one side of the radial protruding portion from the connecting portion of the biasing permanent magnet, the rotor side being a second polarity, and the connecting portion side being a first polarity First magnetic flux absorbing magnet And a second magnetic flux absorbing member disposed on the other surface side of the radially projecting portion of the biasing permanent magnet from the connecting portion and having the rotor side as a first polarity and the connecting portion side as a second polarity. And a magnet.

本発明に係る磁気軸受は、また、ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有する磁気軸受において、前記ステータは、環状の連結部及びこの連結部の内周側から中心に向けて突出すると共に前記連結部の周方向に一定の間隔で配置された偶数個の主突極を有し前記連結部が前記主突極から周方向にずれた位置で分割された磁性体からなる継鉄と、前記主突極に巻回された励磁コイルと、前記連結部の分割端間に挿入されて一端が前記ロータに向けて前記連結部から突出するように前記径方向に沿って配置され一方の面を第1極性、他方の面を第2極性として厚み方向に着磁されたバイアス磁束を供給する板状のバイアス用永久磁石と、前記バイアス用永久磁石の前記連結部からの径方向突出部の前記一方の面側に配置され前記ロータ側を第2極性、前記連結部側を第1極性とする第1の磁束吸収用磁石と、前記バイアス用永久磁石の前記連結部からの径方向突出部の前記他方の面側に配置され前記ロータ側を第1極性、前記連結部側を第2極性とする第2の磁束吸収用磁石とを有することを特徴とする。   The magnetic bearing according to the present invention is also a magnetic bearing having a stator and a rotor that rotates while being supported by the stator in a non-contact state by a magnetic force. The stator includes an annular connecting portion and an inner portion of the connecting portion. It has an even number of main salient poles that protrude from the circumferential side toward the center and are arranged at regular intervals in the circumferential direction of the connecting portion, and is divided at a position where the connecting portion deviates from the main salient pole in the circumferential direction. A yoke made of magnetic material, an exciting coil wound around the main salient pole, and inserted between the split ends of the connecting portion so that one end protrudes from the connecting portion toward the rotor. A plate-like bias permanent magnet that is arranged along the radial direction and supplies a bias magnetic flux magnetized in the thickness direction with one surface being a first polarity and the other surface being a second polarity; Radial protrusion from the connecting part A first magnetic flux absorbing magnet disposed on the one surface side and having the rotor side as the second polarity and the connecting portion side as the first polarity, and a radial protruding portion from the connecting portion of the biasing permanent magnet And a second magnetic flux absorbing magnet that is disposed on the other surface side and has the rotor side as a first polarity and the connecting portion side as a second polarity.

本発明の一つの実施形態では、前記連結部の分割端は、前記ロータに向けて突出している。また、本発明の他の実施形態では、前記第1及び第2の磁束吸収用磁石は、前記バイアス用永久磁石の前記連結部からの径方向突出部の両面全体を覆うものである。   In one embodiment of the present invention, the split end of the connecting portion protrudes toward the rotor. In another embodiment of the present invention, the first and second magnetic flux absorbing magnets cover the entire surfaces of the radially projecting portion from the connecting portion of the biasing permanent magnet.

本発明の更に他の実施形態では、前記バイアス用永久磁石は、全周に亘って前記連結部から張り出し、前記第1の磁束吸収用磁石は、前記バイアス用永久磁石の前記張出部の前記一方の面側に配置され、外側を第2極性、内側を第1極性として着磁され、前記第2の磁束吸収用磁石は、前記バイアス用永久磁石の前記張出部の前記他方の面側に配置され、外側を第1極性、内側を第2極性として着磁されたものであることを特徴としている。   In still another embodiment of the present invention, the biasing permanent magnet protrudes from the connecting portion over the entire circumference, and the first magnetic flux absorbing magnet is the above-mentioned protruding portion of the biasing permanent magnet. Arranged on one surface side, magnetized with the second polarity on the outer side and the first polarity on the inner side, the second magnetic flux absorbing magnet is on the other surface side of the protruding portion of the permanent magnet for biasing It is characterized by being magnetized with the first polarity on the outside and the second polarity on the inside.

本発明の更に他の実施形態では、前記第1及び第2の磁束吸収用磁石の前記ロータと対向する面に磁束検出用素子を設けることを特徴とする。   In still another embodiment of the present invention, a magnetic flux detecting element is provided on a surface of the first and second magnetic flux absorbing magnets facing the rotor.

本発明によれば、連結部に挿入されて一端がロータに向けて連結部から突出する板状のバイアス用永久磁石の径方向突出部の両面に、バイアス用永久磁石の着磁面と異極性をロータ側、同一極性を連結部側にして第1及び第2の磁束吸収用磁石を配置しているので、バイアス用永久磁石からロータ側に漏れ出そうとする磁束は、第1及び第2の磁束吸収用磁石によってステータ側に戻されることになる。この結果、ロータ側への漏れ磁束は軽減され、ステータ側のバイアス磁束密度をより高めることができるので、バイアス磁束を強められると共に、漏れ磁束による負ばね力が減少し、良好な軸受制御が可能になる。
また、バイアス用永久磁石のロータへの突出部は、第1及び第2の磁束吸収用磁石によって挟持される構造であるため、連結部のロータ側への大きな張出部を形成する必要が無く、主突極への励磁コイルの装着も容易になり、磁気軸受の組立が容易になるという効果を奏する。
According to the present invention, both sides of the radial projection of the plate-shaped biasing permanent magnet that is inserted into the coupling portion and has one end projecting from the coupling portion toward the rotor are opposite in polarity to the magnetized surface of the biasing permanent magnet. Since the first and second magnetic flux absorbing magnets are arranged with the same polarity on the rotor side and the same polarity as the connecting portion side, the magnetic flux that leaks from the biasing permanent magnet to the rotor side is the first and second magnetic fluxes. The magnetic flux absorbing magnet is returned to the stator side. As a result, the leakage flux to the rotor side is reduced, and the bias flux density on the stator side can be further increased, so that the bias flux can be strengthened and the negative spring force due to the leakage flux can be reduced, enabling good bearing control. become.
In addition, since the protruding portion of the biasing permanent magnet to the rotor is sandwiched between the first and second magnetic flux absorbing magnets, there is no need to form a large protruding portion on the rotor side of the connecting portion. Thus, it is easy to mount the exciting coil on the main salient pole, and the magnetic bearing can be easily assembled.

以下、添付の図面を参照して、この発明の好ましい実施の形態を説明する。
図1は、本発明の第1の実施形態に係る4極型の磁気軸受の構成を示す断面図である。
磁気軸受は、外側に配置された環状のステータ10と、このステータ10の内側に配置されたロータ20とを有する。
ステータ10は、環状の継鉄11、励磁コイル14、バイアス用永久磁石15、第1及び第2の磁束吸収用磁石16,17並びに磁束検出用素子18を備えて構成されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a sectional view showing the configuration of a four-pole magnetic bearing according to the first embodiment of the present invention.
The magnetic bearing has an annular stator 10 disposed outside and a rotor 20 disposed inside the stator 10.
The stator 10 includes an annular yoke 11, an excitation coil 14, a biasing permanent magnet 15, first and second magnetic flux absorbing magnets 16 and 17, and a magnetic flux detection element 18.

継鉄11は、例えば積層鋼板等の磁性材料からなり、環状の連結部12と、この連結部12の内周側から中心に向けて突出し周方向に90°の間隔で配置された4つの主突極部13とを有する。4つの主突極部13には、それぞれ励磁コイル14が巻回され、この励磁コイル14と主突極部13とで主極が構成されている。4つの主突極部13に対して周方向に45°ずれた位置で連結部12が分割されている。連結部12の分割端12aは、ロータ20に向けて径方向に張り出している。   The yoke 11 is made of, for example, a magnetic material such as a laminated steel plate, and has an annular connecting part 12 and four main parts protruding from the inner peripheral side of the connecting part 12 toward the center and arranged at intervals of 90 ° in the circumferential direction. And a salient pole portion 13. An excitation coil 14 is wound around each of the four main salient pole portions 13, and the excitation coil 14 and the main salient pole portion 13 constitute a main pole. The connecting portion 12 is divided at a position shifted by 45 ° in the circumferential direction with respect to the four main salient pole portions 13. The split end 12 a of the connecting portion 12 projects radially toward the rotor 20.

この連結部12の隣接する分割端12a間に板状のバイアス用永久磁石15が挿入されている。バイアス用永久磁石15は、一端(側面)が連結部12の分割端12aの内周側からロータ2に向けて径方向に突出するように、径方向に沿って配置されており、一方の面をS極、他方の面をN極として厚み方向に着磁されている。   A plate-like biasing permanent magnet 15 is inserted between the adjacent divided ends 12 a of the connecting portion 12. The permanent magnet for bias 15 is arranged along the radial direction so that one end (side surface) protrudes in the radial direction from the inner peripheral side of the split end 12a of the connecting portion 12 toward the rotor 2, and one surface thereof Is magnetized in the thickness direction, with the S pole as the other and the N pole as the other surface.

バイアス用永久磁石15の、連結部12からロータ20側に突出した部分には、その両面から挟み込むように第1及び第2の磁束吸収用磁石16,17が配置されている。第1の磁束吸収用磁石16は、バイアス用永久磁石15のS極面に密着し、ロータ20側をN極、継鉄11側をS極とするようにラジアル方向に着磁されている。また、第2の磁束吸収用磁石17は、バイアス用永久磁石16のN極面に密着し、ロータ20側をS極、継鉄11側をN極とするようにラジアル方向に着磁されている。
これら第1及び第2の磁束吸収用磁石16,17のロータ20側の端面には、ホール素子等の磁束検出用素子18が設置されている。
一方、ロータ20は、少なくとも外周部に積層鋼板や電磁材料等の磁性体を配したもので、主突極部12の先端と所定のギャップを介してステータ10の内側に回転可能に配置されている。
First and second magnetic flux absorbing magnets 16 and 17 are arranged at a portion of the biasing permanent magnet 15 protruding from the connecting portion 12 toward the rotor 20 so as to be sandwiched from both surfaces. The first magnetic flux absorbing magnet 16 is in close contact with the south pole surface of the biasing permanent magnet 15 and is magnetized in the radial direction so that the rotor 20 side is the north pole and the yoke 11 side is the south pole. The second magnetic flux absorbing magnet 17 is in close contact with the N pole surface of the bias permanent magnet 16 and is magnetized in the radial direction so that the rotor 20 side is the S pole and the yoke 11 side is the N pole. Yes.
A magnetic flux detecting element 18 such as a Hall element is provided on the end face of the first and second magnetic flux absorbing magnets 16 and 17 on the rotor 20 side.
On the other hand, the rotor 20 has a magnetic body such as a laminated steel plate or electromagnetic material disposed at least on the outer peripheral portion, and is disposed rotatably inside the stator 10 via a predetermined gap from the tip of the main salient pole portion 12. Yes.

このような磁気軸受によれば、図1に点線矢印で示すように、バイアス用永久磁石15によって生成されるバイアス磁束が、バイアス用永久磁石15のN極面、連結部12、主突極13、ロータ20、主突極13及び連結部12を介してバイアス用永久磁石15のS極面に至る磁気回路を形成する。そして、主突極13に巻回された励磁コイル14を制御して、例えば図1に実線矢印で示すような制御磁束を発生させると、図中上側に位置する主極では磁束を強め合い、下側に位置する主極では磁束を弱め合うので、上下の主突極13で磁気吸引力の差を生じ、ロータ20には上向きの力が発生する。これをラジアル2方向に適用することにより、ラジアル方向の制御を行うことができる。   According to such a magnetic bearing, as indicated by a dotted arrow in FIG. 1, the bias magnetic flux generated by the biasing permanent magnet 15 causes the N pole surface of the biasing permanent magnet 15, the connecting portion 12, and the main salient pole 13. A magnetic circuit reaching the S pole surface of the permanent magnet for bias 15 through the rotor 20, the main salient pole 13 and the connecting portion 12 is formed. Then, by controlling the exciting coil 14 wound around the main salient pole 13 to generate a control magnetic flux as shown by a solid line arrow in FIG. 1, for example, the main pole located on the upper side in the figure strengthens the magnetic flux, Since the main pole located on the lower side weakens the magnetic flux, a difference in magnetic attraction force is generated between the upper and lower main salient poles 13 and an upward force is generated in the rotor 20. By applying this to the two radial directions, the radial direction can be controlled.

本実施形態に係る磁気軸受において、バイアス用永久磁石15の半分は、継鉄11からロータ20側にはみ出しているが、このはみ出した部分の両面には、ラジアル方向に着磁された第1及び第2の磁束吸収用磁石16,17が配置され、この磁束吸収用磁石16,17がバイアス磁束を継鉄11側に閉じ込める機能を有する。このため、ロータ20側に磁束が漏れるのを効果的に防止することができると同時に、磁束吸収用磁石16,17によって継鉄11内のバイアス磁束の磁束密度も高められるので、効率の良い制御が可能になる。この構成によれば、高価な希土類磁石を使用する必要がなく、安価なフェライト磁石でも充分な磁束密度を得ることができる。   In the magnetic bearing according to the present embodiment, half of the biasing permanent magnet 15 protrudes from the yoke 11 to the rotor 20 side, and the first and second magnets magnetized in the radial direction are formed on both surfaces of the protruding portion. The second magnetic flux absorbing magnets 16 and 17 are arranged, and the magnetic flux absorbing magnets 16 and 17 have a function of confining the bias magnetic flux to the yoke 11 side. For this reason, it is possible to effectively prevent the magnetic flux from leaking to the rotor 20 side, and at the same time, the magnetic flux absorbing magnets 16 and 17 can also increase the magnetic flux density of the bias magnetic flux in the yoke 11, so that efficient control can be achieved. Is possible. According to this configuration, it is not necessary to use an expensive rare earth magnet, and a sufficient magnetic flux density can be obtained even with an inexpensive ferrite magnet.

また、本実施形態の磁気軸受によれば、第1及び第2の磁束吸収用磁石16,17のロータ20側の先端に磁束検出用素子18が装着されているので、制御磁束に影響されずにロータ20の変位を正確に検出することができる。
更に、この実施形態によれば、連結部12の分割端12bの張り出し量が、図6に示した従来例と比べて小さいので、分割状態の継鉄11に励磁コイル14を巻回し易く、励磁コイル14の主突極13への装着後にバイアス用永久磁石15を組み付けることにより、磁気軸受の製作も容易になる。
Further, according to the magnetic bearing of the present embodiment, the magnetic flux detecting element 18 is attached to the tip of the first and second magnetic flux absorbing magnets 16 and 17 on the rotor 20 side, so that it is not affected by the control magnetic flux. In addition, the displacement of the rotor 20 can be accurately detected.
Furthermore, according to this embodiment, since the protruding amount of the split end 12b of the connecting portion 12 is smaller than that in the conventional example shown in FIG. 6, the excitation coil 14 can be easily wound around the yoke 11 in the split state. By assembling the biasing permanent magnet 15 after the coil 14 is mounted on the main salient pole 13, the magnetic bearing can be easily manufactured.

図2は、本発明の第2の実施形態に係る磁気軸受の構成を示す断面図である。先の実施形態は4極型であったが、この実施形態は6極構造である。
ステータ30は、環状の継鉄31、励磁コイル34、バイアス用永久磁石35並びに第1及び第2の磁束吸収用磁石36,37を備えて構成されている。
継鉄31は、環状の連結部32と、この連結部32の内周側から中心に向けて突出し周方向に60°の間隔で配置された6つの主突極33とを有する。他の構成は先の実施形態と同様である。
FIG. 2 is a cross-sectional view showing a configuration of a magnetic bearing according to the second embodiment of the present invention. The previous embodiment was a 4-pole type, but this embodiment has a 6-pole structure.
The stator 30 includes an annular yoke 31, an exciting coil 34, a biasing permanent magnet 35, and first and second magnetic flux absorbing magnets 36 and 37.
The yoke 31 has an annular connecting portion 32 and six main salient poles 33 that protrude from the inner peripheral side of the connecting portion 32 toward the center and are arranged at intervals of 60 ° in the circumferential direction. Other configurations are the same as in the previous embodiment.

このように6極構造の場合には、4極構造と異なり、対向する極対が120°毎に配置されるので、x−y方向の制御を2相3相変換し、U,V,W相毎の制御を必要とするが、この制御には、モータ制御用に使用されている一般的な3相インバータを利用することができる。図2では、上の2つの主極で磁束を強め合い、下の2つの主極で磁束を弱め合うことにより、上向きの力を発生する例を示している。このように、主突極の数は偶数個であることが望ましい。   In this way, in the case of the 6-pole structure, unlike the 4-pole structure, the opposing pole pairs are arranged every 120 °, so the control in the xy direction is converted into two-phase three-phase, and U, V, W Although control for each phase is required, a general three-phase inverter used for motor control can be used for this control. FIG. 2 shows an example in which an upward force is generated by strengthening the magnetic flux with the upper two main poles and weakening the magnetic flux with the lower two main poles. Thus, it is desirable that the number of main salient poles is an even number.

図3は、本発明の第3の実施形態に係る磁気軸受の構成を示す断面図である。この実施形態は4極構造にアキシャル制御を付加した例である。
ステータ50は、環状の継鉄51、ラジアル制御コイル54、アキシャル制御コイル58、バイアス用永久磁石55並びに第1及び第2の磁束吸収用磁石56,57を備えて構成されている。
FIG. 3 is a cross-sectional view showing a configuration of a magnetic bearing according to the third embodiment of the present invention. This embodiment is an example in which axial control is added to a four-pole structure.
The stator 50 includes an annular yoke 51, a radial control coil 54, an axial control coil 58, a bias permanent magnet 55, and first and second magnetic flux absorbing magnets 56 and 57.

継鉄51は、環状の連結部52と、この連結部52の内周側から中心に向けて突出し周方向に90°の間隔で配置された4つの主突極53とを有する。主突極53は、上述した各実施形態と同様に、ラジアル制御のためのラジアル制御コイル54が巻回されると共に、図3(b)に示すように、主突極53の厚み方向の中央部の外周に溝を形成してアキシャル制御のためのアキシャル制御コイル58を巻回している。ステータ50の厚みをロータ60の厚みよりも若干厚くすることにより、同図(b)の点線矢印で示すバイアス磁束にアキシャル方向成分を持たせる。
図示のように、アキシャル制御コイル58に電流を流すと、図示の実線矢印のような制御磁束が発生し、図中左側の磁束は強め合い、右側の磁束は弱め合う。この結果、アキシャル方向における右向きの力が発生する。これを他の主極でも行うことによりラジアル制御に加えてアキシャル制御を行うことができる。
The yoke 51 has an annular connecting portion 52 and four main salient poles 53 that protrude from the inner peripheral side of the connecting portion 52 toward the center and are arranged at intervals of 90 ° in the circumferential direction. As in the above-described embodiments, the main salient pole 53 is wound with a radial control coil 54 for radial control, and as shown in FIG. A groove is formed on the outer periphery of the portion, and an axial control coil 58 for axial control is wound. By making the thickness of the stator 50 slightly larger than the thickness of the rotor 60, the bias magnetic flux indicated by the dotted arrows in FIG.
As shown in the figure, when a current is passed through the axial control coil 58, a control magnetic flux as shown by a solid line arrow in the figure is generated, and the magnetic flux on the left side in the figure strengthens and the magnetic flux on the right side weakens. As a result, a rightward force in the axial direction is generated. Axial control can be performed in addition to radial control by performing this operation on other main poles.

図4は、本発明の第4の実施形態に係る磁気軸受の構成を示す断面図である。先の実施形態はインナーロータ型であったが、この実施形態はアウターロータ型である。すなわち、本実施形態では、円筒状のロータ80の内側にステータ70が配置されている。
ステータ70は、十字状の継鉄71、励磁コイル74、バイアス用永久磁石75並びに第1及び第2の磁束吸収用磁石76,77を備えて構成されている。
継鉄71は、中心から径方向外側に向けて突出し周方向に90°の間隔で配置された4つの主突極73と、これら主突極73の基端部を連結する連結部72とを有する。連結部72の、主突極73とは周方向に45°ずれた位置が分割されて、そこに板状のバイアス用永久磁石75が挿入されている。そして、バイアス用永久磁石75の一部が連結部72から外側に突出し、その突出した部分の両面に第1及び第2の磁束吸収用磁石76,77が装着されている。
この実施形態においても、先の実施形態と同様、制御性に優れた磁気軸受を実現することができる。
FIG. 4 is a cross-sectional view showing a configuration of a magnetic bearing according to the fourth embodiment of the present invention. The previous embodiment was an inner rotor type, but this embodiment is an outer rotor type. That is, in the present embodiment, the stator 70 is disposed inside the cylindrical rotor 80.
The stator 70 includes a cross-shaped yoke 71, an exciting coil 74, a biasing permanent magnet 75, and first and second magnetic flux absorbing magnets 76 and 77.
The yoke 71 includes four main salient poles 73 that project radially outward from the center and are arranged at intervals of 90 ° in the circumferential direction, and a connecting portion 72 that connects the base ends of the main salient poles 73. Have. A position of the connecting portion 72 that is shifted from the main salient pole 73 by 45 ° in the circumferential direction is divided, and a plate-like biasing permanent magnet 75 is inserted therein. A part of the biasing permanent magnet 75 protrudes outward from the connecting portion 72, and the first and second magnetic flux absorbing magnets 76 and 77 are mounted on both surfaces of the protruding portion.
Also in this embodiment, a magnetic bearing with excellent controllability can be realized as in the previous embodiment.

図5は、本発明の第5の実施形態に係る磁気軸受の構成を示す断面図である。この実施形態では、バイアス用永久磁石95が全周に亘って連結部92から張り出している。第1の磁束吸収用磁石96は、バイアス用永久磁石95の張出部のS極面側に配置され、外側をN極、内側をS極として着磁された環状の磁石である。第2の磁束吸収用磁石97は、バイアス用永久磁石95の張出部のN極面側に配置され、外側をS極、内側をN極として着磁された環状の磁石である。なお、これらの磁束吸収用磁石96,97は、棒状磁石を組み合わせたものでも良い。   FIG. 5 is a cross-sectional view showing a configuration of a magnetic bearing according to the fifth embodiment of the present invention. In this embodiment, the biasing permanent magnet 95 protrudes from the connecting portion 92 over the entire circumference. The first magnetic flux absorbing magnet 96 is an annular magnet that is arranged on the S pole surface side of the protruding portion of the bias permanent magnet 95 and is magnetized with the outer side being the N pole and the inner side being the S pole. The second magnetic flux absorbing magnet 97 is an annular magnet that is arranged on the N pole face side of the protruding portion of the bias permanent magnet 95 and is magnetized with the S pole on the outside and the N pole on the inside. The magnetic flux absorbing magnets 96 and 97 may be a combination of bar magnets.

本実施形態によれば、バイアス用永久磁石95の全周に亘って磁束漏れを防止することができるので、更に強力なバイアス磁束を形成することができる。   According to the present embodiment, magnetic flux leakage can be prevented over the entire circumference of the biasing permanent magnet 95, so that a stronger bias magnetic flux can be formed.

本発明の第1の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る磁気軸受の断面図である。It is sectional drawing of the magnetic bearing which concerns on the 5th Embodiment of this invention. 従来の磁気軸受の断面図である。It is sectional drawing of the conventional magnetic bearing.

符号の説明Explanation of symbols

10,30,50,70,90,110…ステータ、20,40,60,80,100,120…ロータ、11,,31,51,71,91,111…継鉄、13,33,53,73,93,113…主突極、14,34,74,94,114…励磁コイル、15,35,55,75,95,116…バイアス用永久磁石、16,36,56,76,96…第1の磁束吸収用磁石、17,67,57,77,97…第2の磁束吸収用磁石、18…磁束検出用素子。   10, 30, 50, 70, 90, 110 ... stator, 20, 40, 60, 80, 100, 120 ... rotor, 11, 31, 51, 71, 91, 111 ... yoke, 13, 33, 53, 73, 93, 113 ... main salient poles, 14, 34, 74, 94, 114 ... exciting coils, 15, 35, 55, 75, 95, 116 ... permanent magnets for bias, 16, 36, 56, 76, 96 ... 1st magnetic flux absorption magnet, 17, 67, 57, 77, 97 ... 2nd magnetic flux absorption magnet, 18 ... Magnetic flux detection element.

Claims (6)

ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有する磁気軸受において、
前記ステータは、
前記ロータに向けて径方向に突設されて先端の磁束集中部が前記ロータに対して所定のギャップを介して対向する励磁コイルを有する複数の主極と、
前記複数の主極の基端を周方向に連結する連結部と、
前記連結部に挿入されて一端が前記ロータに向けて前記連結部から突出するように前記径方向に沿って配置され一方の面を第1極性、他方の面を第2極性として厚み方向に着磁された板状のバイアス用永久磁石と、
前記バイアス用永久磁石の前記連結部からの径方向突出部の前記一方の面側に配置され前記ロータ側を第2極性、前記連結部側を第1極性とする第1の磁束吸収用磁石と、
前記バイアス用永久磁石の前記連結部からの径方向突出部の前記他方の面側に配置され前記ロータ側を第1極性、前記連結部側を第2極性とする第2の磁束吸収用磁石と
を有することを特徴とする磁気軸受。
In a magnetic bearing having a stator and a rotor that is supported and rotated in a non-contact state by magnetic force on the stator,
The stator is
A plurality of main poles having an exciting coil that protrudes in a radial direction toward the rotor and has a magnetic flux concentrating portion at a tip thereof facing the rotor via a predetermined gap;
A connecting portion for connecting the base ends of the plurality of main poles in the circumferential direction;
Inserted into the connecting portion and arranged in the radial direction so that one end protrudes from the connecting portion toward the rotor, and one surface is attached in the thickness direction with the first polarity and the other surface as the second polarity. A magnetized plate-shaped permanent magnet for bias;
A first magnetic flux absorbing magnet which is disposed on the one surface side of the radially projecting portion from the connecting portion of the biasing permanent magnet and has the rotor side as the second polarity and the connecting portion side as the first polarity; ,
A second magnetic flux absorbing magnet disposed on the other surface side of the radially projecting portion from the coupling portion of the biasing permanent magnet and having the rotor side as a first polarity and the coupling portion side as a second polarity; The magnetic bearing characterized by having.
ステータと、このステータに磁気力によって非接触状態で支持されて回転するロータとを有する磁気軸受において、
前記ステータは、
環状の連結部及びこの連結部の内周側から中心に向けて突出すると共に前記連結部の周方向に一定の間隔で配置された偶数個の主突極を有し前記連結部が前記主突極から周方向にずれた位置で分割された磁性体からなる継鉄と、
前記主突極に巻回された励磁コイルと、
前記連結部の分割端間に挿入されて一端が前記ロータに向けて前記連結部から突出するように前記径方向に沿って配置され一方の面を第1極性、他方の面を第2極性として厚み方向に着磁されたバイアス磁束を供給する板状のバイアス用永久磁石と、
前記バイアス用永久磁石の前記連結部からの径方向突出部の前記一方の面側に配置され前記ロータ側を第2極性、前記連結部側を第1極性とする第1の磁束吸収用磁石と、
前記バイアス用永久磁石の前記連結部からの径方向突出部の前記他方の面側に配置され前記ロータ側を第1極性、前記連結部側を第2極性とする第2の磁束吸収用磁石と
を有することを特徴とする磁気軸受。
In a magnetic bearing having a stator and a rotor that is supported and rotated in a non-contact state by magnetic force on the stator,
The stator is
An annular connecting portion and an even number of main salient poles that protrude from the inner peripheral side of the connecting portion toward the center and that are arranged at regular intervals in the circumferential direction of the connecting portion, the connecting portion being the main impact A yoke made of a magnetic material divided at a position shifted in the circumferential direction from the pole,
An exciting coil wound around the main salient pole;
It is inserted between the split ends of the connecting portion, and one end is arranged along the radial direction so as to protrude from the connecting portion toward the rotor, and one surface has a first polarity and the other surface has a second polarity. A plate-like permanent magnet for bias that supplies a bias magnetic flux magnetized in the thickness direction;
A first magnetic flux absorbing magnet which is disposed on the one surface side of the radially projecting portion from the connecting portion of the biasing permanent magnet and has the rotor side as the second polarity and the connecting portion side as the first polarity; ,
A second magnetic flux absorbing magnet disposed on the other surface side of the radially projecting portion from the coupling portion of the biasing permanent magnet and having the rotor side as a first polarity and the coupling portion side as a second polarity; The magnetic bearing characterized by having.
前記連結部の分割端は、前記ロータに向けて突出していることを特徴とする請求項2記載の磁気軸受。   The magnetic bearing according to claim 2, wherein a split end of the connecting portion protrudes toward the rotor. 前記第1及び第2の磁束吸収用磁石は、前記バイアス用永久磁石の前記連結部からの径方向突出部の両面全体を覆うものであることを特徴とする請求項1〜3のいずれか1項記載の磁気軸受。   The said 1st and 2nd magnet for magnetic flux absorption covers all the both surfaces of the radial direction protrusion part from the said connection part of the said permanent magnet for a bias, The any one of Claims 1-3 characterized by the above-mentioned. The magnetic bearing according to item. 前記バイアス用永久磁石は、全周に亘って前記連結部から張り出し、
前記第1の磁束吸収用磁石は、前記バイアス用永久磁石の前記張出部の前記一方の面側に配置され、外側を第2極性、内側を第1極性として着磁され、
前記第2の磁束吸収用磁石は、前記バイアス用永久磁石の前記張出部の前記他方の面側に配置され、外側を第1極性、内側を第2極性として着磁されたものである
ことを特徴とする請求項1〜4のいずれか1項記載の磁気軸受。
The permanent magnet for bias protrudes from the connecting portion over the entire circumference,
The first magnetic flux absorbing magnet is disposed on the one surface side of the projecting portion of the biasing permanent magnet, and is magnetized with a second polarity on the outer side and a first polarity on the inner side,
The second magnetic flux absorbing magnet is disposed on the other surface side of the protruding portion of the biasing permanent magnet, and is magnetized with the outer side being the first polarity and the inner side being the second polarity. The magnetic bearing according to claim 1, wherein:
前記第1及び第2の磁束吸収用磁石の前記ロータと対向する面に磁束検出用素子を設けたことを特徴とする請求項1〜5のいずれか1項記載の磁気軸受。   6. The magnetic bearing according to claim 1, wherein a magnetic flux detecting element is provided on a surface of the first and second magnetic flux absorbing magnets facing the rotor.
JP2008277874A 2008-10-29 2008-10-29 Magnetic bearing Active JP5074350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277874A JP5074350B2 (en) 2008-10-29 2008-10-29 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277874A JP5074350B2 (en) 2008-10-29 2008-10-29 Magnetic bearing

Publications (2)

Publication Number Publication Date
JP2010106908A JP2010106908A (en) 2010-05-13
JP5074350B2 true JP5074350B2 (en) 2012-11-14

Family

ID=42296561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277874A Active JP5074350B2 (en) 2008-10-29 2008-10-29 Magnetic bearing

Country Status (1)

Country Link
JP (1) JP5074350B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678176A (en) * 2016-11-11 2017-05-17 浙江大学 Modular radial single-freedom-degree hybrid magnetic suspension bearing
CN111425523A (en) * 2020-02-28 2020-07-17 天津大学 Hybrid radial permanent magnet biased magnetic bearing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907130B (en) * 2010-07-09 2011-12-28 北京奇峰聚能科技有限公司 Dual-air gap permanent magnet offset inner rotor radial magnetic bearing
JP5762999B2 (en) * 2012-03-09 2015-08-12 株式会社東芝 Magnetic levitation device
JP2018162865A (en) * 2017-03-27 2018-10-18 Ntn株式会社 Pump for low temperature fluid and low temperature fluid transfer device
CN108895085B (en) * 2018-08-31 2023-08-22 江苏大学 Inverter driving type outer rotor axial-radial six-pole hybrid magnetic bearing
CN110486380B (en) * 2019-07-08 2021-02-19 广东工业大学 Stator-free tooth heteropolar permanent magnet bias hybrid radial magnetic bearing
CN110953249A (en) * 2019-12-02 2020-04-03 北京泓慧国际能源技术发展有限公司 Directional single magnetic circuit radial magnetic bearing and rotating device
JP2021143640A (en) * 2020-03-12 2021-09-24 Ntn株式会社 Low-temperature fluid pump and low-temperature fluid transfer device
CN111306194A (en) * 2020-03-12 2020-06-19 南京航空航天大学 Tapered magnetic bearing with modular permanent magnet built-in structure for aero-engine
CN111946748B (en) * 2020-08-20 2021-11-16 天津市城西广源电力工程有限公司 Magnetic processing bearing in wind motor and processing equipment thereof
CN113285558B (en) * 2021-04-22 2022-04-29 东南大学 Bias magnetic field adjustable force balance type stator permanent magnet motor magnetic bearing
CN114294326B (en) * 2021-12-27 2023-01-10 珠海格力电器股份有限公司 Magnetic suspension radial bearing and motor
CN117307603B (en) * 2023-09-11 2024-06-11 淮阴工学院 Mixed excitation magnetic bearing with independent radial and axial levitation force

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983829A (en) * 1982-11-02 1984-05-15 Seiko Instr & Electronics Ltd Low-power consumption radial electromagnet for magnetic bearing
JP2001074050A (en) * 1999-07-06 2001-03-23 Nsk Ltd Radial magnetic bearing
JP4138606B2 (en) * 2003-08-19 2008-08-27 株式会社イワキ Magnetic bearing
JP4138735B2 (en) * 2004-11-29 2008-08-27 株式会社イワキ Magnetic bearing
JP4138739B2 (en) * 2004-12-10 2008-08-27 株式会社イワキ Magnetic bearing
JP4786297B2 (en) * 2005-10-28 2011-10-05 株式会社イワキ Hybrid magnetic bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678176A (en) * 2016-11-11 2017-05-17 浙江大学 Modular radial single-freedom-degree hybrid magnetic suspension bearing
CN106678176B (en) * 2016-11-11 2019-05-31 浙江大学 A kind of modular radial single-degree-of-freedom hybrid magnetic suspension bearing
CN111425523A (en) * 2020-02-28 2020-07-17 天津大学 Hybrid radial permanent magnet biased magnetic bearing

Also Published As

Publication number Publication date
JP2010106908A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5074350B2 (en) Magnetic bearing
JP4702286B2 (en) Rotor, motor driving method, compressor
JP4692090B2 (en) Axial air gap type electric motor
JP6319973B2 (en) Permanent magnet type rotating electric machine
JP2005151725A (en) Axial gap rotary electric machine
JP5045067B2 (en) Forward salient pole motor applied to bearingless motor
JP6512060B2 (en) Rotor of electric rotating machine
JP5313752B2 (en) Brushless motor
US20110163618A1 (en) Rotating Electrical Machine
JP2007143335A (en) Field magneton and motor
JP2007068318A (en) Magnet embedded type motor
JP6065568B2 (en) Magnetizer
JP2010110128A (en) Permanent magnet rotating electrical machine
JP2011078202A (en) Axial gap motor
JP2005354798A (en) Electric motor
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP2008148447A (en) Motor for electric power steering device
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP4491260B2 (en) Rotor for bearingless motor and bearingless motor
JP2007043864A (en) Axial air gap synchronous machine
JP5491762B2 (en) Permanent magnet rotating electric machine
JP4466262B2 (en) Rotor structure of axial gap motor
JP5702118B2 (en) Rotor structure and motor
JP5852418B2 (en) Rotor and motor
JP2008187863A (en) Axial gap rotary electric machine and compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120823

R150 Certificate of patent or registration of utility model

Ref document number: 5074350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250