JPH11186024A - Oxide superconductor pseudo permanent magnet and manufacture thereof - Google Patents

Oxide superconductor pseudo permanent magnet and manufacture thereof

Info

Publication number
JPH11186024A
JPH11186024A JP36565197A JP36565197A JPH11186024A JP H11186024 A JPH11186024 A JP H11186024A JP 36565197 A JP36565197 A JP 36565197A JP 36565197 A JP36565197 A JP 36565197A JP H11186024 A JPH11186024 A JP H11186024A
Authority
JP
Japan
Prior art keywords
crystal
temperature superconductor
superconductor
ring
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36565197A
Other languages
Japanese (ja)
Inventor
Masahito Murakami
雅人 村上
Hiroki Koshiro
宏樹 小城
Masaru Nagashima
賢 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
International Superconductivity Technology Center
EIDP Inc
Original Assignee
Railway Technical Research Institute
International Superconductivity Technology Center
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, International Superconductivity Technology Center, EI Du Pont de Nemours and Co filed Critical Railway Technical Research Institute
Priority to JP36565197A priority Critical patent/JPH11186024A/en
Publication of JPH11186024A publication Critical patent/JPH11186024A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconductor pseudo permanent magnet of large dimensions, capable of exhibiting superior magnetic characteristics over a wide range of magnetic field region and can be commercially stably manufactured. SOLUTION: An R-Ba-Cu-O oxide high-temperature superconductor pseudo permanent magnet is made into annular form which has a face of superconductor crystal (ab) in its axial and circumferential directions and a c-axis directed in the radial direction. The magnet can be manufactured by applying a paste of oxide high-temperature superconductor forming source material onto an annular base surface and forming an annular superconductor crystal layer by a melt growth method through the use of a seed crystal, or by forming a superconductor crystalline layer on a strip-shaped base surface in a similar method, bending it into an annulus and diffusion-jointing both ends of the ring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高磁場領域でも高い
臨界電流密度を示すと共に、不可逆磁場も高く、従って
リニアモ−タ−カ−等の強磁場発生源としての機能を発
揮させることが期待されるR−Ba−Cu−O(RはY,L
a,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Ybの1種又は2
種以上)系酸化物高温超電導体疑似永久磁石並びにその
製造方法に関するものである。
The present invention exhibits a high critical current density even in a high magnetic field region and a high irreversible magnetic field, and is therefore expected to function as a strong magnetic field source such as a linear motor car. R-Ba-Cu-O (R is Y, L
a, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, one or two
More than one type) oxide-based high-temperature superconductor pseudo-permanent magnet and a method for producing the same.

【0002】[0002]

【従来技術とその課題】例えば特開平7−111213
号公報にも示されているように、溶融法で製作したR−
Ba−Cu−O系酸化物高温超電導バルク体(但し、 Rは
Y,La,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb等の希土
類元素)はその体内のピンニングセンタ−に磁場を捕捉
させることが可能であることから、これを疑似永久磁石
として使用できることが知られている。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open No. Hei 7-111213
As shown in the official gazette, R-
Ba-Cu-O-based oxide high-temperature superconducting bulk material (where R is a rare earth element such as Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) is a pinning center in the body. It is known that this can be used as a quasi-permanent magnet because it is possible to capture a magnetic field.

【0003】この場合、磁場の強度はバルク体の径に比
例するが、大寸法の酸化物高温超電導バルク体を育成す
ることは現時点では容易でない上に、大型バルク体はク
ラック等を発生しやすく、そのため、現状では円柱形状
の、それも直径が精々100mm程度の大きさのものが製
作可能限度となっている。即ち、酸化物高温超電導バル
ク体の育成には多大な時間を必要とする上(直径100
mmのもので100時間、 直径150mmのものになると1
50時間もの育成時間を要する)、育成時間が長時間化
するほど“育成設備の基材等との反応”が進んで磁石材
として重要な外層側ほど特性が劣化するという問題があ
ったためである。
[0003] In this case, the strength of the magnetic field is proportional to the diameter of the bulk body. However, it is not easy at present to grow a large-sized oxide high-temperature superconducting bulk body. Therefore, at present, a columnar shape having a diameter of at most about 100 mm is at the limit of manufacture. That is, it takes a lot of time to grow an oxide high-temperature superconducting bulk body (100 mm diameter).
mm for 100 hours, 150mm for 1
This requires a growth time of as much as 50 hours), and the longer the growth time, the more the "reaction with the base material of the growth equipment" progresses, and the more the outer layer, which is more important as a magnet material, the more the properties deteriorate. .

【0004】また、酸化物高温超電導体(以降、 単に高
温超電導体と呼ぶ)は異方性が大きく、それ故、前述し
たように円柱形状のものしか育成できなかった従来のバ
ルク磁石では、図1に示す如く円柱の周方向に誘導電流
を発生させて磁場を結晶のc軸に平行に印加した場合に
しか大きな磁場を捕捉することができなかった。ところ
が、この場合における高磁場領域での臨界電流密度や不
可逆磁場は比較的小さく、従って、例えばリニアモ−タ
−カ−等の強磁場発生源への応用が期待される疑似永久
磁石として満足できるような磁気特性を確保するには至
っていない。
Further, an oxide high-temperature superconductor (hereinafter, simply referred to as a high-temperature superconductor) has a large anisotropy, and therefore, as described above, in a conventional bulk magnet that can grow only in a cylindrical shape, as shown in FIG. As shown in FIG. 1, a large magnetic field could be captured only when an induced current was generated in the circumferential direction of the cylinder and a magnetic field was applied in parallel to the c-axis of the crystal. However, in this case, the critical current density and the irreversible magnetic field in the high magnetic field region are relatively small, so that the magnet can be satisfied as a pseudo permanent magnet expected to be applied to a strong magnetic field source such as a linear motor car. It has not yet been able to ensure excellent magnetic properties.

【0005】そのため、本発明者等は、前記特開平7−
111213号公報に記載されているような“高温超電
導体内のピンニングセンタ−に磁場を捕捉して使用する
疑似永久磁石”の性能改善を目指して種々の観点から研
究を行ったところ、「高温超電導体では、 従来の手法と
は異なり、 結晶のc軸に垂直に磁場を加えると臨界電流
密度(取り分け高磁場領域で臨界電流密度)が非常に大
きくなり、 また不可逆磁場も飛躍的に向上する」という
事実を確認するに至った。
[0005] For this reason, the present inventors have proposed the method disclosed in
In order to improve the performance of a “pseudo-permanent magnet that captures and uses a magnetic field at a pinning center in a high-temperature superconductor” as described in Japanese Patent Publication No. 11213, research was conducted from various viewpoints. Then, unlike the conventional method, when a magnetic field is applied perpendicular to the c-axis of the crystal, the critical current density (especially the critical current density in a high magnetic field region) becomes very large, and the irreversible magnetic field also improves dramatically. " I came to confirm the fact.

【0006】即ち、図2は高温超電導体(YBa2Cu
3x )の“臨界電流密度の磁場依存性”(c軸に垂直
方向に電流を流した場合)の調査結果を示したグラフで
あるが、この図2からも、高温超電導体の臨界電流密度
は、結晶のc軸に平行に磁場を加えた場合よりもc軸に
垂直に磁場を加えた場合の方が特に高磁場領域で格段に
大きい値を示すようになり、不可逆磁場も著しく向上す
ることが分かる。
FIG. 2 shows a high-temperature superconductor (YBa 2 Cu).
3 O x ) is a graph showing the results of an investigation of “magnetic field dependence of critical current density” (when a current is passed in the direction perpendicular to the c-axis). FIG. 2 also shows the critical current of the high-temperature superconductor. The density becomes much larger in the case of applying a magnetic field perpendicular to the c-axis than in the case of applying a magnetic field parallel to the c-axis of the crystal, especially in the high magnetic field region, and the irreversible magnetic field is also significantly improved. You can see that

【0007】しかし、このように高温超電導体疑似永久
磁石では結晶のc軸に垂直に磁場を加えた方が広い磁場
領域にわたって優れた磁気特性を発揮することが明らか
であるものの、従来の技術で製造し得る高温超電導バル
ク体で磁場を捕捉させようとするとc軸に平行な方向に
も電流が流れる必要があり、この方向の臨界電流が本質
的に非常に小さいため実用の高温超電導体疑似永久磁石
を実現することはできなかった。
However, it is clear that when a magnetic field is applied perpendicularly to the c-axis of the crystal, the high-temperature superconductor pseudo-permanent magnet exhibits excellent magnetic characteristics over a wide magnetic field region as described above. When trying to capture a magnetic field in a bulk material that can be manufactured, a current must also flow in a direction parallel to the c-axis, and the critical current in this direction is essentially very small. A magnet could not be realized.

【0008】このようなことから、本発明の目的は、結
晶のc軸に垂直に磁場を加えることが可能で、広い磁場
領域にわたって優れた磁気特性を発揮する実用の高温超
電導体疑似永久磁石を実現することに置かれた。
Accordingly, an object of the present invention is to provide a practical high-temperature superconductor quasi-permanent magnet which can apply a magnetic field perpendicular to the c-axis of a crystal and exhibit excellent magnetic properties over a wide magnetic field region. Put on the realization.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく更に研究を重ねた結果、次のような新たな
知見を得ることができた。 (a) 金属やセラミックス等から成るリング状基材の表面
に高温超電導体形成原料(構成元素の酸化物粉等)のペ
−ストを塗布すると共に該ペ−スト層に高温超電導体の
微小種結晶を植え付け、これを加熱・溶融し結晶成長さ
せることで、リング状基材のリング一周分全面に“該リ
ング状基材面の垂直方向(即ちリングの半径方向)にc
軸が配向すると共にリングの軸方向と円周方向にab面が
配向した高温超電導体結晶の層”を形成させることがで
きる。
Means for Solving the Problems The present inventors have conducted further studies to achieve the above object, and as a result, have obtained the following new knowledge. (a) A paste of a high-temperature superconductor forming material (such as an oxide powder of a constituent element) is applied to the surface of a ring-shaped substrate made of a metal, ceramics, or the like, and minute species of the high-temperature superconductor are applied to the paste layer. A crystal is inoculated, heated and melted to grow the crystal, whereby “c is applied in a direction perpendicular to the surface of the ring-shaped substrate (ie, in the radial direction of the ring) over the entire circumference of the ring-shaped substrate.
It is possible to form a layer of a high-temperature superconductor crystal "having its axis oriented and its ab plane oriented in the axial and circumferential directions of the ring.

【0010】(b) このリング形状を成す高温超電導体
は、外部磁場によりその周方向に誘導電流を生じさせる
ことができるので、高温超電導体結晶のc軸に垂直に磁
場を加え得る高温超電導体疑似永久磁石となり、高い臨
界電流密度で電流が流せる上に不可逆磁場も大きいとい
う優れた性能が発揮される。 (c) このリング状磁石体は、閉鎖された超電導体である
ので一旦発生させた誘導電流を永久電流とすることが可
能であり、広い磁場領域にわたって優れた磁気特性を発
揮する高温超電導体疑似永久磁石となり得る。
(B) Since the ring-shaped high-temperature superconductor can generate an induced current in the circumferential direction by an external magnetic field, the high-temperature superconductor can apply a magnetic field perpendicular to the c-axis of the high-temperature superconductor crystal. It becomes a quasi-permanent magnet, and exhibits excellent performance that current can flow at a high critical current density and an irreversible magnetic field is large. (c) Since this ring-shaped magnet is a closed superconductor, the induced current once generated can be used as a permanent current, and a high-temperature superconductor that exhibits excellent magnetic properties over a wide magnetic field region. It can be a permanent magnet.

【0011】(d) 上記リング状磁石体は、可撓性の帯状
基材の表面に高温超電導体形成原料(構成元素の酸化物
粉等)のペ−ストを塗布すると共に該ペ−スト層に高温
超電導体の種結晶を植え付け、これを加熱・溶融し結晶
成長させることで帯状基材面の垂直方向にc軸が配向し
た高温超電導体結晶層を形成させた後、この高温超電導
体結晶層が形成された帯状基材をリング状に丸め、その
両端で高温超電導体結晶層が結合するように拡散熱処理
を施す手法によっても製造することができる。
(D) The ring-shaped magnet body is formed by applying a paste of a high-temperature superconductor-forming raw material (such as an oxide powder of a constituent element) to the surface of a flexible belt-shaped base material. A high-temperature superconductor seed crystal is planted on the substrate and heated and melted to grow the crystal, thereby forming a high-temperature superconductor crystal layer in which the c-axis is oriented in the direction perpendicular to the surface of the strip-shaped base material. It can also be manufactured by a method in which the band-shaped substrate on which the layer is formed is rounded into a ring shape and diffusion heat treatment is performed so that the high-temperature superconductor crystal layer is bonded at both ends.

【0012】本発明は、上記知見事項等を基にして成さ
れたものであり、次の“高温超電導体疑似永久磁石”及
び“高温超電導体疑似永久磁石の製造方法”を提供する
ものである。 R−Ba−Cu−O(但し、 RはY,La,Nd,Sm,Eu,
Gd,Dy,Ho,Er,Tm,Ybの1種又は2種以上)系酸化物
高温超電導体内のピンニングセンタ−に磁場を捕捉させ
て使用する疑似永久磁石であって、図3で示すように、
リング形状を成し、かつ該リングの軸方向と円周方向に
超電導体結晶のab面がそして半径方向にc軸が配向して
いることを特徴とする高温超電導体疑似永久磁石。 R−Ba−Cu−O(但し、 RはY,La,Nd,Sm,Eu,
Gd,Dy,Ho,Er,Tm,Ybの1種又は2種以上)系酸化物
高温超電導体内のピンニングセンタ−に磁場を捕捉させ
て使用する疑似永久磁石であって、“リングの軸方向と
円周方向に超電導体結晶のab面がそしてリングの半径方
向にc軸が配向した同心異径のリング状高温超電導体”
の複数個を図4で示すように入れ子状に組み重ねせて成
るところの、リング形状を成していることを特徴とする
高温超電導体疑似永久磁石。 リング状基材の表面に酸化物高温超電導体形成原料
のペ−ストを塗布すると共に該ペ−スト層に高温超電導
体の種結晶を植え付け、このペ−スト層を加熱・溶融し
結晶成長させてリング状基材のペ−スト塗布面全周面に
“該リングの軸方向と円周方向に超電導体結晶のab面
がそして半径方向にc軸が配向した高温超電導体結晶
層”を形成することを特徴とする、前記項に記載の高
温超電導体疑似永久磁石の製造方法。 同心異径の各リング状基材の表面に酸化物高温超電
導体形成原料のペ−ストを塗布すると共に該ペ−スト層
に高温超電導体の種結晶を複数植え付け、このペ−スト
層を加熱・溶融し結晶成長させて、各リング状基材のペ
−スト塗布面に“該リングの軸方向と円周方向に超電導
体結晶のab面がそして半径方向にc軸が配向した高温超
電導体結晶層”を形成させた後、該高温超電導体結晶層
を有する同心異径のリング状基材同士を入れ子状に、か
つ前記結晶層が結晶粒界のずれた状態で対向するように
重ね合わせてから、結晶層同士の重ね合わせ面を拡散接
合して一体のリング状結晶層とすることを特徴とする、
前記項に記載の高温超電導体疑似永久磁石の製造方
法。 帯状基材の表面に酸化物高温超電導体形成原料のペ
−ストを塗布すると共に該ペ−スト層に高温超電導体の
種結晶を植え付け、このペ−スト層を加熱・溶融し結晶
成長させて帯状基材のペ−スト塗布面全面に“該基材面
と垂直方向にc軸が配向した高温超電導体結晶層”を形
成した後、この高温超電導体結晶層が形成された帯状基
材をリング状に丸め、該結晶層の両端を拡散接合によっ
て接合することを特徴とする、前記項に記載の高温超
電導体疑似永久磁石の製造方法。 複数の帯状基材の表面に酸化物高温超電導体形成原
料のペ−ストを塗布すると共に該ペ−スト層に高温超電
導体の種結晶を複数植え付け、このペ−スト層を加熱・
溶融し結晶成長させて、帯状基材のペ−スト塗布面に
“該基材面と垂直方向にc軸が配向した高温超電導体結
晶層”を形成させた後、このようにして得られた各帯状
基材面上の高温超電導体結晶層同士を結晶粒界がずれた
状態に重ね合わせてから重ね合わせ面を拡散接合し一体
化した長尺結晶層となし、その後更にこの長尺結晶層を
リング状に丸め、該結晶層の両端を拡散接合によって接
合することを特徴とする、前記項に記載の高温超電導
体疑似永久磁石の製造方法。
The present invention has been made on the basis of the above findings and the like, and provides the following "high-temperature superconductor pseudo permanent magnet" and "manufacturing method of high-temperature superconductor pseudo permanent magnet". . R-Ba-Cu-O (where R is Y, La, Nd, Sm, Eu,
One or two or more of Gd, Dy, Ho, Er, Tm, and Yb) is a pseudo permanent magnet used by capturing a magnetic field at a pinning center in a high-temperature superconductor based on an oxide, as shown in FIG. ,
A high-temperature superconductor pseudo permanent magnet having a ring shape, wherein the ab plane of the superconductor crystal is oriented in the axial direction and the circumferential direction of the ring, and the c-axis is oriented in the radial direction. R-Ba-Cu-O (where R is Y, La, Nd, Sm, Eu,
One or more of Gd, Dy, Ho, Er, Tm, and Yb) is a pseudo permanent magnet that is used by trapping a magnetic field at a pinning center in a high-temperature oxide superconductor. Concentrically different-diameter ring-shaped high-temperature superconductor with the ab plane of the superconductor crystal oriented in the circumferential direction and the c-axis in the radial direction of the ring ”
A high-temperature superconductor pseudo permanent magnet characterized in that it is formed in a ring shape by nesting a plurality of these as shown in FIG. A paste of an oxide high-temperature superconductor forming raw material is applied to the surface of the ring-shaped base material, and a seed crystal of the high-temperature superconductor is planted on the paste layer, and the paste layer is heated and melted to grow crystals. To form a "high-temperature superconductor crystal layer in which the ab plane of the superconductor crystal is oriented in the axial and circumferential directions of the ring and the c axis is oriented in the radial direction" on the entire peripheral surface of the paste-coated surface of the ring-shaped substrate. The method for producing a high-temperature superconductor pseudo-permanent magnet according to the above item, wherein: A paste of a raw material for forming an oxide high-temperature superconductor is applied to the surface of each ring-shaped substrate having concentric and different diameters, and a plurality of high-temperature superconductor seed crystals are planted in the paste layer, and the paste layer is heated.・ A high-temperature superconductor in which the ab plane of the superconductor crystal is oriented in the axial direction and the circumferential direction of the ring and the c-axis is oriented in the radial direction on the paste-coated surface of each ring-shaped base material by melting and growing the crystal. After the formation of the “crystal layer”, the concentric and different-diameter ring-shaped base materials having the high-temperature superconductor crystal layer are nested together, and the crystal layers are superposed so as to face each other with the crystal grain boundaries being shifted. After that, the overlapping surfaces of the crystal layers are diffusion bonded to form an integrated ring-shaped crystal layer,
The method for producing a high-temperature superconductor pseudo permanent magnet according to the above item. A paste of a material for forming an oxide high-temperature superconductor is applied to the surface of the belt-shaped base material, and a seed crystal of the high-temperature superconductor is planted in the paste layer, and the paste layer is heated and melted to grow crystals. After forming a "high-temperature superconductor crystal layer in which the c-axis is oriented perpendicular to the substrate surface" on the entire surface of the paste-coated surface of the belt-shaped substrate, the band-shaped substrate on which the high-temperature superconductor crystal layer is formed is removed. The method for producing a high-temperature superconductor pseudo permanent magnet according to the above item, wherein the permanent magnet is rounded into a ring and both ends of the crystal layer are joined by diffusion bonding. A paste of an oxide high-temperature superconductor forming material is applied to the surfaces of a plurality of strip-shaped substrates, and a plurality of high-temperature superconductor seed crystals are planted on the paste layer.
It is melted and crystal-grown to form a "high-temperature superconductor crystal layer in which the c-axis is oriented perpendicular to the substrate surface" on the paste-coated surface of the belt-shaped substrate. The high-temperature superconductor crystal layers on each strip-shaped substrate surface are superimposed on each other in a state where the crystal grain boundaries are shifted, and then the superposed surfaces are diffusion-bonded to form an integrated long crystal layer. The method for manufacturing a high-temperature superconductor pseudo permanent magnet according to the above item, wherein the material is rounded into a ring shape and both ends of the crystal layer are joined by diffusion bonding.

【0013】ここで、酸化物高温超電導体形成原料のペ
−ストを塗布するリング状又は帯状の基材としては金属
やセラミックス等の何れを使用しても良いが、高温超電
導体結晶層との反応性が低く、形成される高温超電導体
結晶層を汚染させない材料を選ぶのが良い。勿論、高温
超電導体結晶層を形成させた後にリング状に丸める必要
のある帯状基材の場合には、可撓性・成形性も要求され
ることは言うまでもない。また、酸化物高温超電導体形
成原料のペ−ストとしては、希土類元素の酸化物粉,Ba
CO3 粉及びCuO粉等を有機バインダ−及び溶媒と混合
してペ−スト化したもの等を使用することができる。そ
して、高温超電導体の種結晶としては、この種の高温超
電導体単結晶の育成等で通常に使用されるものを適用す
れば良い。
The ring-shaped or strip-shaped base material on which the paste of the oxide high-temperature superconductor forming material is applied may be any of metals and ceramics. It is preferable to select a material having low reactivity and not contaminating the formed high-temperature superconductor crystal layer. Needless to say, in the case of a band-shaped substrate that needs to be rolled into a ring shape after forming the high-temperature superconductor crystal layer, flexibility and moldability are also required. In addition, the paste of the oxide high-temperature superconductor forming raw material includes rare earth element oxide powder and Ba.
A paste obtained by mixing CO 3 powder, CuO powder and the like with an organic binder and a solvent can be used. Then, as a seed crystal of the high-temperature superconductor, a crystal usually used for growing such a high-temperature superconductor single crystal may be used.

【0014】さて、前記項に記載した如く、本発明に
係る高温超電導体疑似永久磁石は、金属等から成るリン
グ状基材の表面に高温超電導体形成原料のペ−ストを塗
布すると共に該ペ−スト層に高温超電導体の微小種結晶
を植え付け、これを加熱・溶融し結晶成長させることに
より製造することができるが、この際、厳密な溶融・冷
却の制御を行うことで単結晶のリング状超電導体を得る
ことができなくもないものの、結晶成長処理の時間は植
え付ける種結晶の数が多いほど短時間で済むので、多数
の種結晶を使った方が工業生産上有利である。しかも、
結晶成長処理の時間が短ければ基材との相互拡散が防止
され、品質の良い高温超電導体結晶を得ることができ
る。しかし、複数の種結晶を使った場合には、実際上、
隣接する種結晶から成長した結晶はそれぞれc軸の方位
を揃えることができるもののa軸,b軸の方位を揃える
ことは難しく、そのため得られるリング状超電導体は図
5に示すような多結晶体となってしまう。そして、この
ような多結晶体では、その結晶粒界が障害となって大電
流が流れにくいという問題が生じる。
As described in the above paragraph, the high-temperature superconductor pseudo permanent magnet according to the present invention is obtained by applying a paste of a high-temperature superconductor forming raw material to the surface of a ring-shaped base made of metal or the like. -It can be manufactured by implanting a small seed crystal of a high-temperature superconductor in the strike layer and heating and melting it to grow the crystal, but at this time, by strictly controlling the melting and cooling, the single crystal ring Although it is not impossible to obtain a superconductor in a shape, the time for crystal growth treatment is shorter as the number of seed crystals to be planted is larger. Therefore, the use of a large number of seed crystals is more advantageous for industrial production. Moreover,
If the crystal growth treatment time is short, mutual diffusion with the substrate is prevented, and a high-quality high-temperature superconductor crystal can be obtained. However, when multiple seed crystals are used,
Crystals grown from adjacent seed crystals can have the same c-axis direction, but it is difficult to make the a-axis and b-axis directions uniform. Therefore, the resulting ring-shaped superconductor is a polycrystalline material as shown in FIG. Will be. In such a polycrystalline body, a problem arises in that a large current is difficult to flow due to the crystal grain boundary acting as an obstacle.

【0015】そこで、本発明の1つは、この問題を、複
数の種結晶を植え付けて結晶成長させた結晶層を図6で
示すように結晶粒界がずれた状態で重ね合わせ、これを
熱処理して拡散接合させた複合のリング状超電導体とす
ることで解決する。即ち、複数の種結晶を植え付けて結
晶成長させた結晶層の例えば2層を僅かにずらせた状態
(結晶粒界がずれた状態)で重ね合わせて接合すると、
c軸の方位を揃えることができる上、前記図6に示され
るように電流の円滑な流れを確保することができるよう
になって、リング状超電導体に大きな臨界電流密度で電
流が流せるようになり、捕捉磁場を増大することが可能
となる。ここで、上記高温超電導体層の拡散接合では、
加熱温度を900〜1000℃程度とし、接合加圧力は
0.1〜10kgf/cm2 程度とすることが推奨される。
One of the problems of the present invention is to solve this problem by superimposing crystal layers in which a plurality of seed crystals are planted and grown in a state where crystal grain boundaries are shifted as shown in FIG. The problem is solved by forming a composite ring-shaped superconductor which is diffusion bonded. That is, when a plurality of seed crystals are planted and crystal grown, for example, two layers are overlapped and joined in a slightly shifted state (a state in which crystal grain boundaries are shifted).
The direction of the c-axis can be made uniform, and a smooth flow of current can be secured as shown in FIG. 6 so that a current can flow at a large critical current density in the ring-shaped superconductor. In other words, it is possible to increase the trapping magnetic field. Here, in the diffusion bonding of the high-temperature superconductor layer,
The heating temperature is about 900-1000 ° C, and the joining pressure is
It is recommended to be about 0.1 to 10 kgf / cm 2 .

【0016】また、本発明に係る高温超電導体疑似永久
磁石の製造に当っては、前記項に記載したように、リ
ング状基材を用いないで単なる帯状の基材を用いること
もできる。この場合には、まず帯状基材の表面に高温超
電導体形成原料のペ−ストを塗布すると共に高温超電導
体の種結晶を植え付け、これを加熱・溶融し結晶成長さ
せることで、該帯状基材面の垂直方向にc軸が配向した
高温超電導体結晶層を形成させた後、この高温超電導体
結晶層が形成された帯状基材をリング状に丸め、その両
端で高温超電導体結晶層が結合するように拡散熱処理を
施してやれば良い。なお、複数の種結晶を植え付けて結
晶成長させる場合には、前記項に記載したように、高
温超電導体結晶層が形成された帯状基材をリング状に丸
める前に上述の如くに形成した高温超電導体結晶層の複
数を重ね合わせて接合し、その後にこれをリング状に丸
めて両端の接合を行えば良い。このような手立てを講じ
ることによって前記図6にて説明したのと同様のリング
状超電導体を得ることができる。
In the production of the high-temperature superconductor pseudo permanent magnet according to the present invention, as described in the above section, a simple band-shaped substrate can be used without using a ring-shaped substrate. In this case, first, a paste of a material for forming a high-temperature superconductor is applied to the surface of the strip-shaped base material, and a seed crystal of the high-temperature superconductor is planted. After forming a high-temperature superconductor crystal layer with the c-axis oriented in the direction perpendicular to the plane, the band-shaped substrate on which the high-temperature superconductor crystal layer is formed is rolled into a ring shape, and the high-temperature superconductor crystal layers are bonded at both ends. What is necessary is just to perform a diffusion heat treatment so that it may be performed. In the case where a plurality of seed crystals are planted and crystal-grown, as described in the above section, the high-temperature superconducting crystal layer formed on the high-temperature superconductor crystal layer is formed as described above before being rolled into a ring shape. A plurality of superconducting crystal layers may be overlapped and joined, then rounded into a ring shape and joined at both ends. By taking such measures, a ring-shaped superconductor similar to that described with reference to FIG. 6 can be obtained.

【0017】更に、図6に示したのと同様形態のリング
状超電導体を製造する場合、種結晶を用いて基材面に成
長させた隣接する高温超電導体結晶粒同士は必ずしも密
接している必要はなく、例えば図7で示すように、各種
結晶から成長した高温超電導体結晶粒(高温超電導体結
晶層)が互いに離間していても差し支えはない。即ち、
図7は、帯状基材面に酸化物高温超電導体形成原料のペ
−スト(R−Ba−Cu−O系超電導体結晶育成用ペ−ス
ト)を断続的に塗布すると共に各ペ−スト層毎に高温超
電導体の種結晶を植え付け、これを加熱・溶融すること
により結晶成長を行わせしめて帯状基材の長手方向表面
に超電導体結晶層が断続配置した帯状体を得た後、この
ような帯状体の2つを用い、各帯状基材面上の高温超電
導体結晶層同士を“隣接する高温超電導体結晶層との間
隔部分”がずれた状態に重ね合わせてから重ね合わせ面
を拡散接合し一体化した長尺結晶層となす工程を示して
いる。そして、この工程の後、得られた長尺結晶層をリ
ング状に丸めてその両端を拡散接合によって接合すれ
ば、前記図6で示したものと同様性能のリング状超電導
体が実現されることとなる。この方法によると、酸化物
高温超電導体形成原料のペ−スト(R−Ba−Cu−O系超
電導体結晶育成用ペ−スト)及び種結晶の節減あるいは
高温超電導体結晶育成時間の一層の短縮化が叶うので、
工業的にはより有利であると言える。
Further, in the case of manufacturing a ring-shaped superconductor having the same form as that shown in FIG. 6, adjacent high-temperature superconductor crystal grains grown on the base material surface using a seed crystal are not necessarily in close contact. It is not necessary. For example, as shown in FIG. 7, high-temperature superconductor crystal grains (high-temperature superconductor crystal layers) grown from various crystals may be separated from each other. That is,
FIG. 7 shows that a paste (R-Ba-Cu-O-based superconductor crystal growing paste) of an oxide high-temperature superconductor forming material is intermittently applied to the belt-shaped substrate surface and each paste layer is coated. Each time, a seed crystal of a high-temperature superconductor is planted, and the crystal is grown by heating and melting the crystal, thereby obtaining a band in which a superconductor crystal layer is intermittently arranged on the longitudinal surface of the band-shaped base material. The two high-temperature superconducting crystal layers are used to overlap the high-temperature superconductor crystal layers on each band-shaped substrate in such a way that the "space between adjacent high-temperature superconductor crystal layers" is shifted, and then the superposed surface is diffused 3 shows a process of forming a long crystal layer which is joined and integrated. Then, after this step, if the obtained long crystal layer is rolled into a ring shape and both ends are joined by diffusion bonding, a ring-shaped superconductor having the same performance as that shown in FIG. 6 can be realized. Becomes According to this method, a paste of an oxide high-temperature superconductor forming material (paste for growing an R-Ba-Cu-O-based superconductor crystal) and a seed crystal can be saved, or the time for growing a high-temperature superconductor crystal can be further reduced. Because the realization will come true,
It can be said that it is more advantageous industrially.

【0018】従って、本発明で言う「結晶粒界」とは、
図5や図6に示した“隣接結晶粒同士の境界”のみでは
なく、図7に示したような“隣接する結晶層(結晶粒)
との間隔部分”をも含めて意味するものとする。
Therefore, the “grain boundary” in the present invention is defined as
Not only "boundary between adjacent crystal grains" shown in FIGS. 5 and 6, but also "adjacent crystal layer (crystal grain)" as shown in FIG.
And the interval between the two.

【0019】このように、帯状基材表面に高温超電導体
結晶層を成長させ、その後で高温超電導体結晶層が形成
された帯状基材をリング状に丸めるという方法によって
も、リングの軸方向と円周方向に高温超電導体結晶のab
面が、そして半径方向にc軸が配向したリング形状の高
温超電導体を得ることができ、この方法には「製造性が
容易である」という利点もあるが、この利点は製造する
リング状高温超電導体疑似永久磁石の直径が大きいほど
顕著となる。
As described above, the method of growing the high-temperature superconductor crystal layer on the surface of the band-shaped base material and then rolling the band-shaped base material on which the high-temperature superconductor crystal layer has been formed into a ring shape also makes it possible to adjust the axial direction of the ring. Ab of high-temperature superconductor crystal in the circumferential direction
It is possible to obtain a ring-shaped high-temperature superconductor in which the surface and the c-axis are oriented in the radial direction, and this method also has an advantage that "manufacturability is easy". This becomes more remarkable as the diameter of the superconductor pseudo permanent magnet increases.

【0020】[0020]

【効果】上述のように、本発明に係る高温超電導体疑似
永久磁石は「リング形状をなしていて、 かつ該リングの
軸方向と円周方向に超電導体結晶のab面が、 そして半径
方向にc軸が配向した構成」とされているので、リング
の周方向に電流を流して高温超電導体結晶のc軸に垂直
に磁場を加えることができ、従って図2によって説明し
たように広い磁場領域にわたって高い臨界電流密度で電
流を流すことができる上に不可逆磁場も大きく、また大
寸法のもの(例えば直径が200mmを超える寸法のも
の)も比較的容易にかつ比較的短時間に得ることができ
るので、リニアモ−タ−カ−等の強磁場発生源としての
機能を発揮させることが期待される。
As described above, the high-temperature superconductor pseudo-permanent magnet according to the present invention has a "ring shape, and the ab plane of the superconductor crystal extends in the axial and circumferential directions of the ring, and in the radial direction. Since the configuration is such that the c-axis is oriented, a current can be applied in the circumferential direction of the ring to apply a magnetic field perpendicular to the c-axis of the high-temperature superconductor crystal. Therefore, as described with reference to FIG. Current can flow at a high critical current density over a wide range, the irreversible magnetic field is large, and large-sized ones (for example, those having a diameter exceeding 200 mm) can be obtained relatively easily and in a relatively short time. Therefore, it is expected to function as a strong magnetic field generation source such as a linear motor car.

【0021】また、リング状高温超電導体結晶を成長さ
せる際のリング状又は帯状の基材として十分な強度の材
質を選べば、これを補強材としてそのまま利用すること
ができるので、高温超電導体疑似永久磁石体の強度面の
問題も解決される。
If a material having sufficient strength is selected as a ring-shaped or band-shaped base material for growing a ring-shaped high-temperature superconductor crystal, it can be used as it is as a reinforcing material. The problem of the strength of the permanent magnet body is also solved.

【0022】本発明に係る高温超電導体疑似永久磁石
は、従来のものに比べて磁場を捕捉する臨界電流密度が
向上し、不可逆磁場も増大しているために最大捕捉磁場
が飛躍的に改善されるものであるが、製造の際に生じが
ちな結晶の欠陥等による特性の劣化が懸念される場合に
は、前記項及び図4で示したように、同心のリング状
高温超電導体の複数個(勿論、 何れもリングの軸方向と
円周方向に超電導体結晶のab面が半径方向にc軸が配向
したもの)を入れ子式に組み合わせて磁石を構成するの
が良い。このようにすれば、結晶の欠陥等による特性劣
化という危険を分散することが可能になる上、捕捉磁場
を更に増大することができる。
The high-temperature superconductor quasi-permanent magnet according to the present invention has an improved critical current density for capturing a magnetic field and an increased irreversible magnetic field, as compared with the conventional one, so that the maximum captured magnetic field is dramatically improved. However, if there is a concern that the characteristics may be degraded due to crystal defects or the like that tend to occur during manufacturing, as shown in the above section and FIG. 4, a plurality of concentric ring-shaped high-temperature superconductors may be used. It is preferable to form the magnet by nesting combinations (of course, the a-plane of the superconductor crystal is oriented in the c-axis in the radial direction in both the axial direction and the circumferential direction of the ring). This makes it possible to disperse the risk of characteristic deterioration due to crystal defects and the like, and to further increase the trapped magnetic field.

【0023】以下、本発明を実施例によって更に具体的
に説明するが、本発明がこの実施例によって不当に制限
されるものでないことは言うまでもない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but it goes without saying that the present invention is not unduly limited by these Examples.

【実施例】〔実施例1〕まず、高温超電導体{Y2 BaCu
5(Y211)を含むYBa2 Cu3 x ( Y123)結晶
体}形成原料を調整した。これは、Y2 3 ,BaCO3
及びCuOの各粉末を「Y:Ba:Cu」の比が 1.8: 2.4:
3.4の混合比になるように混合し、この混合物を900
℃で24時間仮焼した後、更に1400℃で20分間加
熱し、銅製ハンマ−に挟んで急冷してから、乳鉢を用い
て微細粉砕する方法によった。次に、上記粉砕混合物粉
をこれと同量の“ポリビニルブチラ−ル(有機バインダ
−)を10%を含むイソプロピルアルコ−ル(溶媒)”
と混合し、得られたペ−ストを“外径200mm,幅10
mm,厚さ1mmのステンレス鋼製リング基材”の外面上に
0.2mmの厚さで塗布した。
[Embodiment 1] First, a high-temperature superconductor {Y 2 BaCu
A YBa 2 Cu 3 O x (Y123) crystal containing O 5 (Y211)} forming raw material was prepared. This is Y 2 O 3 , BaCO 3
And the ratio of Y: Ba: Cu is 1.8: 2.4
Mix to a mixing ratio of 3.4 and mix this mixture to 900
After calcination at 24 ° C. for 24 hours, the mixture was further heated at 1400 ° C. for 20 minutes, rapidly cooled with a copper hammer, and then finely ground using a mortar. Next, the above-mentioned pulverized mixture powder was mixed with the same amount of “isopropyl alcohol (solvent) containing 10% of polyvinyl butyral (organic binder)”.
And the resulting paste was mixed with an outer diameter of 200 mm and a width of 10 mm.
mm, 1mm thick stainless steel ring substrate "on the outer surface
It was applied in a thickness of 0.2 mm.

【0024】そして、塗布されたペ−スト上に、種結晶
として“a軸×b軸×c軸方向がそれぞれ1mm×1mm×
0.1mm の大きさになるように切り出したNdBa2Cu3
x (Nd123)単結晶”の複数個をc軸方向が基材面の
接線と垂直方向(即ちリング基材の半径方向)となるよ
うに植え付けた後、150℃の空気中で30分間保持し
て溶媒のイソプロピルアルコ−ルを蒸発させ、更に60
0℃で30分間保持してバインダ−を分解させた。
Then, on the applied paste, the directions of the a-axis x b-axis x c-axis are 1 mm x 1 mm x
NdBa 2 Cu 3 O cut out to a size of 0.1 mm
x (Nd123) single crystal "was planted so that the c-axis direction was perpendicular to the tangent to the substrate surface (that is, the radial direction of the ring substrate), and then kept in air at 150 ° C. for 30 minutes. To evaporate the solvent isopropyl alcohol,
The binder was decomposed by holding at 0 ° C. for 30 minutes.

【0025】続いて、ペ−ストを塗布した基材を102
0℃に1時間昇温後、冷却して超電導粒を溶融成長さ
せ、ステンレス鋼製リング基材の外面全周に超電導体
(Y123)層を形成させた。その後、これに1気圧の
酸素雰囲気中にて500℃で100時間の熱処理(アニ
−ル処理)を施した。
Subsequently, the base material on which the paste was applied was
After the temperature was raised to 0 ° C. for 1 hour, the superconducting particles were cooled and melt-grown to form a superconductor (Y123) layer all around the outer surface of the stainless steel ring base material. Thereafter, this was subjected to a heat treatment (annealing) at 500 ° C. for 100 hours in an oxygen atmosphere at 1 atm.

【0026】このようにして得られたリング状超電導体
(Y123)は、超電導体結晶のc軸がリングの半径方
向に配向すると共にab面がリングの軸方向と円周方向に
配向しており、リング状超電導体の周方向に電流を流し
た時の臨界電流密度をパルス電流通電法で測定したとこ
ろ、77K、ゼロ磁場で45000A/cm2であり、磁場
を変化させると、臨界電流密度は前記図2の“c軸垂直
方向の場合の曲線”と同様傾向で変移した。また、不可
逆磁場も前記図2の“c軸垂直方向の場合の曲線”と同
様傾向を示した。
In the ring-shaped superconductor (Y123) thus obtained, the c-axis of the superconductor crystal is oriented in the radial direction of the ring, and the ab plane is oriented in the axial and circumferential directions of the ring. When the critical current density when a current was passed in the circumferential direction of the ring-shaped superconductor was measured by a pulse current conduction method, the critical current density was 45000 A / cm 2 at 77 K and zero magnetic field. The transition was similar to the “curve in the vertical direction of the c-axis” in FIG. In addition, the irreversible magnetic field showed the same tendency as the “curve in the vertical direction of the c-axis” in FIG.

【0027】次いで、同様の工程でステンレス鋼製リン
グ基材(上記のリング基材の外径寸法よりも多少大きな
内径寸法を有するもの)の内面全周に超電導体(Y12
3)層を形成させたものを準備し、両方のリング状超電
導体面を表面粗さが1μm以下となるように研磨して整
えた後、両者を入れ子状に、かつ図6で示したように結
晶粒界が一致しないでずれた状態となるように嵌合して
密着させ、この重ね合わせ体を950℃で10分間加熱
し拡散接合させてから室温まで冷却した。そして、その
後、これを1気圧の酸素雰囲気中にて500℃で100
時間熱処理(アニ−ル処理)した。
Next, in the same process, a superconductor (Y12) is formed around the entire inner surface of the stainless steel ring base (having an inner diameter slightly larger than the outer diameter of the ring base).
3) A layer-formed one is prepared, and both ring-shaped superconductor surfaces are polished and adjusted so that the surface roughness is 1 μm or less. Then, both are nested, and as shown in FIG. The superimposed bodies were heated at 950 ° C. for 10 minutes to perform diffusion bonding, and then cooled to room temperature. Then, this is then placed in an oxygen atmosphere at 1 atm.
Heat treatment (annealing) was performed for a time.

【0028】このようにして得られたリング状超電導体
(Y123)は、内外層とも超電導体結晶のc軸がリン
グの半径方向に配向すると共にab面がリングの軸方向と
円周方向に配向しており、リング状超電導体の周方向に
電流を流した時の臨界電流密度を前記と同様にパルス電
流通電法で測定したところ、77K、ゼロ磁場で550
00A/cm2であり、磁場を変化させると、臨界電流密度
は前記図2の“c軸垂直方向の場合の曲線”と同様の傾
向で変移した。また、不可逆磁場も前記図2の“c軸垂
直方向の場合の曲線”と同様傾向を示した。
In the ring-shaped superconductor (Y123) thus obtained, the c-axis of the superconductor crystal is oriented in the radial direction of the ring in both the inner and outer layers, and the ab plane is oriented in the axial and circumferential directions of the ring. When the critical current density when a current was passed in the circumferential direction of the ring-shaped superconductor was measured by the pulse current conduction method in the same manner as described above, it was 550 at 77 K and zero magnetic field.
A 00A / cm 2, varying the magnetic field, the critical current density was displaced in the same tendency as "curve for the c-axis perpendicular" in FIG. 2. In addition, the irreversible magnetic field showed the same tendency as the “curve in the vertical direction of the c-axis” in FIG.

【0029】〔実施例2〕実施例1と同様の方法・条件
で高温超電導体形成原料のペ−ストを調整し、これを
“幅10mm,厚さ1mmのステンレス鋼帯板基材”の片面
上に 0.2mmの厚さで塗布した。なお、ペ−ストの塗布層
は、前記図7に示したようにステンレス鋼帯板基材の長
手方向に断続した状態とした。
Example 2 A paste of a raw material for forming a high-temperature superconductor was prepared in the same manner and under the same conditions as in Example 1, and this paste was applied to one surface of a "stainless steel strip base material 10 mm wide and 1 mm thick". It was applied on top with a thickness of 0.2 mm. The paste coating layer was intermittent in the longitudinal direction of the stainless steel strip base material as shown in FIG.

【0030】そして、塗布されたペ−スト上に種結晶と
して“a軸×b軸×c軸方向がそれぞれ1mm×1mm×0.
1mm の大きさになるように切り出したNdBa2Cu3x (Nd
123)単結晶”の複数をc軸方向が基材面と垂直方向
となるように植え付けた後、これを150℃の空気中で
30分間保持して溶媒のイソプロピルアルコ−ルを蒸発
させ、更に600℃で30分間保持してバインダ−を分
解させた。
Then, as a seed crystal on the applied paste, "a-axis x b-axis x c-axis directions are each 1 mm x 1 mm x 0.
NdBa 2 Cu 3 O x (Nd
123) A plurality of “single crystals” are planted so that the c-axis direction is perpendicular to the substrate surface, and the resultant is kept in air at 150 ° C. for 30 minutes to evaporate isopropyl alcohol as a solvent. The binder was decomposed by holding at 600 ° C. for 30 minutes.

【0031】続いて、ペ−ストを塗布した基材を最高温
度が1020℃となるように温度勾配をかけて昇温・冷
却して超電導粒を溶融成長させ、ステンレス鋼帯板基材
の片面に図7に示した如き超電導体(Y123)層を形
成させた。その後、これに1気圧の酸素雰囲気中にて5
00℃で100時間の熱処理(アニ−ル処理)を施し
た。
Subsequently, the base material coated with the paste is heated and cooled with a temperature gradient so that the maximum temperature is 1020 ° C., so that superconducting grains are melt-grown, and one side of the stainless steel strip base material is formed. Then, a superconductor (Y123) layer as shown in FIG. 7 was formed. Then, this is added to an atmosphere of 1 atm.
Heat treatment (annealing) was performed at 00 ° C. for 100 hours.

【0032】次いで、このようにステンレス鋼帯板基材
の片面に超電導体(Y123)層を形成させた部材の2
枚につき、その超電導体面の表面粗さが1μm以下とな
るように研磨して整えてから、両超電導体面同士が対面
するように、かつ図7で示したように結晶層間隔部分が
一致しないでずれた状態となるように重ね合わせて密着
させ、この重ね合わせ体に1kfg/cm2 の圧力を印加した
状態にて950℃で10分間の加熱を施し拡散接合させ
てから室温まで冷却した。そして、これを1気圧の酸素
雰囲気中にて500℃で100時間熱処理(アニ−ル処
理)した。
Next, the member having the superconductor (Y123) layer formed on one side of the stainless steel strip base material in this manner is designated as No. 2.
After polishing and adjusting the surface roughness of the superconductor surface of each sheet so as to be 1 μm or less, the superconductor surfaces face each other, and the crystal layer spacing portions do not match as shown in FIG. The superposed bodies were closely adhered so as to be shifted from each other, and heated at 950 ° C. for 10 minutes while applying a pressure of 1 kfg / cm 2 to the superposed bodies to perform diffusion bonding and then cooled to room temperature. Then, this was heat-treated (annealed) at 500 ° C. for 100 hours in an oxygen atmosphere at 1 atm.

【0033】次に、この積層帯状体をリング状に丸め、
その超電導体層の両端面同士を突き合わせた状態で95
0℃に10分間加熱して拡散接合させ、直径が200mm
のリング形状をした超電導体を作製した。
Next, this laminated strip is rolled into a ring shape,
With the two end faces of the superconductor layer abutting each other, 95
Diffusion bonding by heating to 0 ° C for 10 minutes, diameter 200mm
A superconductor having a ring shape was manufactured.

【0034】このようにして得られたリング状超電導体
(Y123)は、内外層とも超電導体結晶のc軸がリン
グの半径方向に配向すると共にab面がリングの軸方向と
円周方向に配向しており、リング状超電導体の周方向に
電流を流した時の臨界電流密度を前記と同様にパルス電
流通電法で測定したところ、77K、ゼロ磁場で550
00A/cm2であり、磁場を変化させると、臨界電流密度
は前記図2の“c軸垂直方向の場合の曲線”と同様の傾
向で変移した。また、不可逆磁場も前記図2の“c軸垂
直方向の場合の曲線”と同様傾向を示した。
In the ring-shaped superconductor (Y123) thus obtained, the c-axis of the superconductor crystal is oriented in the radial direction of the ring in both the inner and outer layers, and the ab plane is oriented in the axial and circumferential directions of the ring. When the critical current density when a current was passed in the circumferential direction of the ring-shaped superconductor was measured by the pulse current conduction method in the same manner as described above, it was 550 at 77 K and zero magnetic field.
A 00A / cm 2, varying the magnetic field, the critical current density was displaced in the same tendency as "curve for the c-axis perpendicular" in FIG. 2. In addition, the irreversible magnetic field showed the same tendency as the “curve in the vertical direction of the c-axis” in FIG.

【0035】〔実施例3〕実施例2と同様の手法で種々
のR−Ba−Cu−O(但し、 RはNd,La,Sm,Eu,Gd,D
y,Ho,Er,Tm,Yb)結晶層を有するリング状超電導体
を作製した。但し、RがNd,La,SmあるいはEuのものに
ついては、結晶溶融成長は酸素分圧が0.01気圧の“酸素
+アルゴンガス”中において行い、熱処理後のアニ−ル
処理は1気圧の酸素雰囲気中にて300℃で240時間
という条件を採用した(その他のプロセス条件は同様で
ある)。このようにして得られた何れのリング状超電導
体も、超電導体結晶のc軸がリングの半径方向に配向す
ると共にab面がリングの軸方向と円周方向に配向してい
ることは勿論である。
[Embodiment 3] Various R-Ba-Cu-O (R is Nd, La, Sm, Eu, Gd, D
A ring-shaped superconductor with a (y, Ho, Er, Tm, Yb) crystal layer was fabricated. However, when R is Nd, La, Sm or Eu, the crystal melt growth is performed in "oxygen + argon gas" having an oxygen partial pressure of 0.01 atm, and the annealing treatment after the heat treatment is performed in an oxygen atmosphere of 1 atm. A condition of 300 hours at 300 ° C. for 240 hours was adopted (other process conditions are the same). In any of the ring-shaped superconductors thus obtained, the c-axis of the superconductor crystal is oriented in the radial direction of the ring, and the ab plane is oriented in the axial direction and the circumferential direction of the ring. is there.

【0036】そして、得られた各リング状超電導体につ
き、実施例2と同様の方法で臨界電流密度を測定したと
ころ、77K、ゼロ磁場において、それぞれRがNdのも
のでは50000A/cm2、RがLaのものでは20000
A/cm2、RがSmのものでは60000A/cm2、RがEuの
ものでは65000A/cm2、RがGdのものでは3500
0A/cm2、RがDyのものでは35000A/cm2、RがHo
のものでは30000A/cm2、RがErのものでは300
00A/cm2、そしてRがTmのものでは25000A/c
m2、RがYbのものでは20000A/cm2を示した。更
に、何れのものも前記図2の“c軸に垂直方向の場合の
曲線”と同様に広い磁場領域で高い臨界電流密度を維持
し、不可逆磁場も大きいことが確認された。
The critical current density of each of the obtained ring-shaped superconductors was measured in the same manner as in Example 2. At 77 K and zero magnetic field, 50,000 A / cm 2 and R 20,000 for La
A / cm 2, is that wherein R is Sm those 60000A / cm 2, R is Eu intended 65000A / cm 2, R is Gd 3500
0A / cm 2 , 35000A / cm 2 when R is Dy and R is Ho
300,000 A / cm 2 for R and 300 for R for Er
00A / cm 2 , and 25000A / c when R is Tm
When m 2 and R were Yb, the value was 20,000 A / cm 2 . Further, it was confirmed that all of them maintain a high critical current density in a wide magnetic field region and a large irreversible magnetic field, as in the "curve in the direction perpendicular to the c-axis" in FIG.

【0037】[0037]

【効果の総括】以上に説明した如く、この発明によれ
ば、高磁場領域を含めた広い磁場領域で高い臨界電流密
度を示すと共に、不可逆磁場も高く、リニアモ−タ−カ
−の高磁場発生源等として好適な大寸法の高温超電導体
疑似永久磁石を工業的規模で提供することが可能となる
など、産業上極めて有用な効果がもたらされる。
As described above, according to the present invention, a high critical current density is exhibited in a wide magnetic field region including a high magnetic field region, an irreversible magnetic field is high, and a high magnetic field is generated by a linear motor car. Industrially extremely useful effects are brought about, such as provision of a large-sized high-temperature superconductor pseudo-permanent magnet suitable as a source or the like on an industrial scale.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の高温超電導体バルク磁石における磁場印
加手法に関する説明図である。
FIG. 1 is a diagram illustrating a magnetic field applying method in a conventional high-temperature superconductor bulk magnet.

【図2】高温超電導体(YBa2Cu3x )の“臨界電流密
度の磁場依存性”の調査結果を示したグラフである。
FIG. 2 is a graph showing the results of an investigation on “magnetic field dependence of critical current density” of a high-temperature superconductor (YBa 2 Cu 3 O x ).

【図3】本発明に係る高温超電導体疑似永久磁石の1例
に関する説明図である。
FIG. 3 is a diagram illustrating an example of a high-temperature superconductor pseudo permanent magnet according to the present invention.

【図4】本発明に係る高温超電導体疑似永久磁石の別例
に関する説明図である。
FIG. 4 is an explanatory diagram related to another example of the high-temperature superconductor pseudo permanent magnet according to the present invention.

【図5】複数の種結晶から成長した超電導体層の説明図
である。
FIG. 5 is an explanatory diagram of a superconductor layer grown from a plurality of seed crystals.

【図6】複数の種結晶から成長した超電導体層を重ね合
わせて接合した状態の説明図である。
FIG. 6 is an explanatory diagram of a state in which superconductor layers grown from a plurality of seed crystals are overlapped and joined.

【図7】「“複数の種結晶から成長した超電導体層を重
ね合わせて接合し一体化した長尺結晶層となす工程”の
工業的により有利な例」に関する説明図である。
FIG. 7 is an explanatory diagram relating to “an industrially more advantageous example of“ a process of forming a superconducting layer grown from a plurality of seed crystals to form a long crystal layer that is superposed and joined to be integrated ””.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年3月12日[Submission date] March 12, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 酸化物超電導体疑似永久磁石並
びにその製造方法
Patent application title: Oxide superconductor pseudo permanent magnet and method for producing the same

フロントページの続き (71)出願人 390023674 イー・アイ・デュポン・ドウ・ヌムール・ アンド・カンパニー E.I.DU PONT DE NEMO URS AND COMPANY アメリカ合衆国、デラウエア州、ウイルミ ントン、マーケット・ストリート 1007 (72)発明者 村上 雅人 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センタ−超電導工 学研究所内 (72)発明者 小城 宏樹 栃木県宇都宮市清原工業団地19番2 デュ ポン株式会社中央技術研究所内 (72)発明者 長嶋 賢 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センタ−超電導工 学研究所内Continuation of front page (71) Applicant 390023674 E. I. Dupont de Nemours and Company I. DU PONT DE NEMO URS AND COMPANY 1007 (72) Inventor Masato Murakami Masato Murakami 1-14-3 Shinonome, Koto-ku, Tokyo International Superconducting Industrial Technology Research Center-Superconducting Engineering Laboratory (72) Inventor Hiroki Ogi 19-2 Kiyohara Industrial Park, Utsunomiya City, Tochigi Prefecture, Japan Inside the Central Technical Research Institute (72) Inventor Ken Satoshi Nagashima 1-14-3 Shinonome, Koto-ku, Tokyo −Superconductivity Engineering Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 R−Ba−Cu−O(但し、 RはY,La,N
d,Sm,Eu,Gd,Dy,Ho,Er,Tm,Ybの1種又は2種以
上)系酸化物高温超電導体内のピンニングセンタ−に磁
場を捕捉させて使用する疑似永久磁石であって、リング
形状を成し、かつ該リングの軸方向と円周方向に超電導
体結晶のab面がそして半径方向にc軸が配向しているこ
とを特徴とする高温超電導体疑似永久磁石。
(1) R-Ba-Cu-O (where R is Y, La, N
d, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) oxide permanent magnet used in a pinning center in a high-temperature oxide superconductor to capture a magnetic field, A high-temperature superconductor pseudo permanent magnet having a ring shape, wherein the ab plane of the superconductor crystal is oriented in the axial direction and the circumferential direction of the ring, and the c-axis is oriented in the radial direction.
【請求項2】 R−Ba−Cu−O(但し、 RはY,La,N
d,Sm,Eu,Gd,Dy,Ho,Er,Tm,Ybの1種又は2種以
上)系酸化物高温超電導体内のピンニングセンタ−に磁
場を捕捉させて使用する疑似永久磁石であって、“リン
グの軸方向と円周方向に超電導体結晶のab面がそしてリ
ングの半径方向にc軸が配向した同心異径のリング状高
温超電導体”の複数個を入れ子状に組み重ねせて成ると
ころの、リング形状を成していることを特徴とする高温
超電導体疑似永久磁石。
2. R-Ba-Cu-O (where R is Y, La, N
d, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) oxide permanent magnet used in a pinning center in a high-temperature oxide superconductor to capture a magnetic field, A plurality of concentrically different-diameter ring-shaped high-temperature superconductors in which the ab plane of the superconductor crystal is oriented in the axial and circumferential directions of the ring and the c-axis is oriented in the radial direction of the ring are nested together. However, a high-temperature superconductor pseudo permanent magnet characterized by having a ring shape.
【請求項3】 リング状基材の表面に酸化物高温超電導
体形成原料のペ−ストを塗布すると共に該ペ−スト層に
高温超電導体の種結晶を植え付け、このペ−スト層を加
熱・溶融し結晶成長させてリング状基材のペ−スト塗布
面全周面に“該リングの軸方向と円周方向に超電導体結
晶のab面がそして半径方向にc軸が配向した高温超電導
体結晶層”を形成することを特徴とする、請求項1に記
載の高温超電導体疑似永久磁石の製造方法。
3. A paste of a raw material for forming an oxide high-temperature superconductor is applied to the surface of the ring-shaped substrate, and a seed crystal of the high-temperature superconductor is planted on the paste layer. A high-temperature superconductor in which the ab plane of the superconductor crystal is oriented in the axial direction and the circumferential direction of the ring and the c-axis is oriented in the radial direction on the entire surface of the paste-coated surface of the ring-shaped substrate by melting and growing the crystal. The method for producing a high-temperature superconductor pseudo-permanent magnet according to claim 1, wherein a crystal layer is formed.
【請求項4】 同心異径の各リング状基材の表面に酸化
物高温超電導体形成原料のペ−ストを塗布すると共に該
ペ−スト層に高温超電導体の種結晶を複数植え付け、こ
のペ−スト層を加熱・溶融し結晶成長させて、各リング
状基材のペ−スト塗布面に“該リングの軸方向と円周方
向に超電導体結晶のab面がそして半径方向にc軸が配向
した高温超電導体結晶層”を形成させた後、該高温超電
導体結晶層を有する同心異径のリング状基材同士を入れ
子状に、かつ前記結晶層が結晶粒界のずれた状態で対向
するように重ね合わせてから、結晶層同士の重ね合わせ
面を拡散接合して一体のリング状結晶層とすることを特
徴とする、請求項1に記載の高温超電導体疑似永久磁石
の製造方法。
4. A paste of a material for forming an oxide high-temperature superconductor is applied to the surface of each ring-shaped substrate having concentric and different diameters, and a plurality of high-temperature superconductor seed crystals are planted in the paste layer. -Heating and melting the strike layer to grow the crystal, and the surface of the paste applied to each ring-shaped substrate has "the ab plane of the superconductor crystal in the axial direction and the circumferential direction of the ring and the c axis in the radial direction. After forming an oriented high-temperature superconductor crystal layer ", concentric and different-diameter ring-shaped substrates having the high-temperature superconductor crystal layer are nested, and the crystal layers face each other in a state where crystal grain boundaries are shifted. 2. The method for manufacturing a high-temperature superconductor pseudo permanent magnet according to claim 1, wherein the superposed surfaces of the crystal layers are diffusion-bonded to form an integrated ring-shaped crystal layer.
【請求項5】 帯状基材の表面に酸化物高温超電導体形
成原料のペ−ストを塗布すると共に該ペ−スト層に高温
超電導体の種結晶を植え付け、このペ−スト層を加熱・
溶融し結晶成長させて帯状基材のペ−スト塗布面全面に
“該基材面と垂直方向にc軸が配向した高温超電導体結
晶層”を形成した後、この高温超電導体結晶層が形成さ
れた帯状基材をリング状に丸め、該結晶層の両端を拡散
接合によって接合することを特徴とする、請求項1に記
載の高温超電導体疑似永久磁石の製造方法。
5. A paste of a raw material for forming an oxide high-temperature superconductor is applied to the surface of the strip-shaped base material, and a seed crystal of the high-temperature superconductor is planted in the paste layer.
After melting and growing crystals to form a “high-temperature superconductor crystal layer in which the c-axis is oriented perpendicular to the substrate surface” over the entire surface of the paste-coated surface of the belt-shaped substrate, this high-temperature superconductor crystal layer is formed. The method for producing a high-temperature superconductor pseudo-permanent magnet according to claim 1, wherein the strip-shaped base material thus formed is rounded into a ring shape, and both ends of the crystal layer are joined by diffusion bonding.
【請求項6】 複数の帯状基材の表面に酸化物高温超電
導体形成原料のペ−ストを塗布すると共に該ペ−スト層
に高温超電導体の種結晶を複数植え付け、このペ−スト
層を加熱・溶融し結晶成長させて、帯状基材のペ−スト
塗布面に“該基材面と垂直方向にc軸が配向した高温超
電導体結晶層”を形成させた後、このようにして得られ
た各帯状基材面上の高温超電導体結晶層同士を結晶粒界
がずれた状態に重ね合わせてから重ね合わせ面を拡散接
合し一体化した長尺結晶層となし、その後更にこの長尺
結晶層をリング状に丸め、該結晶層の両端を拡散接合に
よって接合することを特徴とする、請求項1に記載の高
温超電導体疑似永久磁石の製造方法。
6. A paste of a raw material for forming an oxide high-temperature superconductor is applied to the surface of a plurality of strip-shaped base materials, and a plurality of high-temperature superconductor seed crystals are planted on the paste layer. After heating and melting to grow the crystal, a "high-temperature superconductor crystal layer in which the c-axis is oriented perpendicular to the substrate surface" is formed on the paste-applied surface of the belt-shaped substrate. The superposed high-temperature superconductor crystal layers on each of the strip-shaped base material surfaces are superimposed on each other in a state where the crystal grain boundaries are shifted, and then the superposed surfaces are diffusion-bonded to form an integrated long crystal layer. 2. The method for producing a high-temperature superconductor pseudo permanent magnet according to claim 1, wherein the crystal layer is rounded into a ring shape, and both ends of the crystal layer are joined by diffusion bonding.
JP36565197A 1997-12-22 1997-12-22 Oxide superconductor pseudo permanent magnet and manufacture thereof Pending JPH11186024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36565197A JPH11186024A (en) 1997-12-22 1997-12-22 Oxide superconductor pseudo permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36565197A JPH11186024A (en) 1997-12-22 1997-12-22 Oxide superconductor pseudo permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11186024A true JPH11186024A (en) 1999-07-09

Family

ID=18484788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36565197A Pending JPH11186024A (en) 1997-12-22 1997-12-22 Oxide superconductor pseudo permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11186024A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006021A (en) * 2000-06-26 2002-01-09 Inst Of Physical & Chemical Res Nuclear magnetic resonance apparatus
JP2004235625A (en) * 2003-01-09 2004-08-19 Fukui Univ Magnetizing device for bulk superconductor, and magnetizing method and superconducting synchronous machine
WO2011071071A1 (en) * 2009-12-08 2011-06-16 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
CN102810378A (en) * 2012-07-13 2012-12-05 中国科学院电工研究所 Superconducting magnet and manufacturing method thereof
WO2014189043A1 (en) * 2013-05-22 2014-11-27 新日鐵住金株式会社 Oxide superconducting bulk magnet
JP2016006825A (en) * 2014-06-20 2016-01-14 アイシン精機株式会社 Superconducting magnetic field generation device, superconducting magnetic field generation method and nuclear magnetic resonance device
EP3115998A4 (en) * 2014-03-04 2017-10-25 Nippon Steel & Sumitomo Metal Corporation Oxide superconductive bulk magnet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006021A (en) * 2000-06-26 2002-01-09 Inst Of Physical & Chemical Res Nuclear magnetic resonance apparatus
JP2004235625A (en) * 2003-01-09 2004-08-19 Fukui Univ Magnetizing device for bulk superconductor, and magnetizing method and superconducting synchronous machine
WO2011071071A1 (en) * 2009-12-08 2011-06-16 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP2011142304A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
JP2011142303A (en) * 2009-12-08 2011-07-21 Nippon Steel Corp Oxide superconducting bulk magnet member
US8948829B2 (en) 2009-12-08 2015-02-03 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet member
CN102810378A (en) * 2012-07-13 2012-12-05 中国科学院电工研究所 Superconducting magnet and manufacturing method thereof
WO2014189043A1 (en) * 2013-05-22 2014-11-27 新日鐵住金株式会社 Oxide superconducting bulk magnet
CN104956452A (en) * 2013-05-22 2015-09-30 新日铁住金株式会社 Oxide superconducting bulk magnet
EP3115998A4 (en) * 2014-03-04 2017-10-25 Nippon Steel & Sumitomo Metal Corporation Oxide superconductive bulk magnet
JP2016006825A (en) * 2014-06-20 2016-01-14 アイシン精機株式会社 Superconducting magnetic field generation device, superconducting magnetic field generation method and nuclear magnetic resonance device

Similar Documents

Publication Publication Date Title
US6956011B2 (en) Intermetallic compound superconductors and alloy superconductors, and method for their preparation
NZ230404A (en) Method of producing an oxide superconductor
JPH11186024A (en) Oxide superconductor pseudo permanent magnet and manufacture thereof
WO2017057483A1 (en) Connection structure for superconductive wire rod
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JP3089294B2 (en) Manufacturing method of superconducting tape material
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
EP1107324B1 (en) Method of joining oxide superconductors and superconductor members produced by same
JP2813287B2 (en) Superconducting wire
JP4307861B2 (en) Control method of trapped magnetic field of superconductor and oxide superconductor
JP2000109320A (en) Metallic substrate for oxide superconductor and its production
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
EP0539208B1 (en) Oxide superconductive material of T1(thallium) and Pb(lead) system and method for manufacturing the same
JP4105881B2 (en) Large superconducting intermediates and large superconductors and their fabrication methods
JP3979609B2 (en) Method for producing Tl-based oxide superconductor
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPH04138621A (en) Superconducting member
JPH0195409A (en) Superconducting wire
Chen et al. Thermomechanical processing and transport current density of Ag-sheathed (Tl, Cr) Sr2 (Ca0. 9, Pr0. 1) Cu2O7 superconductor tapes
JPH03137050A (en) Manufacture of oxide superconductor
JPH06196314A (en) Manufacture of oxide group superconductor coil
JPS63306678A (en) Josephson element
Numata et al. Fabrication of oxide superconducting thick films by a thermal spraying method