JP4331850B2 - Superconducting bearing - Google Patents

Superconducting bearing Download PDF

Info

Publication number
JP4331850B2
JP4331850B2 JP2000062201A JP2000062201A JP4331850B2 JP 4331850 B2 JP4331850 B2 JP 4331850B2 JP 2000062201 A JP2000062201 A JP 2000062201A JP 2000062201 A JP2000062201 A JP 2000062201A JP 4331850 B2 JP4331850 B2 JP 4331850B2
Authority
JP
Japan
Prior art keywords
superconductor
bearing
axis
superconducting
levitation force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000062201A
Other languages
Japanese (ja)
Other versions
JP2001248642A (en
Inventor
英一 手嶋
芳生 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000062201A priority Critical patent/JP4331850B2/en
Publication of JP2001248642A publication Critical patent/JP2001248642A/en
Application granted granted Critical
Publication of JP4331850B2 publication Critical patent/JP4331850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Description

【0001】
【発明の属する技術分野】
本発明は、電力貯蔵用フライホイールや高速回転機器などに用いられる超電導軸受に関する。
【0002】
【従来の技術】
超電導軸受は、超電導体と磁石との間のピンニング効果を利用したものであり、物体を制御なしで非接触で安定に浮上・回転できる機能を有する軸受である。超電導軸受における超電導体と磁石の位置関係には、主にアキシャル軸受型配置とラジアル軸受型配置がある。図16に示すように、アキシャル軸受型配置では、超電導体と磁石は軸方向に対向している。一方、図17に示すように、ラジアル軸受型配置では、超電導体と磁石は動径方向に対向している。
【0003】
超電導軸受には、単結晶状に作製された大型の酸化物系超電導体が用いられる。しかし、単結晶状の酸化物系超電導体には結晶方位による異方性があり、結晶のc軸に平行な方向と、結晶のc軸に垂直な方向、すなわち結晶のa軸とb軸で形成するa-b面内に平行な方向との間で、超電導特性が大きく異なる。その結果、磁 石に対する超電導体の結晶方位をどちらに向けるかによって浮上力が大きく異なる。従来は、浮上力を大きくするため、超電導体のc軸を磁石の方に向ける、す なわち超電導体のc軸が磁石の面に垂直になるような結晶配置で用いられるのが 一般的であった。すなわち、アキシャル軸受型配置では、超電導体のc軸は軸方 向に向いたアキシャル配向であり、ラジアル軸受型配置では、超電導体のc軸は 動径方向を向いたラジアル配向であった。
【0004】
アキシャル軸受型配置では、軸受を構成する超電導体全体のc軸をアキシャル配向させることは可能である。しかしながら、ラジアル軸受型配置では、軸受を構成する超電導体のc軸を軸受全周にわたってラジアル配向させることは、単一の結晶では不可能である。従って、従来技術としては、図18に示すように、いくつかの試料を作製し、それぞれを扇形状に加工し、それらを組み合わせて1つの軸受を構成する超電導体とし、軸受を構成する個々の要素部材のc軸をラジアル配向させる手法がとられている。このとき、個々の扇形状部材間の接合方法は、個々の部材を単に冷却容器に収納することによって物理的に接合しているだけか、あるいは冷却容器に収納する際にお互いに接着剤で接合固定しているだけである。
【0005】
【発明が解決しようとする課題】
しかしながら、図18のような手法で超電導軸受の超電導体を作製すると、個々の要素部材は単に物理的に結合されているだけであり、各要素部材間の境界では超電導電流は流れない。しかも、厳密には個々の要素部材のc軸がラジアル配向している部分は要素部材の中央部だけであり、中央部からずれるにつれてc軸と動径方向とのずれは大きくなる。そのため、軸受全体としての超電導体のc軸が動径方向へ配向している度合いを改善するには、要素部材の数を多くすることになるが、このことは逆に超電導電流の流れない要素部材間の境界の数も増やすことになる。従って、ラジアル軸受型配置においては、従来の方法では、軸受全体の結晶の配向性を向上させることと超電導電流が流れない境界面の数を低減させることが相反する性質を有しているため、浮上力を改善することが難しいという問題があった。
【0006】
また、アキシャル軸受型配置でも、軸受サイズが大きくなると、単結晶状の超電導体を一体もので作製することは困難なので、複数の超電導体を組み合わせることになる。この場合にも、個々の超電導体間に超電導電流が流れないので、浮上力を改善することが難しいという問題があった。
【0007】
本発明の目的は、上記の問題を解決し、超電導体と磁石は動径方向に対向しているラジアル軸受型配置で高い浮上力を得る超電導軸受を提供することである
【0008】
【課題を解決するための手段】
参考例の超電導軸受は、超電導体と磁石が動径方向に対向しているラジアル型の超電導軸受において、超電導軸受を構成している超電導体が内部に複数個の単結晶状領域を有し、超電導体内の個々の単結晶状領域のc軸が軸受の動径方向に向いて、隣り合う単結晶状領域のc軸方向のなす角度が90°以下であることを特徴とする超電導軸受である。
【0010】
本発明による第の超電導軸受は、超電導体と磁石が動径方向に対向しているラジアル型の超電導軸受において、超電導軸受を構成する超電導体が複数個の要素部材からなり、個々の要素部材が動径方向に積層構造を形成し、かつ隣り合う層ごとに要素部材間の境界面の位置がずれ、単結晶状領域のc軸が動径方向に向いていることを特徴とする超電導軸受である。
本発明による第の超電導軸受は、積層構造を有する超電導体の磁石に最も近い層の厚さが5mm以下であることを特徴とする本発明による上記第の超電導軸受である。
【0012】
参考例の超電導軸受の構成によれば、超電導体が内部に存在する複数個の単結晶状領域の間の境界にも超電導電流が流れるために、超電導電流が全く流れない単なる物理的な結合であった場合に比べて、浮上力が改善する。
【0013】
参考例の超電導軸受で、隣り合う単結晶状領域のc軸方向のなす角度を90°以下に限定した理由について述べる。軸受全体の動径方向への配向性を向上させるには、隣り合う単結晶状領域のc軸方向のなす角度が小さければ小さいほどよい。しかし、角度が小さいほど1つの試料内の単結晶領域の数も増えるので、作製プロセスは煩雑になる可能性がある。そこで、1つの試料内の単結晶領域の数を減らしていき、どこまで浮上力改善の効果があるかについて調べてみた。参考例で示すように、1つのリング形状の超電導体内に4個の単結晶状領域がある場合には浮上力は大幅に改善したが、1つのリング形状の超電導体内に3個の単結晶状領域がある場合には浮上力は改善するもののその効果は小さかった。前者の場合の隣り合う単結晶状領域のc軸方向のなす角度は90°であるが、後者の場合の隣り合う単結晶状領域のc軸方向のなす角度は120°である。従って、隣り合う単結晶状領域のc軸方向のなす角度を90°以下に限定した。
【0014】
本発明による上記第の超電導軸受の構成によれば、超電導体が単に物理的に結合している境界面の位置に、隣り合う層の超電導体が存在しているために、境界面で超電導的な繋がりが弱まる効果を小さくする働きがある。そのため、超電導体を積層構造にしていない従来例の場合に比べて、浮上力が改善する。
【0015】
本発明による上記第の超電導軸受で、積層構造を有する超電導体の磁石に最も近い層の厚さを5mm以下に限定した理由について述べる。本発明者らは、超電導体の厚さと浮上力との関係を調べたところ、超電導体の厚さが5mm以下の範囲では試料厚さが厚くなると浮上力も大きくなるが、試料厚さが5mmよりも大きくなると浮上力はほとんど一定であることを見出した。すなわち、磁石に最も近い層の厚さを5mmよりも大きくすると、超電導体を積層構造にする効果が非常に小さくなる。従って、積層構造を有する超電導体の磁石に最も近い層の厚さを5mm以下に限定した。
【0020】
本発明に用いる超電導体は、ピンニング効果を発揮し得るものであれば特に制限されるものではないが、好ましくは、ピンニング力の強い超電導体が望ましい。本実施例で用いた超電導体は、QMG材と呼ばれるもので、単結晶状のREBa2Cu3Ox相(REはYまたは希土類元素およびその組み合わせ)中にRE2BaCuO5相が微細分 散している酸化物系超電導体で、液体窒素温度でピンニング力の強い材料である(特許登録番号第1869884号)。また、本発明に用いる磁石は、軸受構造が簡単 になるので永久磁石が望ましいが、電磁石や超電導磁石でもよい。超電導体と対向する表面の磁束密度が大きいほど浮上力も大きくなるので、永久磁石を用いる場合には、希土類系の永久磁石のように表面磁束密度の大きい材料、例えば、Nd-Fe-B系やPr-Fe-B系、Sm-Co系等の永久磁石が望ましい。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を添付の図面に基づいて詳述する。
図1は、超電導軸受の一形態を示す概略図で(a)は斜視図、(b)は断面図ある。図1では、超電導体と永久磁石が動径方向に対向するラジアル軸受型配置で、超電導体のc軸の方向が、軸受の動径方向ではなく、軸受の軸方向を向いている。図1では、超電導体を冷却する冷却系は示されていないが、超電導体は冷却容器に収納され、液体窒素等の冷媒によって冷却されるか、あるいは冷凍機によって冷却される。
【0022】
2(a)に示すように、上述した参考例の超電導体として、Y系の酸化物超電導体で、c軸がリングの軸方向を向いた外径46mm、内径15mm、高さ20mmの一体もののリング形状試料を作製し、また従来例の超電導体として、図2(b)に示すようにY系の酸化物超電導体で、中心部が動径方向を向いた扇形状試料を4個を本参考例と同じサイズのリング形状に組み合わせたものを作製し、それぞれに対して浮上力を測定し、比較した。浮上力の測定は、収納冶具に固定した超電導体をリング形状の磁石の中に入れた状態で液体窒素を用いて冷却し、超電導体が十分冷却した後、超電導体と永久磁石間の距離を遠ざけながら行った。
【0023】
図3に、浮上力特性曲線の測定の一例を示す。超電導体と永久磁石間の距離が大きくなるにつれて、浮上力は最初急激に大きくなり、最大値を取った後、徐々に小さくなった。ここでは、浮上力の最大値のことを単に浮上力と呼ぶことにする。図2(b)の従来例の浮上力が122Nであったのに対し、図2(a)の本参考例の超電導体の浮上力は148Nであった
【0024】
図2(a)の本参考例の超電導体が一体ものの超電導体であったように、本発明に用いる超電導体は周方向および軸方向とも切れ目がない一体物の試料であることが望ましい。しかし、超電導軸受の大きさが大きくなるにつれて、一体物の単結晶状試料を作製することが困難になってくる。その場合でも、いくつかの超電導体を組み合わせることになるが、それぞれの超電導体のc軸を軸受の軸方向に向けることによって、同様の効果を得ることができる。組み合わせ方としては、軸受に必要な超電導体の大きさによって、図4(a)に示すように、周方向に切れ目のない試料を軸方向に積み重ねてもよいし、また図4(b)のように軸方向に切れ目のない試料を周方向に組み合わせてもよいし、また図4(c)のように軸方向および周方向ともいくつかの試料を組み合わせてもよい。
【0025】
図5は、超電導軸受の一参考例の形態を示す概略図である。なお、図5では、永久磁石は記載されていないが、図1と同様に動径方向にあるものとする。図5では、超電導軸受を構成している超電導体が一体もので、試料内に4個の単結晶状領域が存在する試料であり、個々の単結晶状領域のc軸が動径方向を向いている。
【0026】
前記の効果を調べるため、本参考例の超電導体として、Y系の酸化物超電導体で、図5に示すようなc軸が動径方向を向いた外径46mm、内径15mm、高さ20mmの一体もののリング形状試料を作製した。一体ものの試料の中に4個の単結晶状領域を作るために、図6に示すように、試料を作製するときに、種結晶を4個用いて結晶成長させた。また、それぞれの種結晶のc軸の向きを動径方向にすることによって、各単結晶状領域のc軸も動径方向に向けることができた。本試料の浮上力を測定したところ、165Nであった。図2の右側に示した従来例の超電導体の浮上力が122Nであったので、本参考例によって、従来例に比べて浮上力が改善することが確認できた。
【0027】
図6は1つの試料内に4個の単結晶状領域を含む場合であったが、図7に示すように、1つの試料内に6個の単結晶状領域を含む場合についても効果を調べてみた。本参考例の超電導体として、Y系の酸化物超電導体で、c軸が動径方向を向いた外径46mm、内径15mm、高さ20mmの一体もののリング形状試料を、図7に示すように、c軸を動径方向に向けた種結晶を6個用いて作製した。また、比較のため、図8のようにY系の酸化物超電導体で、中心部でc軸が動径方向を向いた扇形状試料を6個用いて、本参考例と同じサイズのリング形状に組み合わせ収納冶具に固定したものを準備した。本参考例の試料の浮上力は172Nであり、比較例の浮上力は138Nであった。本参考例によって、浮上力が改善することが確認できた。
【0028】
図9に示すように、1つの試料内に3個の単結晶状領域を含む場合についても参考例として調べてみた。本参考例の超電導体として、Y系の酸化物超電導体で、c軸が動径方向を向いた外径46mm、内径15mm、高さ20mmの一体もののリング形状試料を、図9に示すように、c軸を動径方向に向けた種結晶を3個用いて作製した。また、比較のため、図10のようにY系の酸化物超電導体で、中心部でc軸が動径方向を向いた扇形状試料を3個用いて、本参考例と同じサイズのリング形状に組み合わせ収納冶具に固定したものを準備した。本参考例の試料の浮上力は126Nであり、比較例の浮上力は119Nであった
【0029】
図6のような1つの試料内に4個の単結晶状領域を含む場合、隣り合う単結晶状領域のc軸方向のなす角度は90°である。図6の例では、浮上力は122Nから165Nと43N改善している。また、図7のような1つの試料内に6個の単結晶状領域を含む場合、隣り合う単結晶状領域のc軸方向のなす角度は60°である。図7の例では、浮上力は138Nから172Nと34N改善している。一方、図9のような1つの試料内に3個の単結晶状領域を含む場合、隣り合う単結晶状領域のc軸方向のなす角度は120°である。図9の例では浮上力は119Nから126Nと7N改善しているが、図6や図7の場合に比べて浮上力改善の効果が小さい。従って、浮上力改善の効果を大きくするためには、隣り合う単結晶状領域のc軸方向のなす角度が90°以下にしたほうが望ましい。
【0030】
これまで述べた本参考例では、1つの超電導体内に複数個の単結晶状領域を作製するのに、試料作製時に複数個の種結晶を用いる作製プロセスを行ったが、本参考例は本作製プロセスに限定するものではない。別の作製プロセスの例を図11に示す。図11では、扇形状の超電導体を予め作製しておき、それらを超電導的に結合する後処理を施すことで1つの試料とする作製プロセスを示している。
【0031】
図11の方法では、超電導的に結合する後処理工程として、本体を結晶成長温度1000℃のY系酸化物超電導体で作製し、それらの間に結晶成長温度900℃のYb系酸化物超電導体を挿入した状態で、900℃以上に加熱し、900℃前後の温度を徐冷するという工程で行った。すなわち、結晶成長温度の低い超電導体をはんだとして用い、結晶成長温度の高い超電導体を結合するという工程で行った。本作製プロセスで、外径46mm、内径15mm、高さ20mmのリング形状試料を作製し、浮上力を測定したところ145Nであった。図2の右側に示した従来例の超電導体の浮上力が122Nであったので、本参考例によって、従来例に比べて浮上力が改善することが確認できた。
【0032】
これまで述べた本参考例では、軸受を構成する超電導体は一体ものの超電導体であったが、超電導軸受の大きさが大きくなるにつれて、一体ものの試料を作製することが困難になってくる。その場合には、いくつかの超電導体を組み合わせることになるが、図12に示すように、それぞれの超電導体の内部に複数個の単結晶状領域を設け、各単結晶状領域のc軸が軸受の動径方向に向けるようにすることによって同様の効果を得ることができる。
【0033】
図13は、本発明の請求項に基づいた超電導軸受の一実施形態を示す概略図である。なお、図13では、永久磁石は記載されていないが、図1と同様に動径方向にあるものとする。図13では、超電導軸受を構成している超電導体が、動径方向に煉瓦状に積層構造になっている。また、図14は、本発明の請求項に基づいた超電導軸受の一実施形態を示す概略図である。なお、図14でも、永久磁石は記載されていないが、永久磁石は動径方向にあるものとし、永久磁石に最も近い層の厚さが薄くなっている。
【0034】
永久磁石に最も近い層の厚さの効果を調べるため、Y系酸化物超電導体で、外 径46mm、高さ20mで、リングの動径方向の厚さを変化させた試料に対して浮上力 を測定したところ、図15に示すような結果が得られた。図15から、動径方向の厚さが5mmより大きくなると、浮上力がほぼ一定になることが分かる。従って 、超電導体を積層構造にした場合、永久磁石に最も近い層の厚さを5mmよりも大 きくしても、浮上力改善の効果が小さい。
【0035】
本発明の効果を調べるため、本実施例の超電導体として、Y系の酸化物超電導 体で、図14に示すようなc軸が動径方向を向いた外径46mm、内径15mm、高さ20mmのリング形状試料を積層構造で作製した。動径方向の積層構造は2層とし、永久磁石に最も近い層の厚さは3mm、第2層目の厚さは12.5mmであり、また周方向分割数は4とした。本実施例の試料に対して浮上力を測定したところ、146Nであった。図2の右側に示した従来例の超電導体の浮上力が122Nであったので、本発明によって、従来例に比べて浮上力が改善することが確認できた。本実施例では、超電導体のc軸を動径方向に向けた場合で行ったが、本発明の請求項1に基づいた超電導軸受のように超電導体のc軸が軸方向に向いている場合にも、積層構造にすることによって同様の効果を得ることができる。
【0041】
【発明の効果】
本発明の超電導軸受によれば、超電導体と永久磁石が動径方向に対向するラジアル軸受型配置で高い浮上力を提供できるので、電力貯蔵用フライホイールや高速回転機器に用いられる超電導軸受の実現可能性を高めることができる。
【図面の簡単な説明】
【図1】 超電導軸受の(a)斜視図、(b)断面図である。
【図2】 超電導軸受の超電導体の(a)一参考例とその(b)比較例を示す図である。
【図3】 ラジアル軸受型配置での浮上力の測定データの一例のグラフを示す図である。
【図4】 (a)、(b)、(c)はそれぞれ超電導軸受の超電導体の別の参考例を示す図である。
【図5】 電導軸受の超電導体の一参考例を示す図である。
【図6】 電導軸受の超電導体の作製プロセスの一参考例を示す図である。
【図7】 1つの試料内に6個の単結晶状領域を含む超電導体の作製プロセスの一例を示す図である。
【図8】 図7に対する比較例を示す図である。
【図9】 1つの試料内に3個の単結晶状領域を含む超電導体の作製プロセスの一例を示す図である。
【図10】 図9に対する比較例を示す図である。
【図11】 電導軸受の超電導体の作製プロセスの別の参考例を示す図である。
【図12】 電導軸受の超電導体の別の参考例を示す図である。
【図13】 本発明の請求項に基づいた超電導軸受の超電導体の一実施例を示す図である。
【図14】 本発明の請求項に基づいた超電導軸受の超電導体の一実施例を示す図である。
【図15】 浮上力と超電導体の動径方向厚さとの関係のグラフを示す図である。
【図16】 従来のアキシャル型超電導軸受の(a)斜視図、(b)断面図である。
【図17】 従来のラジアル型超電導軸受の(a)斜視図、(b)断面図である。
【図18】 ラジアル軸受用超電導体の作製プロセスの従来例を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superconducting bearing used in a power storage flywheel, a high-speed rotating device, or the like.
[0002]
[Prior art]
A superconducting bearing uses a pinning effect between a superconductor and a magnet, and has a function of stably floating and rotating an object without contact without contact. The positional relationship between the superconductor and the magnet in the superconducting bearing mainly includes an axial bearing type arrangement and a radial bearing type arrangement. As shown in FIG. 16 , in the axial bearing type arrangement, the superconductor and the magnet face each other in the axial direction. On the other hand, as shown in FIG. 17, in the radial bearing type arrangement, the superconductor and the magnet face each other in the radial direction.
[0003]
A large oxide superconductor made in a single crystal form is used for the superconducting bearing. However, single-crystal oxide superconductors have anisotropy due to crystal orientation, and are parallel to the crystal c-axis and perpendicular to the crystal c-axis, that is, the crystal a-axis and b-axis. The superconducting characteristics differ greatly between the direction parallel to the ab plane to be formed. As a result, the levitation force varies greatly depending on the orientation of the crystal orientation of the superconductor relative to the magnet. Conventionally, in order to increase the levitation force, it is common to use a crystal arrangement in which the c-axis of the superconductor is directed toward the magnet, that is, the c-axis of the superconductor is perpendicular to the surface of the magnet. there were. In other words, in the axial bearing type arrangement, the c-axis of the superconductor was axially oriented in the axial direction, and in the radial bearing type arrangement, the c-axis of the superconductor was radially oriented in the radial direction.
[0004]
In the axial bearing type arrangement, it is possible to orient the c-axis of the entire superconductor constituting the bearing in the axial direction. However, in the radial bearing type arrangement, it is not possible with a single crystal to radially orient the c-axis of the superconductor constituting the bearing over the entire circumference of the bearing. Therefore, as shown in FIG. 18 , as a conventional technique, several samples are manufactured, each is processed into a fan shape, and they are combined to form a superconductor constituting one bearing, and individual bearings are formed. A technique is employed in which the c-axis of the element member is radially oriented. At this time, the method for joining the individual fan-shaped members is to physically join the individual members by simply storing them in the cooling container, or to bond them with an adhesive when they are stored in the cooling container. It is only fixed.
[0005]
[Problems to be solved by the invention]
However, when the superconductor of the superconducting bearing is manufactured by the method as shown in FIG. 18 , the individual element members are merely physically coupled, and the superconducting current does not flow at the boundary between the element members. In addition, strictly speaking, the portion where the c-axis of each element member is radially oriented is only the center portion of the element member, and the deviation between the c-axis and the radial direction increases as the distance from the center portion increases. Therefore, to improve the degree of c-axis of the superconductor as a whole bearing is oriented in the radial direction is made to increase the number of element members, the flow of the superconducting current in contrast to the saw this The number of boundaries between missing element members will also increase. Therefore, in the radial bearing type arrangement, the conventional method has the contradictory properties of improving the crystal orientation of the entire bearing and reducing the number of boundary surfaces where the superconducting current does not flow. There was a problem that it was difficult to improve the levitation force.
[0006]
Further, even in the axial bearing type arrangement, when the bearing size is increased, it is difficult to produce a single crystal superconductor as a single body, and thus a plurality of superconductors are combined. In this case as well, there is a problem that it is difficult to improve the levitation force because the superconducting current does not flow between the individual superconductors.
[0007]
An object of the present invention is to provide a superconducting bearing that solves the above problems and obtains a high levitation force in a radial bearing type arrangement in which a superconductor and a magnet face each other in the radial direction .
[0008]
[Means for Solving the Problems]
The superconducting bearing of this reference example is a radial superconducting bearing in which a superconductor and a magnet face each other in the radial direction. The superconductor constituting the superconducting bearing has a plurality of single crystal regions inside. The superconducting bearing is characterized in that the c-axis of each single crystal region in the superconductor faces the radial direction of the bearing, and the angle formed by the c-axis direction of adjacent single crystal regions is 90 ° or less. is there.
[0010]
A first superconducting bearing according to the present invention is a radial type superconducting bearing in which a superconductor and a magnet are opposed in a radial direction. The superconductor constituting the superconducting bearing is composed of a plurality of element members, and each element member Has a laminated structure in the radial direction, and the position of the boundary surface between the element members is shifted for each adjacent layer, and the c-axis of the single crystal region is oriented in the radial direction. It is.
Second superconducting bearing according to the invention are the first superconducting bearing according to the invention, wherein the thickness of the layer closest to the magnet of the superconductor having a layered structure is 5mm or less.
[0012]
According to the configuration of the superconducting bearing of this reference example , since the superconducting current flows also at the boundary between the plurality of single crystal regions in which the superconductor is present, the physical coupling is not performed at all. Compared to the case, the levitation force is improved.
[0013]
The reason why the angle formed by the c-axis direction of adjacent single crystal regions in the superconducting bearing of this reference example is limited to 90 ° or less will be described. In order to improve the orientation in the radial direction of the entire bearing, the smaller the angle formed between the c-axis directions of adjacent single crystal regions, the better. However, the smaller the angle, the greater the number of single crystal regions in one sample, so that the manufacturing process may be complicated. Therefore, the number of single crystal regions in one sample was reduced, and the extent to which the levitation force was improved was examined. As shown in the reference example, when there are four single-crystal regions in one ring-shaped superconductor, the levitation force was greatly improved, but three single-crystal regions in one ring-shaped superconductor. When there was an area, the levitation force improved, but the effect was small. In the former case, the angle formed in the c-axis direction between adjacent single crystal regions is 90 °, whereas in the latter case, the angle formed in the c-axis direction between adjacent single crystal regions is 120 °. Therefore, the angle formed by the c-axis direction of adjacent single crystal regions is limited to 90 ° or less.
[0014]
According to the configuration of the first superconducting bearing according to the present invention, the superconductor of the adjacent layer exists at the position of the boundary surface where the superconductors are merely physically coupled. It works to reduce the effect of weakening the general connection. For this reason, the levitation force is improved as compared with the conventional example in which the superconductor does not have a laminated structure.
[0015]
The reason for limiting the thickness of the layer closest to the magnet of the superconductor having a laminated structure to 5 mm or less in the second superconducting bearing according to the present invention will be described. The present inventors investigated the relationship between the thickness of the superconductor and the levitation force.When the thickness of the superconductor is 5 mm or less, the levitation force increases as the sample thickness increases, but the sample thickness exceeds 5 mm. I found that the levitation force was almost constant as the value increased. That is, if the thickness of the layer closest to the magnet is larger than 5 mm, the effect of making the superconductor a laminated structure becomes very small. Therefore, the thickness of the layer closest to the superconductor magnet having a laminated structure is limited to 5 mm or less.
[0020]
The superconductor used in the present invention is not particularly limited as long as it can exhibit a pinning effect, but a superconductor having a strong pinning force is preferable. The superconductor used in this example is called a QMG material. The RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O x phase (RE is Y or a rare earth element and a combination thereof). It is a material with strong pinning power at liquid nitrogen temperature (patent registration number 1869884). The magnet used in the present invention is preferably a permanent magnet because the bearing structure becomes simple, but may be an electromagnet or a superconducting magnet. Since the levitation force increases as the magnetic flux density on the surface facing the superconductor increases, when using a permanent magnet, a material having a high surface magnetic flux density such as a rare earth permanent magnet, such as the Nd-Fe-B A permanent magnet such as Pr-Fe-B or Sm-Co is desirable.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Figure 1 is a schematic diagram showing a Ichikatachi state of superconducting bearing (a) is a perspective view, (b) is a cross-sectional view. In FIG. 1, in the radial bearing type arrangement in which the superconductor and the permanent magnet face each other in the radial direction, the c-axis direction of the superconductor faces the axial direction of the bearing, not the radial direction of the bearing. Although a cooling system for cooling the superconductor is not shown in FIG. 1, the superconductor is housed in a cooling container and cooled by a refrigerant such as liquid nitrogen or cooled by a refrigerator.
[0022]
As shown in Fig. 2 (a), the superconductor of the above-mentioned reference example is a Y-based oxide superconductor, with an outer diameter of 46mm, an inner diameter of 15mm, and a height of 20mm, with the c-axis facing the axial direction of the ring. As shown in Fig. 2 (b), a ring-shaped sample of the material was prepared, and as shown in Fig. 2 (b), four fan-shaped samples with a central portion facing the radial direction were used. What was combined in the ring shape of the same size as this reference example was produced, and levitation force was measured and compared with each. The levitation force is measured by cooling the superconductor fixed to the storage jig with liquid nitrogen in a ring-shaped magnet. After the superconductor has cooled sufficiently, the distance between the superconductor and the permanent magnet is measured. I went away.
[0023]
FIG. 3 shows an example of measurement of the levitation force characteristic curve. As the distance between the superconductor and the permanent magnet increased, the levitation force increased rapidly at first and then gradually decreased after taking the maximum value. Here, the maximum value of the levitation force is simply called the levitation force. Conventional levitation force of FIG. 2 (b) while was 122N, levitation force of the superconductor of the present embodiment shown in FIG. 2 (a) was 148N.
[0024]
As the superconductor of this reference example in FIG. 2A is an integral superconductor, it is desirable that the superconductor used in the present invention is an integral sample without any break in the circumferential direction and the axial direction. However, as the size of the superconducting bearing increases, it becomes difficult to produce a single-crystal sample as a single piece. Even in that case, several superconductors are combined, but the same effect can be obtained by orienting the c-axis of each superconductor in the axial direction of the bearing. As a method of combination, depending on the size of the superconductor required for the bearing, as shown in FIG. 4 (a), samples having no discontinuities in the circumferential direction may be stacked in the axial direction, or as shown in FIG. 4 (b). Thus, samples that are not cut in the axial direction may be combined in the circumferential direction, or several samples may be combined in both the axial direction and the circumferential direction as shown in FIG.
[0025]
Figure 5 is a schematic diagram showing the form of a single reference example of superconducting bearings. In FIG. 5, the permanent magnet is not shown, but it is assumed to be in the radial direction as in FIG. In FIG. 5, the superconductors constituting the superconducting bearing are integrated, and there are four single-crystal regions in the sample, and the c-axis of each single-crystal region faces the radial direction. ing.
[0026]
In order to investigate the above effect, the superconductor of this reference example is a Y-based oxide superconductor having an outer diameter of 46 mm, an inner diameter of 15 mm, and a height of 20 mm with the c-axis facing the radial direction as shown in FIG. An integral ring-shaped sample was prepared. In order to form four single crystal regions in a monolithic sample, as shown in FIG. 6, when the sample was produced, crystal growth was performed using four seed crystals. In addition, by making the c-axis direction of each seed crystal the radial direction, the c-axis of each single crystal region could also be oriented in the radial direction. The levitation force of this sample was measured and found to be 165N. Since the floating force of the superconductor in the conventional example shown in the right side of FIG. 2 was 122N, the present embodiment, floating force was confirmed to be improved as compared with the conventional example.
[0027]
6 was the case including four single crystalline regions in one sample, as shown in FIG. 7, the effect also when containing six single crystalline regions in one sample I examined it. As a superconductor of this reference example, a ring-shaped sample of an Y-type oxide superconductor having an outer diameter of 46 mm, an inner diameter of 15 mm, and a height of 20 mm with the c-axis facing the radial direction is shown in FIG. These were prepared using six seed crystals with the c-axis directed in the radial direction. Also, for comparison, a ring shape having the same size as that of this reference example was used by using six Y-shaped oxide superconductors with a c-axis facing the radial direction at the center as shown in FIG. A combination fixed to a storage jig was prepared. The levitation force of the sample of this reference example was 172N, and the levitation force of the comparative example was 138N. By this reference example, levitation force it was confirmed that improvement.
[0028]
As shown in FIG. 9, the case where three single crystal regions were included in one sample was examined as a reference example . As a superconductor of this reference example, a ring-shaped sample of a Y-type oxide superconductor having an outer diameter of 46 mm, an inner diameter of 15 mm, and a height of 20 mm with the c-axis facing the radial direction is shown in FIG. , Using three seed crystals with the c-axis directed in the radial direction. For comparison, a ring shape having the same size as that of this reference example was used by using three Y-shaped oxide superconductors as shown in FIG. A combination fixed to a storage jig was prepared. The levitation force of the sample of this reference example was 126N, and the levitation force of the comparative example was 119N .
[0029]
In the case where four single crystal regions are included in one sample as shown in FIG. 6, the angle formed between the adjacent single crystal regions in the c-axis direction is 90 °. In the example of FIG. 6, the levitation force is improved from 122N to 165N and 43N. In addition, in the case where six single crystal regions are included in one sample as shown in FIG. 7, the angle formed between the adjacent single crystal regions in the c-axis direction is 60 °. In the example of FIG. 7, the levitation force is improved from 138N to 172N and 34N. On the other hand, when three single crystal regions are included in one sample as shown in FIG. 9, the angle formed by the adjacent single crystal regions in the c-axis direction is 120 °. In the example of FIG. 9, the levitation force is improved from 119N to 126N by 7N, but the effect of improving the levitation force is small compared to the cases of FIGS. Therefore, in order to increase the effect of improving the levitation force, it is desirable that the angle formed by the c-axis direction between adjacent single crystal regions be 90 ° or less.
[0030]
In the present embodiment described so far, for producing a single superconductor plurality of single crystalline region, were subjected to fabrication processes using a plurality of seed crystals at the time of sample preparation, this reference example this manufacturing It is not limited to processes. An example of another manufacturing process is shown in FIG. FIG. 11 shows a manufacturing process in which a fan-shaped superconductor is prepared in advance and a post-treatment for superconducting them is performed to form one sample.
[0031]
In the method of FIG. 11, as a post-processing step for superconducting bonding, the main body is made of a Y-based oxide superconductor having a crystal growth temperature of 1000 ° C., and a Yb-based oxide superconductor having a crystal growth temperature of 900 ° C. therebetween. In the state of inserting, the heating was performed to 900 ° C. or higher, and the temperature was gradually cooled to about 900 ° C. That is, the process was performed using a superconductor having a low crystal growth temperature as solder and bonding the superconductor having a high crystal growth temperature. In this manufacturing process, a ring-shaped sample having an outer diameter of 46 mm, an inner diameter of 15 mm, and a height of 20 mm was manufactured, and the flying force was measured to be 145N. Since the floating force of the superconductor in the conventional example shown in the right side of FIG. 2 was 122N, the present embodiment, floating force was confirmed to be improved as compared with the conventional example.
[0032]
In this reference example described so far, the superconductor constituting the bearing is an integral superconductor. However, as the size of the superconducting bearing increases, it becomes difficult to produce an integral sample. In that case, several superconductors are combined. As shown in FIG. 12, a plurality of single crystal regions are provided inside each superconductor, and the c-axis of each single crystal region is A similar effect can be obtained by directing in the radial direction of the bearing.
[0033]
Figure 13 is a schematic diagram illustrating an embodiment of a superconducting bearing based on claim 1 of the present invention. In FIG. 13, the permanent magnet is not shown, but it is assumed to be in the radial direction as in FIG. In FIG. 13, the superconductor constituting the superconducting bearing has a brick structure in the radial direction in a brick shape. FIG. 14 is a schematic view showing an embodiment of a superconducting bearing based on claim 2 of the present invention. In FIG. 14, the permanent magnet is not shown, but the permanent magnet is assumed to be in the radial direction, and the thickness of the layer closest to the permanent magnet is thin.
[0034]
In order to investigate the effect of the thickness of the layer closest to the permanent magnet, the levitation force of a Y-based oxide superconductor with an outer diameter of 46 mm and a height of 20 m and with the ring radial thickness changed. As a result, the results as shown in FIG. 15 were obtained. From FIG. 15, it can be seen that the levitation force becomes substantially constant when the thickness in the radial direction is greater than 5 mm. Therefore, when the superconductor has a laminated structure, the effect of improving the levitation force is small even if the thickness of the layer closest to the permanent magnet is larger than 5 mm.
[0035]
In order to investigate the effect of the present invention, the superconductor of this example is a Y-based oxide superconductor, and the c-axis as shown in FIG. 14 has an outer diameter of 46 mm, an inner diameter of 15 mm, and a height of 20 mm. A ring-shaped sample was prepared in a laminated structure. The laminated structure in the radial direction was two layers, the thickness of the layer closest to the permanent magnet was 3 mm, the thickness of the second layer was 12.5 mm, and the number of circumferential divisions was four. The levitation force of the sample of this example was measured and found to be 146N. Since the levitation force of the superconductor of the conventional example shown on the right side of FIG. 2 was 122 N, it was confirmed that the levitation force was improved by the present invention compared to the conventional example. In this example, the c-axis of the superconductor was directed in the radial direction, but the c-axis of the superconductor was oriented in the axial direction as in the superconducting bearing according to claim 1 of the present invention. In addition, a similar effect can be obtained by using a laminated structure.
[0041]
【The invention's effect】
According to the superconducting bearing of the present invention, the superconductor and the permanent magnet is so cut with providing high levitation force radial bearing type disposed opposite the radial direction, of superconducting bearings for use in flywheel and high-speed rotating equipment power storage Feasibility can be increased.
[Brief description of the drawings]
1A is a perspective view and FIG. 1B is a cross-sectional view of a superconducting bearing.
FIG. 2 is a diagram showing (a) one reference example and (b) comparative example of a superconductor of a superconducting bearing.
FIG. 3 is a graph showing an example of measurement data of levitation force in a radial bearing type arrangement.
FIGS. 4A, 4B, and 4C are diagrams showing another reference example of the superconductor of the superconducting bearing, respectively.
5 is a diagram showing an Example of a superconductor superconducting bearing.
6 is a diagram showing an Example of production process of the superconductor superconducting bearing.
FIG. 7 is a diagram showing an example of a manufacturing process of a superconductor including six single crystal regions in one sample.
8 is a diagram showing a comparative example with respect to FIG.
FIG. 9 is a diagram showing an example of a manufacturing process of a superconductor including three single crystal regions in one sample.
10 is a diagram showing a comparative example with respect to FIG. 9. FIG.
11 is a diagram showing another reference example of production process of the superconductor superconducting bearing.
12 is a diagram showing another reference example of the superconductor of the superconducting bearing.
13 is a diagram showing an embodiment of a superconductor of the superconducting bearing based on claim 1 of the present invention.
FIG. 14 is a view showing an example of a superconductor of a superconducting bearing according to claim 2 of the present invention.
FIG. 15 is a diagram showing a graph of the relationship between the levitation force and the radial thickness of the superconductor.
16A is a perspective view and FIG. 16B is a sectional view of a conventional axial superconducting bearing.
17A is a perspective view and FIG. 17B is a sectional view of a conventional radial superconducting bearing.
FIG. 18 is a diagram showing a conventional example of a manufacturing process of a radial bearing superconductor.

Claims (2)

超電導体と磁石が動径方向に対向しているラジアル型の超電導軸受において、超電導軸受を構成する超電導体が複数個の要素部材からなり、個々の要素部材が動径方向に積層構造を形成し、かつ隣り合う層ごとに要素部材間の境界面の位置がずれ、単結晶状領域のc軸が動径方向に向いていることを特徴とする超電導軸受。  In a radial superconducting bearing in which a superconductor and a magnet face each other in the radial direction, the superconductor constituting the superconducting bearing is composed of a plurality of element members, and each element member forms a laminated structure in the radial direction. And the position of the interface between element members shifts for every adjacent layer, and the c-axis of the single crystal region is oriented in the radial direction. 積層構造を有する超電導体の永久磁石に最も近い層の厚さが5mm以下であることを特徴とする請求項に記載の超電導軸受。The superconducting bearing according to claim 1 , wherein the thickness of the layer closest to the permanent magnet of the superconductor having a laminated structure is 5 mm or less.
JP2000062201A 2000-03-07 2000-03-07 Superconducting bearing Expired - Fee Related JP4331850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062201A JP4331850B2 (en) 2000-03-07 2000-03-07 Superconducting bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062201A JP4331850B2 (en) 2000-03-07 2000-03-07 Superconducting bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008283445A Division JP4874318B2 (en) 2008-11-04 2008-11-04 Superconducting bearing

Publications (2)

Publication Number Publication Date
JP2001248642A JP2001248642A (en) 2001-09-14
JP4331850B2 true JP4331850B2 (en) 2009-09-16

Family

ID=18582242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062201A Expired - Fee Related JP4331850B2 (en) 2000-03-07 2000-03-07 Superconducting bearing

Country Status (1)

Country Link
JP (1) JP4331850B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220733B2 (en) * 2002-07-05 2009-02-04 新日本製鐵株式会社 Superconducting magnetic bearing
JP4670094B2 (en) * 2004-09-28 2011-04-13 財団法人国際超電導産業技術研究センター Superconducting bearing and magnetic levitation device

Also Published As

Publication number Publication date
JP2001248642A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
EP2511917B1 (en) Oxide superconducting bulk magnet member
JP6493419B2 (en) Oxide superconducting bulk magnet
Yamaki et al. Rare-earth-dependent tri-axial magnetic anisotropies and growth conditions in REBa2Cu4O8
CN1127050A (en) Superconducting magnet and production method thereof
JP2009517817A5 (en)
JP4331850B2 (en) Superconducting bearing
AU604119B2 (en) High current conductors and high field magnets using anisotropic superconductors
JP2006332577A (en) Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system
JP4865081B2 (en) Oxide superconducting bulk magnet member
JP4220733B2 (en) Superconducting magnetic bearing
JP5198193B2 (en) Superconducting magnet and manufacturing method thereof
JP4874318B2 (en) Superconducting bearing
EP0797261B1 (en) Superconductive composite material
Morita et al. Development of oxide superconductors
JPH11186024A (en) Oxide superconductor pseudo permanent magnet and manufacture thereof
JP2018035015A (en) Superconducting bulk conjugate and manufacturing method of superconducting bulk conjugate
JP4603331B2 (en) Oxide superconductor processing method, oxide superconducting energization element and superconducting magnet
JPH01246801A (en) Superconducting magnet
JP5131136B2 (en) Superconducting member and superconducting magnetic levitation device
JP4903729B2 (en) Oxide superconducting magnet, manufacturing method thereof, and cooling method
Okada HTS high field magnets
JP3912890B2 (en) Oxide superconductor laminate and method for producing the same
JPS638602B2 (en)
JP2013036541A (en) Superconducting bearing device
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees