JP2010110128A - Permanent magnet rotating electrical machine - Google Patents

Permanent magnet rotating electrical machine Download PDF

Info

Publication number
JP2010110128A
JP2010110128A JP2008280282A JP2008280282A JP2010110128A JP 2010110128 A JP2010110128 A JP 2010110128A JP 2008280282 A JP2008280282 A JP 2008280282A JP 2008280282 A JP2008280282 A JP 2008280282A JP 2010110128 A JP2010110128 A JP 2010110128A
Authority
JP
Japan
Prior art keywords
permanent magnet
row
rotating electrical
electrical machine
magnet row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008280282A
Other languages
Japanese (ja)
Inventor
Daisuke Misu
大輔 三須
Sueyoshi Mizuno
末良 水野
Akihira Morishita
明平 森下
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP2008280282A priority Critical patent/JP2010110128A/en
Publication of JP2010110128A publication Critical patent/JP2010110128A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet rotating electrical machine which is reduced in weight by being thinned in the axial direction and provides high output. <P>SOLUTION: In a permanent magnet rotating electrical machine comprising: a stator having an armature winding; and a rotor having permanent magnets rotatably supported to the stator and arranged in a Halbach array, two arrays of permanent magnets arranged in a Halbach array are provided in the peripheral direction from the center of rotation of the rotor, and the armature winding of the stator is provided between the arrays of permanent magnets. Each array of permanent magnets is composed of a combination of nearly triangular magnets. The directions of magnetic poles of individual permanent magnets in the outside array of permanent magnets and in the inside array of permanent magnets are the same in the radial direction, and reverse in the peripheral direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子巻線を有する固定子に対し回転可能に支持された回転子にハルバッハ配列された永久磁石を有する永久磁石回転電機に関する。   The present invention relates to a permanent magnet rotating electric machine having permanent magnets arranged in a Halbach array on a rotor rotatably supported by a stator having an electronic winding.
永久磁石をハルバッハ配列した永久磁石回転電機は、径方向にN極とS極を交互に配置した主磁極磁石と、この主磁極磁石の周方向両面に径方向以外(例えば周方向)に着磁された補助磁石を備えたものである(例えば、特許文献1、2参照)。永久磁石をハルバッハ配列した永久磁石回転電機の主磁極磁石と補助磁石とは、全体で略円筒状をなしており、永久磁石をハルバッハ配列にすると、特定の方向の磁力を強めることができる。このハルバッハ配列された永久磁石を有する回転電機は、大きくすることなく高出力化を図ることが可能になる。   A permanent magnet rotating electrical machine in which permanent magnets are arranged in Halbach is a main magnetic pole magnet in which N poles and S poles are alternately arranged in the radial direction, and magnetized in a direction other than the radial direction (for example, in the circumferential direction) The auxiliary magnet is provided (see, for example, Patent Documents 1 and 2). The main magnetic pole magnet and the auxiliary magnet of the permanent magnet rotating electrical machine in which the permanent magnets are arranged in the Halbach array are substantially cylindrical as a whole. When the permanent magnets are arranged in the Halbach array, the magnetic force in a specific direction can be increased. The rotating electrical machine having the permanent magnets arranged in the Halbach arrangement can achieve high output without increasing the size.
図14は、従来のハルバッハ配列した永久磁石列を有する回転電機の磁束密度分布を示した磁束密度分布図である。ヨーク鉄心15に電機子巻線4が巻かれており、永久磁石16、電機子巻線4、ヨーク鉄心15の間に磁束が形成される。
特開2006−320109号公報(第1図) 特開2004−350427号公報(第1乃至2図)
FIG. 14 is a magnetic flux density distribution diagram showing a magnetic flux density distribution of a rotating electrical machine having permanent magnet arrays arranged in a conventional Halbach array. The armature winding 4 is wound around the yoke core 15, and a magnetic flux is formed between the permanent magnet 16, the armature winding 4, and the yoke core 15.
JP 2006-320109 A (FIG. 1) JP 2004-350427 A (FIGS. 1 and 2)
しかし、特許文献1のものでは、固定子や回転子に鉄心を用いているため回転電機の質量が重くなり、高出力を図るには、回転電機の軸方向若しくは径方向に長くする必要がある。また、特許文献2のものにおいても、固定子に鉄心を用いているため回転電機の質量が重くなり、高出力を図るには、回転電機の軸方向若しくは径方向に長くする必要がある。   However, in the thing of patent document 1, since the iron core is used for a stator or a rotor, the mass of a rotary electric machine becomes heavy, and in order to aim at high output, it is necessary to lengthen in the axial direction or radial direction of a rotary electric machine. . Also, in Patent Document 2, since the iron core is used for the stator, the mass of the rotating electrical machine becomes heavy, and in order to achieve high output, it is necessary to lengthen it in the axial direction or the radial direction of the rotating electrical machine.
この発明の目的は、回転電機の形状を軸方向に薄くし軽量化を図り、しかも高出力が得られる永久磁石回転電機を提供することである。   An object of the present invention is to provide a permanent magnet rotating electrical machine that can reduce the weight of the rotating electrical machine in the axial direction, reduce the weight, and obtain a high output.
本発明の永久磁石回転電機は、電機子巻線を有する固定子と、前記固定子に対し回転可能に支持されハルバッハ配列された永久磁石を有する回転子とからなる永久磁石回転電機において、前記回転子が回転中心から周方向にハルバッハ配列された2列の永久磁石列を設け、前記永久磁石列の間に前記固定子の電機子巻線を設け、前記永久磁石列は、それぞれ略三角形の磁石の組み合わせにより構成され、永久磁石列の外側永久磁石の磁極の向きと永久磁石列の内側永久磁石の磁極の向きとが、径方向の磁極の向きについては同一方向で、周方向の磁極向きについては逆方向に向いていることを特徴とする。   The permanent magnet rotating electrical machine of the present invention is a permanent magnet rotating electrical machine comprising a stator having armature windings and a rotor having permanent magnets supported rotatably with respect to the stator and arranged in a Halbach array. Two permanent magnet rows in which the child is arranged in the Halbach direction from the center of rotation are provided, and the armature winding of the stator is provided between the permanent magnet rows, each of the permanent magnet rows being a substantially triangular magnet. The direction of the magnetic pole of the outer permanent magnet of the permanent magnet array and the direction of the magnetic pole of the inner permanent magnet of the permanent magnet array are the same in the radial magnetic pole direction, and the circumferential magnetic pole direction. Is directed in the opposite direction.
本発明によれば、回転電機の形状を軸方向に薄くし軽量化を図り、しかも高出力化が得られる永久磁石回転電機を提供できる。   According to the present invention, it is possible to provide a permanent magnet rotating electric machine that can reduce the weight by reducing the shape of the rotating electric machine in the axial direction and can achieve high output.
図1は本発明の実施の形態に係わる永久磁石回転電機1の一例の軸方向断面図である。永久磁石回転電機1は、固定子6に電機子巻線4及びシャフト7が形成され、回転子5に永久磁石列2および永久磁石列3及び軸受14が形成されて構成される。   FIG. 1 is an axial sectional view of an example of a permanent magnet rotating electrical machine 1 according to an embodiment of the present invention. The permanent magnet rotating electrical machine 1 is configured by forming an armature winding 4 and a shaft 7 on a stator 6 and forming a permanent magnet row 2, a permanent magnet row 3, and a bearing 14 on a rotor 5.
固定子6には、中心にシャフト7と電機子巻線4を取付けるための凸部とが形成されている。電機子巻線4は、例えば三相交流を用いる場合、U相−V相−W相の順に巻かれている。固定子6と回転子5との間には、軸受14が構成されており、回転子5は固定子6の上で回転する構造になっている。回転子5にはハルバッハの配列で構成された略円筒形状の2列の永久磁石列2および永久磁石列3が周方向に設けられている。回転子5は、固定子6に対向する側に凸部を2列有し、回転子5の外側の凸部には永久磁石列(外側)2の永久磁石16を、内側の凸部には永久磁石列(内側)3の永久磁石16が例えば接着等により取付けられている。そして、回転子5に取り付けられた永久磁石列2および永久磁石列3の間に電機子巻線4を配置するように構成されている。   The stator 6 is formed with a shaft 7 and a projection for attaching the armature winding 4 at the center. For example, when three-phase alternating current is used, the armature winding 4 is wound in the order of U phase-V phase-W phase. A bearing 14 is configured between the stator 6 and the rotor 5, and the rotor 5 is configured to rotate on the stator 6. The rotor 5 is provided with two substantially cylindrical permanent magnet rows 2 and permanent magnet rows 3 formed in a Halbach arrangement in the circumferential direction. The rotor 5 has two rows of convex portions on the side facing the stator 6, the permanent magnet 16 of the permanent magnet row (outside) 2 is provided on the outer convex portion of the rotor 5, and the inner convex portion is provided on the inner convex portion. The permanent magnets 16 of the permanent magnet row (inner side) 3 are attached by, for example, adhesion. The armature winding 4 is arranged between the permanent magnet row 2 and the permanent magnet row 3 attached to the rotor 5.
図2は、本発明の実施の形態の永久磁石回転電機1の一例の径方向断面図である。回転子5に取り付けられた永久磁石列2および永久磁石列3は、図2に示すような磁極の配列とする。ハルバッハ配列された永久磁石列2および永久磁石列3は、断面形状が略三角形の永久磁石16の組み合わせによって略円筒形状を構成している。永久磁石列2と永久磁石列3は、磁極の向きを径方向、周方向交互に配置されている
永久磁石列2と永久磁石列3は、磁極の向きが径方向の永久磁石16の略三角形の底辺が電機子巻線4側を向くよう配置されることにより構成される。また、永久磁石列2と永久磁石列3は、周方向に隣り合う磁極の向きが径方向の永久磁石16の径方向の磁極が交互になるように配置されることにより構成される。そして、永久磁石列2と永久磁石列3の磁極の向きが径方向の対向する永久磁石16同士は、同方向を向くように配置される。
FIG. 2 is a radial cross-sectional view of an example of the permanent magnet rotating electrical machine 1 according to the embodiment of the present invention. The permanent magnet row 2 and the permanent magnet row 3 attached to the rotor 5 have a magnetic pole arrangement as shown in FIG. The permanent magnet row 2 and the permanent magnet row 3 arranged in Halbach form a substantially cylindrical shape by a combination of permanent magnets 16 having a substantially triangular cross section. The permanent magnet row 2 and the permanent magnet row 3 are alternately arranged in the radial direction and the circumferential direction in the magnetic pole direction. The permanent magnet row 2 and the permanent magnet row 3 are substantially triangular of the permanent magnet 16 whose magnetic pole direction is in the radial direction. It is comprised by arrange | positioning so that the bottom side may face the armature winding 4 side. Moreover, the permanent magnet row 2 and the permanent magnet row 3 are configured by arranging the magnetic poles in the radial direction of the permanent magnets 16 whose radial directions are adjacent to each other in the circumferential direction. And the permanent magnets 16 in which the directions of the magnetic poles of the permanent magnet row 2 and the permanent magnet row 3 face each other in the radial direction are arranged so as to face in the same direction.
磁極の向きが径方向の永久磁石16の間に配置された磁極の向きが周方向の永久磁石16は、断面形状が略三角形で構成されている。永久磁石列2と永久磁石列3は、磁極の向きが周方向の永久磁石16の略三角形の底辺が永久磁石回転電機1の外側を向くよう配置されることにより構成される。また、永久磁石列2と永久磁石列3は、周方向に隣り合う磁極の向きが周方向の永久磁石16の周方向の磁極が交互になるように配置されることにより構成される。そして、永久磁石列2と永久磁石列3の磁極の向きが周方向の永久磁石16同士は、逆方向を向くように配置される。   The permanent magnet 16 whose magnetic pole direction is disposed between the permanent magnets 16 whose radial direction is the radial direction has a substantially triangular cross section. The permanent magnet row 2 and the permanent magnet row 3 are configured by arranging so that the base of the substantially triangular shape of the permanent magnet 16 whose magnetic pole direction is in the circumferential direction faces the outside of the permanent magnet rotating electrical machine 1. In addition, the permanent magnet row 2 and the permanent magnet row 3 are configured by arranging the magnetic poles adjacent to each other in the circumferential direction so that the circumferential magnetic poles of the permanent magnet 16 in the circumferential direction are alternately arranged. The permanent magnets 16 having the circumferential direction of the magnetic poles of the permanent magnet row 2 and the permanent magnet row 3 are arranged so as to face in opposite directions.
図3は、略三角形の永久磁石16によりハルバッハ配列の永久磁石列2および永久磁石列3が構成された場合における永久磁石回転電機1の軸方向断面の磁束線の分布図である。これにより、永久磁石列2および永久磁石列3に挟まれた空間の磁束密度の変化は滑らかになり、正弦波状の磁束密度分布を得ることができる。また正弦波状の磁束密度分布により、永久磁石回転電機1の回転時の振動を減少することができる。   FIG. 3 is a distribution diagram of magnetic flux lines in the axial section of the permanent magnet rotating electric machine 1 when the permanent magnet row 2 and the permanent magnet row 3 in the Halbach array are constituted by the substantially triangular permanent magnets 16. Thereby, the change of the magnetic flux density in the space sandwiched between the permanent magnet row 2 and the permanent magnet row 3 becomes smooth, and a sinusoidal magnetic flux density distribution can be obtained. Further, the vibration during rotation of the permanent magnet rotating electrical machine 1 can be reduced by the sinusoidal magnetic flux density distribution.
ここで図17は、従来の永久磁石回転電機1における径方向の磁束密度分布である。従来例の図17と対比すると、図3の磁束密度分布は、多くの磁束が得られることが分かる。また、従来の永久磁石回転電機1ではヨーク鉄心15に電機子巻線を巻いた結果であり、質量増大の要因になっている。このように、回転子5にハルバッハ配列した略円筒形状の2列の永久磁石列2および永久磁石列3を設け、略円筒形状の永久磁石列2および永久磁石列3の間に固定子6の電機子巻線4を設け、永久磁石回転電機1の軸方向の幅を薄くすることができる。   Here, FIG. 17 shows the magnetic flux density distribution in the radial direction in the conventional permanent magnet rotating electrical machine 1. Compared with FIG. 17 of the conventional example, it can be seen that the magnetic flux density distribution of FIG. Further, in the conventional permanent magnet rotating electric machine 1, the armature winding is wound around the yoke core 15, which causes an increase in mass. In this manner, the rotor 5 is provided with two substantially cylindrical permanent magnet rows 2 and 3 arranged in a Halbach array, and the stator 6 is disposed between the substantially cylindrical permanent magnet row 2 and the permanent magnet row 3. The armature winding 4 can be provided to reduce the axial width of the permanent magnet rotating electrical machine 1.
ハルバッハ配列した略円筒形状の2列の永久磁石列2および永久磁石列2を構成することで、従来例に比べ磁束密度が大きいことから、永久磁石回転電機1の形状を大きくすることなく高出力化が可能になる。   By constructing two substantially cylindrical permanent magnet rows 2 and permanent magnet rows 2 arranged in a Halbach array, the magnetic flux density is higher than that of the conventional example, so that the output of the permanent magnet rotating electrical machine 1 can be increased without increasing the shape. Can be realized.
また、永久磁石列2と永久磁石列3は、それぞれ略三角形状の永久磁石16の組合せにより、隣り合う永久磁石16同士が反発することなく略円筒形状を構成することができる。したがって、取付けサポートを使用することなく永久磁石列2と永久磁石列3を製造することが可能となり、製造コストの低減が図れる。   Moreover, the permanent magnet row | line | column 2 and the permanent magnet row | line | column 3 can comprise a substantially cylindrical shape, without the adjacent permanent magnets 16 repelling by the combination of the substantially triangular shaped permanent magnet 16, respectively. Therefore, it becomes possible to manufacture the permanent magnet row 2 and the permanent magnet row 3 without using the mounting support, and the manufacturing cost can be reduced.
次に、永久磁石列2を構成する磁極の向きが径方向の永久磁石16と磁極の向きが周方向の永久磁石16の断面積の関係について説明する。永久磁石列3についても同様である。   Next, the relationship between the cross-sectional areas of the permanent magnet 16 having a radial magnetic pole direction and the permanent magnet 16 having a circumferential magnetic pole direction constituting the permanent magnet row 2 will be described. The same applies to the permanent magnet row 3.
磁極の向きが径方向の永久磁石16と磁極の向きが周方向の永久磁石16の断面積が同じ、または、磁極の向きが径方向の永久磁石16が磁極の向きが周方向の永久磁石16の断面積よりも小さい場合、図3に示すように、永久磁石列2の外側、及び、永久磁石列3の内側の径方向向きの磁束が減少し、漏れ磁束を減少させることができる
磁極の向きが径方向の永久磁石16が磁極の向きが周方向の永久磁石16の断面積よりも大きい場合、任意の磁路を形成できる。そのため、後述するように、永久磁石回転電機1は、永久磁石列2の外側に強磁性部材12、及び永久磁石列3の内側に強磁性部材13を配置する場合にも、高出力が得られる。
The cross-sectional area of the permanent magnet 16 whose magnetic pole direction is radial and the permanent magnet 16 whose magnetic pole direction is circumferential are the same, or the permanent magnet 16 whose magnetic pole direction is radial direction is the permanent magnet 16 whose magnetic pole direction is circumferential direction. 3, the magnetic flux in the radial direction outside the permanent magnet row 2 and inside the permanent magnet row 3 is reduced as shown in FIG. 3, and the leakage magnetic flux can be reduced. When the direction of the radial permanent magnet 16 is larger than the cross-sectional area of the permanent magnet 16 in the circumferential direction, an arbitrary magnetic path can be formed. Therefore, as will be described later, the permanent magnet rotating electrical machine 1 can obtain high output even when the ferromagnetic member 12 is disposed outside the permanent magnet row 2 and the ferromagnetic member 13 is disposed inside the permanent magnet row 3. .
図4は本発明の実施の形態に係わる永久磁石回転電機1の他の一例の軸方向断面図である。この図4に示した一例は、図1に示した一例に対し、回転子5にハルバッハ配列した略円筒形状の永久磁石列2および永久磁石列3において、外側の永久磁石列2の径方向の寸法を内側の永久磁石列3の径方向の寸法より長くしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 4 is an axial cross-sectional view of another example of the permanent magnet rotating electrical machine 1 according to the embodiment of the present invention. The example shown in FIG. 4 differs from the example shown in FIG. 1 in the radial direction of the outer permanent magnet row 2 in the substantially cylindrical permanent magnet row 2 and the permanent magnet row 3 arranged in the Halbach array on the rotor 5. The dimension is longer than the radial dimension of the inner permanent magnet row 3. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
外側の永久磁石列2の径方向の寸法を内側の永久磁石列3の径方向の寸法より長くしたことで、外側の永久磁石列2の永久磁石16の磁束密度を大きくできるため、永久磁石回転電機1の出力(トルク)を大きくすることができる。   By making the radial dimension of the outer permanent magnet row 2 longer than the radial dimension of the inner permanent magnet row 3, the magnetic flux density of the permanent magnets 16 of the outer permanent magnet row 2 can be increased. The output (torque) of the electric machine 1 can be increased.
図5は本発明の実施の形態に係わる永久磁石回転電機1の別の他の一例の軸方向断面図である。この図5に示した一例は、図1に示した一例に対し、回転子5にハルバッハ配列した略円筒形状の永久磁石列2および永久磁石列3の永久磁石16の体積をほぼ同じになるように内側の永久磁石列3の径方向の寸法を外側の永久磁石列2の径方向の寸法より長くしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   FIG. 5 is an axial sectional view of another example of the permanent magnet rotating electrical machine 1 according to the embodiment of the present invention. In the example shown in FIG. 5, the volume of the substantially cylindrical permanent magnet row 2 and the permanent magnet row 16 of the permanent magnet row 3 arranged in the Halbach array on the rotor 5 is substantially the same as the example shown in FIG. Further, the radial dimension of the inner permanent magnet row 3 is longer than the radial dimension of the outer permanent magnet row 2. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
回転子5にハルバッハ配列した略円筒形状の永久磁石列2および永久磁石列3の体積をほぼ同じになるようにしたことで、それぞれの永久磁石列2および永久磁石列3のエネルギー密度がほぼ同じになり、電機子巻線4を鎖交する磁束が均一化される。これにより、大きい出力(トルク)を得ることができる。   By making the volumes of the substantially cylindrical permanent magnet row 2 and the permanent magnet row 3 arranged in the Halbach array on the rotor 5 substantially the same, the energy densities of the permanent magnet row 2 and the permanent magnet row 3 are almost the same. Thus, the magnetic flux interlinking the armature winding 4 is made uniform. Thereby, a large output (torque) can be obtained.
次に、ハルバッハ配列された永久磁石列2および永久磁石列3を配置した回転子5は、非磁性金属部材や樹脂部材で形成される。一般的には回転子5は薄い電磁鋼板を積層して構成されるが、加工が容易な非磁性金属部材や樹脂部材とし、回転子5への永久磁石列2および永久磁石列3の取付けを容易にし、さらに軽量化を図るとともに製造コストを削減する。   Next, the rotor 5 in which the permanent magnet row 2 and the permanent magnet row 3 arranged in the Halbach array are arranged is formed of a nonmagnetic metal member or a resin member. In general, the rotor 5 is configured by laminating thin electromagnetic steel plates. However, the rotor 5 is a nonmagnetic metal member or resin member that can be easily processed, and the permanent magnet row 2 and the permanent magnet row 3 are attached to the rotor 5. To make it easier, further reduce weight and reduce manufacturing costs.
また、電機子巻線4を配置した固定子6についても、非磁性金属部材または樹脂部材で形成する。一般的には固定子6は回転子5と同様に薄い電磁鋼板を積層して構成されるが、加工が容易な非磁性金属部材や樹脂部材とし、軽量化を図るとともに製造コストを削減する。   The stator 6 on which the armature winding 4 is disposed is also formed of a nonmagnetic metal member or a resin member. In general, the stator 6 is configured by laminating thin electromagnetic steel plates in the same manner as the rotor 5. However, the stator 6 is a nonmagnetic metal member or a resin member that can be easily processed to reduce the weight and reduce the manufacturing cost.
次に、固定子6に配置した電機子巻線4は、集中巻きの巻線またはプリント基板で形成する。図6は、電機子巻線4を集中巻きで形成した場合の永久磁石回転電機1の一部切欠径方向断面図である。図6に示すように、電機子巻線4を集中巻にすることで、巻線を永久磁石列2と永久磁石列3との間に収めることが可能になる。これにより永久磁石回転電機1は電機子巻線4が軸方向に広がらない。また、永久磁石回転電機1の軸方向の長さを薄くすることができる。さらに、予めボビン(図示省略)に電機子巻線4を巻いて置き、固定子6に装着することができるので、製造コストを削減することができる。   Next, the armature winding 4 disposed on the stator 6 is formed by concentrated winding or a printed circuit board. FIG. 6 is a partially cutaway radial sectional view of the permanent magnet rotating electric machine 1 when the armature winding 4 is formed by concentrated winding. As shown in FIG. 6, by making the armature winding 4 into a concentrated winding, the winding can be accommodated between the permanent magnet row 2 and the permanent magnet row 3. Thereby, in the permanent magnet rotating electric machine 1, the armature winding 4 does not spread in the axial direction. Further, the axial length of the permanent magnet rotating electrical machine 1 can be reduced. Furthermore, since the armature winding 4 can be wound around a bobbin (not shown) and mounted on the stator 6, the manufacturing cost can be reduced.
図7は、電機子巻線4をプリント基板で形成した場合の永久磁石回転電機1の軸方向断面図である。図7に示すように、電機子巻線4をプリント基板11で形成しているので、従来例で用いられる銅線に比べ軽量化することができる。従って、永久磁石回転電機1の小型化や軽量化が図れる。   FIG. 7 is a sectional view in the axial direction of the permanent magnet rotating electrical machine 1 when the armature winding 4 is formed of a printed board. As shown in FIG. 7, since the armature winding 4 is formed of the printed circuit board 11, the weight can be reduced as compared with the copper wire used in the conventional example. Therefore, the permanent magnet rotating electrical machine 1 can be reduced in size and weight.
また、固定子6に配置した電機子巻線4は、その電機子巻線に対向する永久磁石面の幅より広く形成してもよい。図8は、電機子巻線4をそれに対向する永久磁石面の幅より広く形成した場合の永久磁石回転電機1の軸方向断面図である。図8に示すように、電機子巻線4の軸方向長さを対向する永久磁石列2および永久磁石列3面の幅より長く(広く)形成している。電機子巻線4の軸方向長さを対向する永久磁石列2および永久磁石列3面の幅より長く(広く)したことで、電機子巻線4に対し、永久磁石列2および永久磁石列3の磁界が鎖交する量を多くすることができ、永久磁石列2および永久磁石列3の磁束を効率よく得ることができる。従って、永久磁石回転電機1の高出力化が図れる。   Further, the armature winding 4 disposed on the stator 6 may be formed wider than the width of the permanent magnet surface facing the armature winding. FIG. 8 is an axial cross-sectional view of the permanent magnet rotating electrical machine 1 when the armature winding 4 is formed wider than the width of the permanent magnet surface facing the armature winding 4. As shown in FIG. 8, the axial length of the armature winding 4 is longer (wider) than the width of the opposing permanent magnet row 2 and permanent magnet row 3 surfaces. The length of the armature winding 4 in the axial direction is longer (wider) than the width of the opposing permanent magnet row 2 and permanent magnet row 3 surface, so that the permanent magnet row 2 and permanent magnet row are arranged with respect to the armature winding 4. Thus, the amount of magnetic fields of the three magnetic fields can be increased, and the magnetic fluxes of the permanent magnet row 2 and the permanent magnet row 3 can be obtained efficiently. Therefore, the output of the permanent magnet rotating electrical machine 1 can be increased.
さらに、固定子6に配置した電機子巻線6は、炭素線、超電導線または高温超電導線のいずれかを用いて形成する。電機子巻線4の巻線材料に炭素線を用いた場合には、従来例で用いられる銅線に比べ軽量化することができるため、永久磁石回転電機1の軽量化が図れる。図9は電機子巻線4に超電導線もしくは高温超電導線を用いた場合の永久磁石回転電機1の軸方向断面図である。図9に示すように、超電導線または高温超電導線の電機子巻線は、クライオ8の中に配置されており、クライオ8には低温配管9が接続されている。低温配管9の端部は冷凍機10に接続され、冷凍機10を駆動することでクライオ8の内部が超電導状態を維持できる構成になっている。電機子巻線4の巻線材料に超電導線もしくは高温超電導線を用いていることで、電機子巻線4の電気抵抗をゼロにでき、電流の損失をなくすことができ、永久磁石回転電機1の高出力化が図れる。   Further, the armature winding 6 disposed on the stator 6 is formed using any one of a carbon wire, a superconducting wire, and a high temperature superconducting wire. When a carbon wire is used as the winding material of the armature winding 4, the weight can be reduced compared to the copper wire used in the conventional example, so that the permanent magnet rotating electrical machine 1 can be reduced in weight. FIG. 9 is a sectional view in the axial direction of the permanent magnet rotating electrical machine 1 when a superconducting wire or a high-temperature superconducting wire is used for the armature winding 4. As shown in FIG. 9, the armature winding of the superconducting wire or the high temperature superconducting wire is disposed in the cryo 8, and the cryo tube 8 is connected to the cryo 8. The end of the low-temperature pipe 9 is connected to the refrigerator 10, and the refrigerator 8 is driven so that the inside of the cryo 8 can maintain the superconducting state. By using a superconducting wire or a high-temperature superconducting wire as the winding material of the armature winding 4, the electric resistance of the armature winding 4 can be reduced to zero, and the loss of current can be eliminated. Output can be increased.
次に、ハルバッハ配列の永久磁石列に漏れ磁束を減少させるための強磁性部材を設けるようにしてもよい。図10は外側に配置したハルバッハ配列の永久磁石列2の外側に強磁性部材12を備えた場合の永久磁石回転電機1の軸方向断面図である。図10に示すように、外側に配置したハルバッハ配列の永久磁石列2の外側に強磁性部材12が設けられている。   Next, a ferromagnetic member for reducing leakage magnetic flux may be provided in the permanent magnet array in the Halbach array. FIG. 10 is a cross-sectional view in the axial direction of the permanent magnet rotating electrical machine 1 when the ferromagnetic member 12 is provided outside the permanent magnet array 2 arranged in the Halbach array on the outside. As shown in FIG. 10, the ferromagnetic member 12 is provided outside the permanent magnet row 2 arranged in the Halbach array on the outside.
図11は内側に配置したハルバッハ配列の永久磁石列3の内側に強磁性部材13を備えた場合の永久磁石回転電機1の軸方向断面図である。図11に示すように、内側に配置したハルバッハ配列の永久磁石列3の内側に強磁性部材13が設けられている。   FIG. 11 is a sectional view in the axial direction of the permanent magnet rotating electrical machine 1 when the ferromagnetic member 13 is provided inside the permanent magnet row 3 arranged in the Halbach array inside. As shown in FIG. 11, the ferromagnetic member 13 is provided inside the permanent magnet row 3 arranged in the Halbach array inside.
また、図12は外側に配置したハルバッハ配列の永久磁石列2の外側及び内側に配置したハルバッハ配列の永久磁石列3の内側の双方に強磁性部材12、13を備えた場合の永久磁石回転電機1の軸方向断面図である。図12に示すように、外側に配置したハルバッハ配列の永久磁石列2の外側、及び内側に配置したハルバッハ配列の永久磁石列3の内側の双方に強磁性部材12、13が設けられている。強磁性部材12、13及び永久磁石列2および永久磁石列3は、例えば接着により回転子5に接続されている。   FIG. 12 shows a permanent magnet rotating electric machine in which ferromagnetic members 12 and 13 are provided on both the outer side of the permanent magnet row 2 in the Halbach array arranged on the outside and the inner side of the permanent magnet row 3 in the Halbach array on the inner side. FIG. As shown in FIG. 12, ferromagnetic members 12 and 13 are provided on both the outside of the permanent magnet row 2 arranged in the Halbach array on the outside and the inside of the permanent magnet row 3 arranged in the Halbach array on the inside. The ferromagnetic members 12, 13 and the permanent magnet row 2 and the permanent magnet row 3 are connected to the rotor 5 by adhesion, for example.
永久磁石列2の径方向外側と、永久磁石列2の径方向内側とに漏れ磁束が生じる場合、外側強磁性部材12と内側強磁性部材13とを永久磁石列2および永久磁石列3に取付けることで、漏れ磁束は強磁性部材12、13を経由するため、磁束の漏れを減少させることができる。漏れ磁束が減少すれば永久磁石列2および永久磁石列3と電機子巻線4間のギャップ中の磁束を増やすことができる。これにより、漏れ磁束が減少し、ギャップ中の磁束が増加するので、永久磁石回転電機1の高出力化が図れる。   When leakage magnetic flux is generated on the radially outer side of the permanent magnet row 2 and on the radially inner side of the permanent magnet row 2, the outer ferromagnetic member 12 and the inner ferromagnetic member 13 are attached to the permanent magnet row 2 and the permanent magnet row 3. Thus, since the leakage magnetic flux passes through the ferromagnetic members 12 and 13, the leakage of the magnetic flux can be reduced. If the leakage magnetic flux decreases, the magnetic flux in the gap between the permanent magnet row 2 and the permanent magnet row 3 and the armature winding 4 can be increased. Thereby, the leakage magnetic flux decreases and the magnetic flux in the gap increases, so that the output of the permanent magnet rotating electrical machine 1 can be increased.
次に、永久磁石列2および永久磁石列3が回転による遠心力で回転子5から剥がれを防止するため非磁性部材で形成した永久磁石押さえ機構17を設けてもよい。図13はハルバッハ配列の永久磁石列2および永久磁石列3の永久磁石16に非磁性部材で形成した永久磁石押さえ機構17を備えた場合の永久磁石回転電機1の軸方向断面図である。図13に示すように、ハルバッハ配列の永久磁石列2および永久磁石列3に非磁性部材で形成した永久磁石押さえ機構17が設けられている。   Next, in order to prevent the permanent magnet row 2 and the permanent magnet row 3 from being separated from the rotor 5 by centrifugal force due to rotation, a permanent magnet pressing mechanism 17 formed of a nonmagnetic member may be provided. FIG. 13 is a cross-sectional view in the axial direction of the permanent magnet rotating electrical machine 1 when a permanent magnet pressing mechanism 17 formed of a nonmagnetic member is provided on the permanent magnet row 2 of the Halbach array and the permanent magnet 16 of the permanent magnet row 3. As shown in FIG. 13, a permanent magnet pressing mechanism 17 formed of a nonmagnetic member is provided in the permanent magnet row 2 and the permanent magnet row 3 in the Halbach array.
また、永久磁石押さえ機構17は、非磁性部材で形成された帯状の板もしくはワイヤーで構成されている。これにより、永久磁石回転電機1が回転中に永久磁石16が固定子6から剥がれたりすることを防止でき、安定的に高出力が得られる。   Moreover, the permanent magnet pressing mechanism 17 is comprised with the strip | belt-shaped board or wire formed with the nonmagnetic member. Thereby, it can prevent that the permanent magnet 16 peels from the stator 6 while the permanent magnet rotary electric machine 1 rotates, and a high output can be obtained stably.
次に、永久磁石列2および永久磁石列3の永久磁石16は、非磁性部材で形成されたケース18の中に収められてもよい。図14はハルバッハ配列の永久磁石列2および永久磁石列3の永久磁石16が非磁性部材で形成されたケース18の中に収められた場合の永久磁石回転電機1の軸方向断面図である。図14に示すように、ハルバッハ配列の永久磁石列2および永久磁石列3が非磁性部材で形成されたケース18の中に収められている。ケースは回転子5に取り付けられている。この場合、永久磁石16をケース18に挿入し製造することから、製造コストの低減が図れる。さらに、ケース18を容易に固定子6に取付けられるため、製造コストの低減が図れる。   Next, the permanent magnet 16 of the permanent magnet row 2 and the permanent magnet row 3 may be housed in a case 18 formed of a nonmagnetic member. FIG. 14 is an axial cross-sectional view of the permanent magnet rotating electrical machine 1 when the permanent magnet row 2 in the Halbach array and the permanent magnet 16 in the permanent magnet row 3 are housed in a case 18 formed of a nonmagnetic member. As shown in FIG. 14, the permanent magnet row 2 and the permanent magnet row 3 in a Halbach array are housed in a case 18 formed of a nonmagnetic member. The case is attached to the rotor 5. In this case, since the permanent magnet 16 is inserted into the case 18 and manufactured, the manufacturing cost can be reduced. Furthermore, since the case 18 can be easily attached to the stator 6, the manufacturing cost can be reduced.
次に、電機子巻線4は、非磁性部材で形成された巻線の巻取り部材19に集中巻きされ、集中巻きされた巻取り部材19ごと固定子6に取付けられるようにしてもよい。図15は永久磁石16と巻線の巻取り部材19の配置の一例を示した永久磁石回転電機1の径方向断面図である。予め電機子巻線4を非磁性部材で形成された巻取り部材19に集中巻きし、その後、固定子6に取付ける事で製造が容易になり、製造コストの低減が図れる。   Next, the armature winding 4 may be concentratedly wound around a winding member 19 formed of a nonmagnetic member, and the concentrated winding member 19 may be attached to the stator 6 together. FIG. 15 is a radial cross-sectional view of the permanent magnet rotating electrical machine 1 showing an example of the arrangement of the permanent magnet 16 and the winding member 19 of the winding. When the armature winding 4 is concentratedly wound around the winding member 19 formed of a nonmagnetic member in advance and then attached to the stator 6, the manufacturing becomes easy and the manufacturing cost can be reduced.
また、集中巻きされた複数の電機子巻線4は、樹脂で含浸して一体化してもよい。一体化することで取扱いを容易にできるとともに、固定子6への固定も容易にできる。   The plurality of armature windings 4 that are concentrated may be integrated by impregnating with resin. By being integrated, the handling can be facilitated and the fixing to the stator 6 can be facilitated.
次に、永久磁石列2および永久磁石列3の永久磁石16は、希土類磁石(例えばネオジム磁石)で形成してもよい。または、ネオジム磁石の中にジスプロシウムを添加させたもので形成してもよい。永久磁石に希土類磁石を用いることで磁力が増し、高出力を得ることができる。さらにジスプロシウムはネオジム磁石の磁力を高める働きがあり、ネオジム磁石の中にジスプロシウムを添加した永久磁石16を用いることで高出力化が図れる。   Next, the permanent magnet 16 of the permanent magnet row 2 and the permanent magnet row 3 may be formed of a rare earth magnet (for example, a neodymium magnet). Or you may form with what added dysprosium in the neodymium magnet. By using a rare earth magnet as the permanent magnet, the magnetic force is increased and a high output can be obtained. Furthermore, dysprosium has a function of increasing the magnetic force of the neodymium magnet, and high output can be achieved by using the permanent magnet 16 in which dysprosium is added to the neodymium magnet.
次に、永久磁石列2および永久磁石列3の個々の永久磁石16は、磁極の向きが周方向に向いた磁石と磁極の向きが径方向に向いた磁石を別々に回転子5に取付ける製造方法としてもよい。一例として回転子5に永久磁石16の磁極の向きが周方向の永久磁石16を接着等により取付ける。そして、周方向の永久磁石16が回転子5に取付いた後、径方向の永久磁石16を接着等により取付ける。この製造方法によれば、隣接する永久磁石16の磁力の影響を受けることなく永久磁石16を回転子5に取付けることができ、製造コストの削減が図れる。   Next, the individual permanent magnets 16 of the permanent magnet row 2 and the permanent magnet row 3 are manufactured by separately attaching a magnet whose magnetic pole direction is in the circumferential direction and a magnet whose magnetic pole direction is in the radial direction to the rotor 5 separately. It is good also as a method. As an example, the permanent magnet 16 having the circumferential direction of the magnetic pole of the permanent magnet 16 is attached to the rotor 5 by adhesion or the like. Then, after the circumferential permanent magnet 16 is attached to the rotor 5, the radial permanent magnet 16 is attached by bonding or the like. According to this manufacturing method, the permanent magnet 16 can be attached to the rotor 5 without being affected by the magnetic force of the adjacent permanent magnet 16, and the manufacturing cost can be reduced.
また、一例として、磁極の向きが周方向に向いた永久磁石16を回転子5に取付ける場合、磁極の向きが径方向に向いた永久磁石16を取付ける位置に非磁性部材で形成された磁石取付けサポート20、21を備え、磁石取付けサポート20、21をガイドに永久磁石16を取付ける製造方法としてもよい。図16は周方向の永久磁石列2として永久磁石16を回転子5に取付けるための磁石取付けサポート20、21の一例を示した永久磁石回転電機1の径方向断面図である。上記説明したように、本実施形態では、略三角形状の磁石の組合せにより、隣り合う磁石同士が反発することなく略円筒形状を構成することができるが、磁石取付けサポート20、21をガイドに周方向の永久磁石列2として永久磁石16を取付ける製造方法を用いることでさらに容易に永久磁石16を回転子5に取付けることができる。   Further, as an example, when the permanent magnet 16 whose magnetic pole direction is oriented in the circumferential direction is attached to the rotor 5, a magnet attachment formed of a nonmagnetic member at a position where the permanent magnet 16 whose magnetic pole direction is oriented in the radial direction is attached. It is good also as a manufacturing method provided with the support 20 and 21 and attaching the permanent magnet 16 to the magnet attachment support 20 and 21 to a guide. FIG. 16 is a radial cross-sectional view of the permanent magnet rotating electrical machine 1 showing an example of the magnet attachment supports 20 and 21 for attaching the permanent magnet 16 to the rotor 5 as the permanent magnet row 2 in the circumferential direction. As described above, in this embodiment, a combination of substantially triangular magnets can form a substantially cylindrical shape without repulsion between adjacent magnets, but the magnet mounting supports 20 and 21 are surrounded by guides. The permanent magnet 16 can be attached to the rotor 5 more easily by using the manufacturing method of attaching the permanent magnet 16 as the permanent magnet row 2 in the direction.
本発明の実施の形態によれば、永久磁石回転電機1の回転子5と固定子6に鉄心を用いないので軽量化が図れる。ハルバッハ配列された略三角形の永久磁石を配置し、その永久磁石列2および永久磁石列3の間に電機子巻線4を配置するので軸方向の幅を薄くすることができる。また、ハルバッハ配列された略略三角形の永久磁石を2列配置し、効率の良い磁束密度分布にしたことで高出力化が図れる。回転子5と固定子6に鉄心を用いないので、製造が容易になり製造コストを低減することができる。   According to the embodiment of the present invention, since no iron core is used for the rotor 5 and the stator 6 of the permanent magnet rotating electrical machine 1, the weight can be reduced. Since substantially triangular permanent magnets arranged in Halbach are arranged and the armature winding 4 is arranged between the permanent magnet row 2 and the permanent magnet row 3, the width in the axial direction can be reduced. Further, two rows of substantially triangular permanent magnets arranged in a Halbach array are arranged to achieve an efficient magnetic flux density distribution, so that high output can be achieved. Since an iron core is not used for the rotor 5 and the stator 6, manufacturing is facilitated and manufacturing cost can be reduced.
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
本発明の実施の形態に係わる永久磁石回転電機の一例の軸方向断面図。An axial direction sectional view of an example of a permanent magnet rotary electric machine concerning an embodiment of the invention. 本発明の実施の形態の永久磁石回転電機の一例の径方向断面図。The radial direction sectional view of an example of the permanent magnet rotary electric machine of an embodiment of the invention. 本発明の実施の形態に係わる永久磁石回転電機の磁力線分布の一例を示す磁力線分布図。The magnetic force line distribution map which shows an example of the magnetic force line distribution of the permanent magnet rotary electric machine concerning embodiment of this invention. 本発明の実施の形態に係わる永久磁石回転電機の他の一例の軸方向断面図。The axial direction sectional view of other examples of the permanent magnet rotary electric machine concerning an embodiment of the invention. 本発明の実施の形態に係わる永久磁石回転電機の別の他の一例の軸方向断面図。The axial direction sectional drawing of another example of the permanent magnet rotary electric machine concerning embodiment of this invention. 本発明の実施の形態における電機子巻線を集中巻きで形成した場合の永久磁石回転電機の一部切欠径方向断面図。FIG. 3 is a partially cutaway radial direction cross-sectional view of a permanent magnet rotating electric machine when armature windings in the embodiment of the present invention are formed by concentrated winding. 本発明の実施の形態における電機子巻線をプリント基板で形成した場合の永久磁石回転電機の軸方向断面図。The axial direction sectional view of the permanent magnet rotating electrical machine at the time of forming the armature winding in the embodiment of the present invention with the printed circuit board. 本発明の実施の形態における電機子巻線をそれに対向する永久磁石面の幅より広く形成した場合の永久磁石回転電機の軸方向断面図。The axial direction sectional view of the permanent magnet rotary electric machine at the time of forming the armature winding in embodiment of this invention wider than the width | variety of the permanent magnet surface which opposes it. 本発明の実施の形態における電機子巻線に超電導線もしくは高温超電導線を用いた場合の永久磁石回転電機の軸方向断面図。The axial direction sectional view of the permanent magnet rotary electric machine at the time of using a superconducting wire or a high temperature superconducting wire for the armature winding in an embodiment of the invention. 本発明の実施の形態における外側に配置したハルバッハ配列の永久磁石列の外側に強磁性部材を備えた場合の永久磁石回転電機の軸方向断面図。The axial direction sectional view of a permanent magnet rotating electrical machine at the time of providing a ferromagnetic member outside the permanent magnet row of the Halbach arrangement arranged on the outside in an embodiment of the invention. 本発明の実施の形態における内側に配置したハルバッハ配列の永久磁石列の内側に強磁性部材を備えた場合の永久磁石回転電機の軸方向断面図。The axial direction sectional view of the permanent magnet rotating electrical machine at the time of providing a ferromagnetic member inside the permanent magnet row | line | column of the Halbach arrangement | positioning arrange | positioned inside in embodiment of this invention. 本発明の実施の形態における外側に配置したハルバッハ配列の永久磁石列の外側及び内側に配置したハルバッハ配列の永久磁石の内側の双方に強磁性部材を備えた場合の永久磁石回転電機の軸方向断面図。Axial section of a permanent magnet rotating electrical machine when a ferromagnetic member is provided on both the outside of a permanent magnet array of Halbach array arranged on the outside and the inside of a permanent magnet of Halbach array arranged on the inside in an embodiment of the present invention Figure. 本発明の実施の形態における永久磁石押さえ機構を有する永久磁石回転電機の軸方向断面図。The axial direction sectional view of the permanent magnet rotating electrical machine which has the permanent magnet press mechanism in an embodiment of the invention. 本発明の実施の形態における永久磁石を収めるケースを有する永久磁石回転電機の軸方向断面図。The axial sectional view of the permanent magnet rotary electric machine which has the case which stores the permanent magnet in the embodiment of the present invention. 本発明の実施の形態における永久磁石と巻線の巻取り部材を有する永久磁石回転電機の径方向断面図。The radial direction sectional view of the permanent magnet rotating electrical machine which has the winding member of the permanent magnet and winding in the embodiment of the present invention. 本発明の実施の形態における永久磁石列の製造方法の一例の永久磁石回転電機の径方向断面図。The radial direction sectional view of the permanent magnet rotating electrical machine of an example of the manufacturing method of the permanent magnet row in the embodiment of the present invention. 従来のハルバッハ配列した永久磁石列を有する永久磁石回転電機の磁束密度分布を示した磁束密度分布図。The magnetic flux density distribution figure which showed the magnetic flux density distribution of the permanent magnet rotary electric machine which has the permanent magnet row | line | column which carried out the conventional Halbach arrangement | sequence.
符号の説明Explanation of symbols
1…永久磁石回転電機、2…永久磁石列(外側)、3…永久磁石列(内側)、4…電機子巻線、5…回転子、6…固定子、7…シャフト、8…クライオ、9…低温配管、10…冷凍機、11…プリント基板、12…外側強磁性部材、13…内側強磁性部材、14…軸受、15…ヨーク鉄心、16…永久磁石、17…永久磁石押さえ機構、18…ケース、19…巻線の巻取り部材、20…永久磁石取付けサポート(外側)、21…永久磁石取付けサポート(内側)。 DESCRIPTION OF SYMBOLS 1 ... Permanent magnet rotary electric machine, 2 ... Permanent magnet row (outside), 3 ... Permanent magnet row (inner side), 4 ... Armature winding, 5 ... Rotor, 6 ... Stator, 7 ... Shaft, 8 ... Cryo, DESCRIPTION OF SYMBOLS 9 ... Low temperature piping, 10 ... Refrigerator, 11 ... Printed circuit board, 12 ... Outer ferromagnetic member, 13 ... Inner ferromagnetic member, 14 ... Bearing, 15 ... Yoke iron core, 16 ... Permanent magnet, 17 ... Permanent magnet pressing mechanism, DESCRIPTION OF SYMBOLS 18 ... Case, 19 ... Winding member of winding, 20 ... Permanent magnet attachment support (outside), 21 ... Permanent magnet attachment support (inside)

Claims (5)

  1. 電機子巻線を有する固定子と、前記固定子に対し回転可能に支持されハルバッハ配列された永久磁石を有する回転子からなる回転電機において、
    前記回転子が回転中心から周方向にハルバッハ配列された2列の永久磁石列を設け、前記永久磁石列の間に前記固定子の電機子巻き線を設け、前記永久磁石列は、それぞれ略三角形の磁石の組み合わせにより構成され、永久磁石列の外側永久磁石の磁極の向きと永久磁石列の内側永久磁石の磁極の向きとが、径方向の磁極の向きについては同一方向で、周方向の磁極向きについては逆方向に向いていることを特徴とする永久磁石回転電機。
    In a rotating electrical machine comprising a stator having armature windings and a rotor having permanent magnets that are rotatably supported with respect to the stator and arranged in Halbach,
    The rotor is provided with two rows of permanent magnet arrays in which Halbach is arranged in the circumferential direction from the center of rotation, the armature winding of the stator is provided between the permanent magnet rows, and the permanent magnet rows are substantially triangular. The direction of the magnetic poles of the outer permanent magnets in the permanent magnet row and the direction of the magnetic poles of the inner permanent magnets in the permanent magnet row are the same in the radial direction, and the magnetic poles in the circumferential direction. A permanent magnet rotating electrical machine characterized by being directed in the opposite direction.
  2. 前記永久磁石列の個々の永久磁石は、磁極の向きが径方向の永久磁石の略三角形の底辺が、電機子巻線側に向くように配置していることを特徴とする、請求項1に記載の永久磁石回転電機。   The individual permanent magnets of the permanent magnet row are arranged so that the base of the substantially triangular shape of the permanent magnet with the radial direction of the magnetic pole faces the armature winding side. The permanent magnet rotating electric machine described.
  3. 前記永久磁石列の個々の永久磁石は、磁極の向きが径方向のものと、磁極の向きが周方向のものの体積が同じであることを特徴とする、請求項1乃至2のいずれか1項に記載の永久磁石回転電機。   The individual permanent magnets of the permanent magnet row have the same volume as that of the magnetic poles having the radial direction and the direction of the magnetic poles having the circumferential direction. The permanent magnet rotating electric machine according to 1.
  4. 前記永久磁石列の個々の永久磁石は、磁極の向きが径方向のものの体積が、磁極の向きが周方向のものの体積よりも小さいことを特徴とする、請求項1乃至3のいずれか1項に記載の永久磁石回転電機。   The individual permanent magnets of the permanent magnet row have a volume with a magnetic pole direction in the radial direction smaller than a volume with a magnetic pole direction in the circumferential direction. The permanent magnet rotating electric machine according to 1.
  5. 前記永久磁石列の個々の永久磁石は、磁極の向きが径方向のものの体積が、磁極の向きが周方向のものの体積よりも大きいことを特徴とする、請求項1乃至4のいずれか1項に記載の永久磁石回転電機。   The individual permanent magnets of the permanent magnet row have a volume of magnetic poles whose radial direction is larger than a volume of magnetic poles whose circumferential direction is circumferential. The permanent magnet rotating electric machine according to 1.
JP2008280282A 2008-10-30 2008-10-30 Permanent magnet rotating electrical machine Withdrawn JP2010110128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280282A JP2010110128A (en) 2008-10-30 2008-10-30 Permanent magnet rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280282A JP2010110128A (en) 2008-10-30 2008-10-30 Permanent magnet rotating electrical machine

Publications (1)

Publication Number Publication Date
JP2010110128A true JP2010110128A (en) 2010-05-13

Family

ID=42299017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280282A Withdrawn JP2010110128A (en) 2008-10-30 2008-10-30 Permanent magnet rotating electrical machine

Country Status (1)

Country Link
JP (1) JP2010110128A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000073A1 (en) * 2012-06-25 2014-01-03 Heine Allemagne Vilarinho Dias Device and method for electromechanical conversion by electromagnetic induction
CN103872876A (en) * 2012-12-07 2014-06-18 上海微电子装备有限公司 Linear motor and platform device
CN104811091A (en) * 2015-05-19 2015-07-29 重庆大学 Multi-directional vibration energy harvester based on annular Halbach array
EP3057191A1 (en) * 2015-02-13 2016-08-17 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Outer rotor permanent magnet motor
CN111799054A (en) * 2020-07-23 2020-10-20 苏州英磁新能源科技有限公司 Permanent magnet array

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000073A1 (en) * 2012-06-25 2014-01-03 Heine Allemagne Vilarinho Dias Device and method for electromechanical conversion by electromagnetic induction
CN103872876A (en) * 2012-12-07 2014-06-18 上海微电子装备有限公司 Linear motor and platform device
EP3057191A1 (en) * 2015-02-13 2016-08-17 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland Outer rotor permanent magnet motor
WO2016128262A1 (en) * 2015-02-13 2016-08-18 Enrichment Technology Company Ltd. Zweigniederlassung Deutschland External-rotor permanent-magnet motor
CN104811091A (en) * 2015-05-19 2015-07-29 重庆大学 Multi-directional vibration energy harvester based on annular Halbach array
CN111799054A (en) * 2020-07-23 2020-10-20 苏州英磁新能源科技有限公司 Permanent magnet array

Similar Documents

Publication Publication Date Title
JP2009201343A (en) Permanent magnet rotating electrical machine
JP5576246B2 (en) Axial gap type brushless motor
JP5491484B2 (en) Switched reluctance motor
US8643240B2 (en) Superconducting rotating electrical machine and stator for use with superconducting rotating electrical machine
US7312549B2 (en) Transverse flux machine with stator made of e-shaped laminates
US6700271B2 (en) Hybrid synchronous motor equipped with toroidal winding
JP5201551B2 (en) Superconducting coil and magnetic field generator
JP2009540788A (en) Ring coil motor
US7560840B2 (en) Rotor arrangement for a unilateral transverse flux machine with flux concentration
JP2006166679A (en) Structure of stator for axial gap type dynamo-electric machine
US20130026864A1 (en) Traversal switched reluctance motor
US20110163618A1 (en) Rotating Electrical Machine
US9774223B2 (en) Permanent magnet synchronous machine
EP1602164A1 (en) Stator core for linear motor
JP2010110128A (en) Permanent magnet rotating electrical machine
CN111164858A (en) Electric motor
JP2010284035A (en) Permanent magnet rotating electrical machine
KR101048055B1 (en) Transverse flux electric equipment with slit in core
JP2006166631A (en) Rotor structure for axial gap type dynamo-electric machine
JP2010004634A (en) Axial-gap type rotating electrical machine
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor
JP5894414B2 (en) Generator
JP2011072087A (en) Axial gap motor
WO2011045842A1 (en) Permanent magnet dynamo-electric machine
JP5903510B2 (en) Rotating electrical equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110