JP2003300726A - Tape-like oxide superconductor and manufacturing method therefor - Google Patents

Tape-like oxide superconductor and manufacturing method therefor

Info

Publication number
JP2003300726A
JP2003300726A JP2002105037A JP2002105037A JP2003300726A JP 2003300726 A JP2003300726 A JP 2003300726A JP 2002105037 A JP2002105037 A JP 2002105037A JP 2002105037 A JP2002105037 A JP 2002105037A JP 2003300726 A JP2003300726 A JP 2003300726A
Authority
JP
Japan
Prior art keywords
heat treatment
oxide superconductor
tape
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002105037A
Other languages
Japanese (ja)
Inventor
Akisato Honjo
哲吏 本庄
Hiroshi Fuji
広 富士
Yuichi Nakamura
雄一 中村
Teruo Izumi
輝郎 和泉
Toru Shiobara
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Railway Technical Research Institute
International Superconductivity Technology Center
SWCC Corp
Original Assignee
Fujikura Ltd
Railway Technical Research Institute
International Superconductivity Technology Center
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Railway Technical Research Institute, International Superconductivity Technology Center, Showa Electric Wire and Cable Co filed Critical Fujikura Ltd
Priority to JP2002105037A priority Critical patent/JP2003300726A/en
Priority to PCT/JP2002/004687 priority patent/WO2002093590A1/en
Publication of JP2003300726A publication Critical patent/JP2003300726A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a thick tape-like oxide superconductor by a non- vacuum process. <P>SOLUTION: An oxide superconductive film is obtained by applying to a substrate a mixed solution containing metal elements composing an RE-based oxide superconductor at a prescribed molar ratio; heat treating it by calcinations at a heat-up rate of 0.1-0.6°C/min in the range of 200-250°C to form a precursor of the oxide superconductor; and performing crystallization heat treatment to the precursor. The oxide superconductive film has a characteristic of [t]×[Jc]≥0.8, when a thickness of the superconductive film after crystallization is [t] μm, and a critical current density is [Jc]MA/cm<SP>2</SP>at 77K. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導ケーブル及
び超電導マグネット等の超電導応用機器の利用に適する
テープ状酸化物超電導体及びその製造方法に係り、特
に、高い臨界電流密度(Jc)と厚膜化が容易なテープ状
酸化物超電導体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tape-shaped oxide superconductor suitable for use in superconducting equipment such as superconducting cables and superconducting magnets, and a method for producing the same, and particularly to a high critical current density (Jc) and a thick film. TECHNICAL FIELD The present invention relates to a tape-shaped oxide superconductor that can be easily formed and a method for manufacturing the same.

【0002】[0002]

【従来の技術】高い臨界電流密度(Jc)が必要な超電導
ケーブル及び超電導マグネット等に利用可能な酸化物超
電導線材を非真空プロセスで製造する方法として、従来
MOD法(Metal Organic Deposition Processes:有機酸
塩堆積法)が知られている。
2. Description of the Related Art As a method of manufacturing a non-vacuum process of an oxide superconducting wire that can be used for superconducting cables and magnets that require high critical current density (Jc),
The MOD method (Metal Organic Deposition Processes) is known.

【0003】このMOD法は、酸化物超電導体を構成する
各金属元素を所定のモル比で含むトリフルオロ酢酸塩を
始めとする金属有機酸塩の溶液を基板上に塗布し、それ
に仮焼熱処理を施してアモルファス状の前駆体を形成
し、その後、結晶化熱処理を施して、前駆体を結晶化さ
せて酸化物超電導体を形成するものである。
In this MOD method, a solution of a metal organic acid salt such as trifluoroacetate containing each metal element constituting an oxide superconductor in a predetermined molar ratio is applied onto a substrate, and calcination heat treatment is applied thereto. Is applied to form an amorphous precursor, and then crystallization heat treatment is applied to crystallize the precursor to form an oxide superconductor.

【0004】このMOD法における仮焼熱処理は、例え
ば、仮焼熱処理において導入するガスの水蒸気分圧を4.
2vol%、酸素分圧を95.8vol%で15時間以上の熱処理時間
を必要とするため、生産性が低く実用上問題を抱えてい
た。
In the calcination heat treatment in the MOD method, for example, the partial pressure of water vapor of the gas introduced in the calcination heat treatment is 4.
Since 2 vol% and an oxygen partial pressure of 95.8 vol% require a heat treatment time of 15 hours or more, productivity is low and there is a practical problem.

【0005】この問題を解決するために、仮焼熱処理に
おいて導入するガスの水蒸気分圧を19.7vol%、酸素分圧
を2vol%に設定することにより、仮焼熱処理中の190〜31
0℃に加熱する間の昇温速度を1.0℃/minに速め、熱処理
時間を約3時間程度に短縮できるという報告が最近なさ
れている。なお、そのときの超電導体の膜厚は0.3μm
で、そのJc値は1.1MA/cm2で程度である(M.Paranthaman
at. el.:Proc. of Applied Superconductivity 2000,
Paper 2MH06 )。
In order to solve this problem, the steam partial pressure of the gas introduced in the calcination heat treatment is set to 19.7 vol% and the oxygen partial pressure is set to 2 vol%, so that 190 to 31 during the calcination heat treatment are set.
It has been recently reported that the heating rate during heating to 0 ° C can be increased to 1.0 ° C / min and the heat treatment time can be shortened to about 3 hours. The film thickness of the superconductor at that time is 0.3 μm.
And its Jc value is about 1.1 MA / cm 2 (M. Paranthaman
at. el.:Proc. of Applied Superconductivity 2000,
Paper 2MH06).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、膜厚が
薄い場合にはJc値をより高めなければ超電導ケーブルや
超電導マグネット等に利用するために必要な臨界電流値
(Ic)が十分に確保できず、Ic値を高めるためには、さ
らに厚膜化を図る必要がある。
However, when the film thickness is thin, the critical current value (Ic) required for use in a superconducting cable or a superconducting magnet cannot be secured unless the Jc value is increased. , To increase the Ic value, it is necessary to further increase the film thickness.

【0007】従来技術では、昇温速度が速いためにTFA
塩を始めとする金属有機酸塩の分解が不十分であり、膜
中に残存する傾向がある。そのために、結晶化熱処理中
の昇温時に残存していたフッ素が急激に分解して膜中に
クラックやポアが発生する。この傾向は、塗布と仮焼熱
処理を繰り返して多層構造の酸化物超電導前駆体膜を形
成して厚膜化する場合に著しくなる。その結果、超電導
体の結晶化時におけるエピタキシャル成長が困難とな
り、結晶の配向性が乱れ、膜厚の増加に伴って急激に臨
界密度特性が劣化するため、厚膜化に対する仮焼時間の
短縮が困難であった。
In the prior art, the TFA is
Decomposition of metal organic acid salts including salts is insufficient and tends to remain in the film. For this reason, the fluorine that remains when the temperature is raised during the crystallization heat treatment is rapidly decomposed, and cracks and pores are generated in the film. This tendency becomes remarkable when the coating and the calcination heat treatment are repeated to form an oxide superconducting precursor film having a multi-layered structure to increase the film thickness. As a result, epitaxial growth during crystallization of the superconductor becomes difficult, the crystal orientation is disturbed, and the critical density characteristics rapidly deteriorate as the film thickness increases, making it difficult to shorten the calcination time for thickening the film. Met.

【0008】本発明は、以上の問題を解決するためにな
されたもので、高いJc値と厚膜化が容易なテープ状酸化
物超電導体及びその製造方法に関する。
The present invention has been made in order to solve the above problems, and relates to a tape-shaped oxide superconductor which has a high Jc value and is easy to form a thick film, and a method for producing the same.

【0009】本発明は、金属有機酸塩を含む酸化物超電
導前駆体の分解速度に影響する仮焼熱処理中の昇温速度
に着目し、昇温速度及び水蒸気分圧を適正化することに
より、十分に金属有機酸塩を分解させる仮焼熱処理条件
を見出すことによりなされたものである。
The present invention focuses on the rate of temperature increase during the calcination heat treatment that affects the decomposition rate of the oxide superconducting precursor containing a metal organic acid salt, and optimizes the rate of temperature increase and the partial pressure of water vapor. This was done by finding out the conditions for calcination heat treatment to sufficiently decompose the metal organic acid salt.

【0010】[0010]

【課題を解決するための手段】以上の問題を解決するた
めに、本願請求項1に係る発明は、基板上に、酸化物超
電導体を構成する各金属元素を所定のモル比で含む金属
有機酸塩の混合溶液を塗布後、仮焼熱処理を施した酸化
物超電導前駆体に結晶化熱処理を施した酸化物超電導体
において、仮焼熱処理中の昇温速度が0.1〜0.6℃/minの
工程を含むことを特徴としている。
In order to solve the above problems, the invention according to claim 1 of the present invention is a metal-organic compound containing, on a substrate, each metal element forming an oxide superconductor in a predetermined molar ratio. After applying a mixed solution of acid salt, in the oxide superconductor obtained by subjecting the oxide superconducting precursor that has been subjected to the calcination heat treatment to the crystallization heat treatment, the heating rate during the calcination heat treatment is 0.1 to 0.6 ° C / min. It is characterized by including.

【0011】また、本願請求項2に係る発明は、基板上
に、酸化物超電導体を構成する各金属元素を所定のモル
比で含む金属有機酸塩の混合溶液を塗布後、仮焼熱処理
を施した酸化物超電導前駆体に結晶化熱処理を施した酸
化物超電導体において、仮焼熱処理中の昇温速度が0.1
〜0.6℃/minの工程を含み、結晶化後の超電導膜の厚さ
を[t] μm、77Kにおける臨界電流密度を[Jc]MA/cm2
した場合に[t]×[Jc]≧0.8の特性を有するようにしたも
のである。
Further, the invention according to claim 2 of the present application is that after applying a mixed solution of a metal organic acid salt containing each metal element constituting the oxide superconductor in a predetermined molar ratio on the substrate, calcination heat treatment is performed. In the oxide superconductor obtained by subjecting the oxide superconducting precursor that has been subjected to the crystallization heat treatment, the temperature rising rate during the calcination heat treatment is 0.1
Including the process of ~ 0.6 ℃ / min, the thickness of superconducting film after crystallization is [t] μm and the critical current density at 77K is [Jc] MA / cm 2 [t] × [Jc] ≧ It has a characteristic of 0.8.

【0012】上記の酸化物超電導体は、本願請求項13に
係る発明、即ち、酸化物超電導体を構成する各金属元素
を所定のモル比で含む金属有機酸塩の混合溶液を基板上
に塗布した後、200〜250℃の温度範囲を0.1〜0.6℃/min
の昇温速度で仮焼熱処理を施して酸化物超電導前駆体を
形成し、次いでこの酸化物超電導前駆体に結晶化熱処理
を施すことにより、結晶化後の超電導膜の厚さを[t] μ
m、77Kにおける臨界電流密度を[Jc]MA/cm2とした場合
に[t]×[Jc]≧0.8の特性を有するテープ状酸化物超電導
膜を基板上に形成することができる。
The above oxide superconductor is an invention according to claim 13 of the present application, that is, a mixed solution of a metal organic acid salt containing each metal element constituting the oxide superconductor in a predetermined molar ratio is coated on a substrate. Then, the temperature range of 200-250 ℃ is 0.1-0.6 ℃ / min.
The oxide superconducting precursor is formed by performing calcination heat treatment at a heating rate of, and then the oxide superconducting precursor is subjected to crystallization heat treatment to reduce the thickness of the superconducting film after crystallization to [t] μ
When the critical current density at m and 77K is [Jc] MA / cm 2 , a tape-shaped oxide superconducting film having a characteristic of [t] × [Jc] ≧ 0.8 can be formed on the substrate.

【0013】また、本願請求項14に係る発明、即ち、基
板上に、酸化物超電導体を構成する各金属元素を所定の
モル比で含む金属有機酸塩の混合溶液を塗布した後、水
蒸気分圧4.0vol%の雰囲気中で200〜250℃の温度範囲を
0.1〜0.6℃/minの昇温速度で仮焼熱処理を施して酸化物
超電導前駆体を形成し、次いでこの酸化物超電導前駆体
に水蒸気分圧1.0〜3.2vol%の雰囲気中で結晶化熱処理を
施すことによっても達成することができる。
Further, the invention according to claim 14 of the present application, that is, after applying a mixed solution of a metal organic acid salt containing each metal element constituting the oxide superconductor in a predetermined molar ratio on the substrate, water vapor content In a temperature range of 200 to 250 ° C in an atmosphere with a pressure of 4.0 vol%
The oxide superconducting precursor is formed by performing calcination heat treatment at a temperature rising rate of 0.1 to 0.6 ° C / min, and then this oxide superconducting precursor is subjected to crystallization heat treatment in an atmosphere with a water vapor partial pressure of 1.0 to 3.2 vol%. It can also be achieved by applying.

【0014】[0014]

【発明の実施の形態】本発明において使用される基板と
しては、単結晶基板又は多結晶基板のいずれも用いるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION As the substrate used in the present invention, either a single crystal substrate or a polycrystalline substrate can be used.

【0015】単結晶基板としてはLaAlO3 (100)単結晶
基板(以下、LAO単結晶基板という)等を用いることが
でき、一方、多結晶基板としては配向性Ni基板やIBAD法
(IonBeam Assisted Deposition:基板に対して斜め方
向からイオンを照射しながら、ターゲットから発生した
粒子を基板上に堆積させる方法)を用いた複合基板等を
用いることができる。配向性Ni基板は、冷間加工したNi基
板を真空中で熱処理を施して高配向させたもので、米国
オークリッジ国立研究所で開発され、RABiTS(商標:rol
ling-assisted biaxially textured-substrates)と称
されている。この配向性Ni基板の上に、高温の還元性ガ
ス雰囲気中でエレクトロンビーム蒸着によりCeO2 のエ
ピタキシャル層の薄膜を設け、さらにその上にスパッタ
リング法により高温減圧下でYSZ(イットリウム安定化
ジルコニア)の厚膜を形成したものを基板として用いる
ことができる。このCeO2 層及びYSZ層はバッファ層とし
ての機能を有し、超電導層との反応を抑制して超電導特
性の低下を防止し、超電導層との整合性を維持するため
に配置されている。さらに、上記のYSZ層の上にY Ba2 C
u3 OY 超電導体(YBCO)の結晶学的な整合性により優れ
るCeO2 の薄膜を設けたものも基板として用いることが
できる。
A LaAlO 3 (100) single crystal substrate (hereinafter referred to as LAO single crystal substrate) or the like can be used as the single crystal substrate, while an oriented Ni substrate or an IBAD method (IonBeam Assisted Deposition) is used as the polycrystalline substrate. A method of depositing particles generated from a target on a substrate while irradiating the substrate with ions from an oblique direction) and the like can be used. The oriented Ni substrate is a cold-worked Ni substrate that is heat-treated in vacuum to be highly oriented. It was developed at Oak Ridge National Laboratory in the United States and RABiTS (trademark: rol
ling-assisted biaxially textured-substrates). On this oriented Ni substrate, a thin film of a CeO 2 epitaxial layer was provided by electron beam evaporation in a high-temperature reducing gas atmosphere, and then a YSZ (yttrium-stabilized zirconia) film was formed on it by sputtering at high temperature and reduced pressure. A thick film can be used as the substrate. The CeO 2 layer and the YSZ layer have a function as a buffer layer, and are arranged to suppress the reaction with the superconducting layer to prevent the deterioration of the superconducting property, and to maintain the consistency with the superconducting layer. In addition, Y Ba 2 C on top of the YSZ layer above
A substrate provided with a CeO 2 thin film, which is excellent in crystallographic matching of u 3 O Y superconductor (YBCO), can also be used as the substrate.

【0016】さらに、IBAD法を用いた複合基板は、非磁
性で高強度のテープ状Ni系基板上(ハステロイ等)に、
IBAD法により粒子を堆積させて形成した高配向性を有し
超電導体を構成する元素との反応を抑制する中間層(Ce
O2、Y2O3 、YSZ等)を設けたもの(以下、IBAD複合基板
という)で、上記の中間層を2層構造としたもの(YSZ又
はZr2Rx2O7/CeO2又はY2O3等:Rxは、Y、Nd、Sm、
Gd、Ei、Yb、Ho、Tm、Dy、Ce、La又は
Erを示す。)も好適する(特開平4-329867号、特開平
4-331795号,特願2000-333843号)。本願発明は、上記の基
板上に、酸化物超電導体を構成する各金属元素を所定の
モル比で含む金属有機酸塩の混合溶液を塗布後、仮焼熱
処理を施した酸化物超電導前駆体に結晶化熱処理を施し
た酸化物超電導体において、仮焼熱処理中の昇温速度、
仮焼熱処理及び/又は結晶化熱処理中の水蒸気分圧を規
定したことを特徴とするものである。
Further, the composite substrate using the IBAD method is a non-magnetic, high-strength tape-shaped Ni-based substrate (Hastelloy etc.)
An intermediate layer (Ce) that has high orientation and is formed by depositing particles by the IBAD method and that suppresses reaction with the elements that make up the superconductor
O 2 , Y 2 O 3 , YSZ, etc.) (hereinafter referred to as IBAD composite substrate), which has a two-layer structure of the above intermediate layer (YSZ or Zr 2 Rx 2 O 7 / CeO 2 or Y 2 O 3 etc .: Rx is Y, Nd, Sm,
Gd, Ei, Yb, Ho, Tm, Dy, Ce, La or Er is shown. ) Is also suitable (JP-A-4-329867, JP-A-4-29867).
4-331795, Japanese Patent Application No. 2000-333843). The present invention, on the above substrate, after applying a mixed solution of a metal organic acid salt containing each metal element constituting the oxide superconductor in a predetermined molar ratio, to the oxide superconducting precursor subjected to calcination heat treatment In the oxide superconductor that has been subjected to the crystallization heat treatment, the heating rate during the calcination heat treatment,
It is characterized in that the partial pressure of water vapor during calcination heat treatment and / or crystallization heat treatment is regulated.

【0017】上記の発明において、仮焼熱処理は、200
〜250℃の温度範囲の昇温速度が0.1〜0.6℃/minである
ことが好ましい。
In the above invention, the calcination heat treatment is 200
The rate of temperature increase in the temperature range of to 250 ° C is preferably 0.1 to 0.6 ° C / min.

【0018】また、上記の仮焼熱処理及び/又は結晶化
熱処理は、水蒸気分圧が4.0vol%以下の雰囲気中で施さ
れることが好ましく、仮焼熱処理及び結晶化熱処理雰囲
気中の導入ガスの水蒸気分圧は、以上の条件が満足され
れば、一定の勾配下又は段階的に上昇させることもでき
る。
The calcination heat treatment and / or the crystallization heat treatment are preferably performed in an atmosphere having a water vapor partial pressure of 4.0 vol% or less. The water vapor partial pressure can be increased under a constant gradient or stepwise if the above conditions are satisfied.

【0019】以上の発明において、酸化物超電導前駆体
を複数層形成することにより、厚膜化を容易に達成する
ことができる。
In the above invention, a thick film can be easily achieved by forming a plurality of oxide superconducting precursors.

【0020】この場合に、最外層の酸化物超電導前駆体
を除く酸化物超電導前駆体の仮焼熱処理を400℃未満で
施すことが好ましく、特に、最外層の酸化物超電導前駆
体を除く酸化物超電導前駆体の仮焼熱処理を250〜350℃
の温度範囲で施すことが好ましい。さらに、最外層の酸
化物超電導前駆体を除く酸化物超電導前駆体の仮焼熱処
理を水蒸気分圧が1.0〜3.2vol%の雰囲気中で施すことが
好ましい。
In this case, the calcination heat treatment of the oxide superconducting precursor excluding the oxide superconducting precursor of the outermost layer is preferably performed at less than 400 ° C., and particularly, the oxide excluding the oxide superconducting precursor of the outermost layer is Calcination heat treatment of superconducting precursor 250 ~ 350 ℃
It is preferable to apply in the temperature range of. Further, it is preferable that the oxide superconducting precursor excluding the oxide superconducting precursor of the outermost layer is subjected to calcination heat treatment in an atmosphere having a water vapor partial pressure of 1.0 to 3.2 vol%.

【0021】また、結晶化熱処理を水蒸気分圧1.0〜3.2
vol%の雰囲気中で施すことが好ましく、結晶化熱処理の
熱処理雰囲気は、水蒸気、酸化物超電導体と反応しない
ガス、及び酸素により構成することが好ましい。
Further, the crystallization heat treatment is carried out by steam partial pressure of 1.0 to 3.2.
It is preferable that the heat treatment is performed in a vol% atmosphere, and the heat treatment atmosphere of the crystallization heat treatment is preferably constituted by water vapor, a gas that does not react with the oxide superconductor, and oxygen.

【0022】以上の発明において、金属有機酸塩として
トリフルオロ酢酸塩、オクチル酸塩、ナフテン酸塩又は
酢酸塩のいずれか1種以上が用いられ、特に、金属有機
酸塩は、少なくともトリフルオロ酢酸塩(TFA塩)を含
むことが好ましく、RE1+xBa2- xCu3OY(ここでREは、Y、
Nd、Sm、Gd、Eu、Yb、Pr又はHoから選択された少なくと
も1種類以上の元素を示す。以下同じ)からなる酸化物
超電導体に適する。
In the above invention, any one or more of trifluoroacetate, octylate, naphthenate and acetate is used as the metal organic acid salt, and in particular, the metal organic acid salt is at least trifluoroacetic acid. It is preferable to include a salt (TFA salt), and RE 1 + x Ba 2- x Cu 3 O Y (where RE is Y,
At least one element selected from Nd, Sm, Gd, Eu, Yb, Pr or Ho is shown. Hereinafter the same) is suitable for the oxide superconductor.

【0023】以上述べた多層構造のテープ状酸化物超電
導体は、結晶化した超電導膜のX線解析の極図形測定よ
り(103)面を面内方向に回転させることにより得られ
る四回対称性を有するピークの半値幅が、平均で12°以
下の配向性を有する。
The multi-layered tape-shaped oxide superconductor described above has four-fold symmetry obtained by rotating the (103) plane in the in-plane direction from polar figure measurement of X-ray analysis of the crystallized superconducting film. The half-value width of the peak having the average value has an orientation of 12 ° or less.

【0024】[0024]

【実施例】実施例1 基板として、長さ10mm、幅10mm、厚さ0.5mmのLAO単結晶
基板を用いた。
EXAMPLES Example 1 As a substrate, a LAO single crystal substrate having a length of 10 mm, a width of 10 mm and a thickness of 0.5 mm was used.

【0025】原料溶液は、Y、Ba及びCuの各TFA塩を金属
モル比においてY:Ba:Cu=1:2:3の比率でメタノール
溶液に混合し、溶液濃度をY換算で0.25mol/Lに調整して
作製した。この原料溶液を、LAO単結晶基板上にスピン
コーティングにより塗布し、これを電気炉内に設置し
て、水蒸気分圧2.1vol%、酸素分圧97.9vol%に調整した
ガスを電気炉内に1L/minの流量で導入し、図1の熱処理
パターンにより仮焼熱処理を施した(1回塗布)。次い
で、さらにコーティングと仮焼熱処理を繰り返して(3
回塗布)、Y-Ba-Cu前駆体厚膜を得た。この時、最後の
仮焼熱処理は、図2に示す熱処理パターンを採用した。
その後、電気炉内に水蒸気分圧2.1vol%、酸素分圧0.1vo
l%に調整したガスを1L/minの流量で導入した雰囲気中で
25℃/minの昇温速度で加熱し、基板温度775℃で1〜3時
間の結晶化熱処理を行った。その後、炉内雰囲気を乾燥
ガスに切り替えて10分間保持した後、炉冷した。
The raw material solution was prepared by mixing each TFA salt of Y, Ba and Cu in a methanol solution at a metal molar ratio of Y: Ba: Cu = 1: 2: 3, and the solution concentration was 0.25 mol / Y in terms of Y. It was prepared by adjusting to L. This raw material solution was applied onto the LAO single crystal substrate by spin coating, placed in an electric furnace, and a gas adjusted to a water vapor partial pressure of 2.1 vol% and an oxygen partial pressure of 97.9 vol% was charged to the electric furnace for 1 L. It was introduced at a flow rate of / min and was subjected to calcination heat treatment according to the heat treatment pattern of FIG. 1 (single application). Then, coating and calcination heat treatment are repeated (3
Multiple coatings) to obtain a Y-Ba-Cu precursor thick film. At this time, for the final calcination heat treatment, the heat treatment pattern shown in FIG. 2 was adopted.
Then, steam partial pressure 2.1vol%, oxygen partial pressure 0.1vo in the electric furnace.
In an atmosphere in which a gas adjusted to l% is introduced at a flow rate of 1 L / min
The crystallization heat treatment was performed at a substrate temperature of 775 ° C for 1 to 3 hours by heating at a heating rate of 25 ° C / min. After that, the atmosphere in the furnace was switched to a dry gas, and the atmosphere was maintained for 10 minutes, and then the furnace was cooled.

【0026】1回の塗布で得られる超電導体の膜厚は0.3
μmであった。
The film thickness of the superconductor obtained by one coating is 0.3
was μm.

【0027】以上のようにして得られた超電導膜(YBCO
膜)の上に、銀を蒸着して電極を形成し、酸素雰囲気中
で450℃で1時間の熱処理を施して超電導体を作製した。
The superconducting film (YBCO
On the film, silver was vapor-deposited to form an electrode, and heat treatment was performed at 450 ° C. for 1 hour in an oxygen atmosphere to prepare a superconductor.

【0028】これらの超電導膜に幅約100μm、長さ500
μmのパターンニング加工を施し、液体窒素中において
直流四端子法によりJc値(電圧基準1μV/cm)の測定を
行った。また、X線回折により結晶相の同定及び超電導
膜の配向性を評価した。これらの結果を表1に示す。
A width of about 100 μm and a length of 500 are applied to these superconducting films.
After performing a patterning process of μm, the Jc value (voltage reference: 1 μV / cm) was measured by a DC four-terminal method in liquid nitrogen. In addition, the crystal phase was identified by X-ray diffraction and the orientation of the superconducting film was evaluated. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】比較例1 仮焼熱処理に図3に示す熱処理パターンを採用したこと
以外は、実施例1と同様な条件により、原料溶液の塗
布、仮焼熱処理及び結晶化熱処理を行って超電導体を作
製した。
Comparative Example 1 A raw material solution was applied, calcining heat treatment and crystallization heat treatment were performed under the same conditions as in Example 1 except that the heat treatment pattern shown in FIG. It was made.

【0031】さらに、実施例1と同様にしてJc値の測定
並びに及びX線回折による結晶相の同定及び超電導膜の
配向性を評価した。これらの結果を表1に示した。
Further, in the same manner as in Example 1, the Jc value was measured, the crystal phase was identified by X-ray diffraction, and the orientation of the superconducting film was evaluated. The results are shown in Table 1.

【0032】本発明の実施例1では、X線回折によるθ-2
θ測定の結果、YBCO以外の不純物相は認められなかっ
た。また、YBCOの(102)面における極図形測定により
得られたYBCO膜は4回対称性を示し、そのピークの半値
幅(Δφ)は、平均で1.5°であった。また基板に対し
て垂直方向に結晶のc軸が配向している比率が95%を示し
ており、基板から膜表面に向けて均質なエピタキシャル
成長をしていることがわかる。
In Example 1 of the present invention, θ-2 by X-ray diffraction was used.
As a result of θ measurement, no impurity phase other than YBCO was observed. In addition, the YBCO film obtained by polarographic measurement on the (102) plane of YBCO exhibited 4-fold symmetry, and the half-width (Δφ) of the peak was 1.5 ° on average. In addition, the ratio of the crystal c-axis oriented in the direction perpendicular to the substrate is 95%, which indicates that uniform epitaxial growth is performed from the substrate to the film surface.

【0033】従って、本発明の実施例においては、膜厚
の増加に伴うJcの低下がほとんど認められず、3回コー
ティングしたYBCO膜において3.5MA/cm2の高特性が得ら
れた。
Therefore, in the examples of the present invention, the decrease of Jc with the increase of the film thickness was hardly recognized, and the YBCO film coated three times had a high characteristic of 3.5 MA / cm 2 .

【0034】他方、比較例1による3回コーティングした
YBCO膜は8回対称性を示し、そのピークの半値幅は平均
で13°であった。また、基板に対して垂直方向にc軸が
配向している比率が85%であることが判った。
On the other hand, the coating according to Comparative Example 1 was performed three times.
The YBCO film showed 8-fold symmetry, and the full width at half maximum of its peak was 13 ° on average. It was also found that the ratio of the c-axis oriented in the direction perpendicular to the substrate was 85%.

【0035】その結果、Jc値は、膜厚の増加に伴って急
激に低下し、3回コーティングしたYBCO膜において0.5MA
/cm2であった。
As a result, the Jc value sharply decreased with an increase in film thickness, and was 0.5 MA in the YBCO film coated three times.
It was / cm 2 .

【0036】実施例2 基板として、IBAD複合基板を用いた以外は実施例1と同
様の方法により、原料溶液の塗布、仮焼熱処理及び結晶
化熱処理を行って超電導体を作成した。
Example 2 By the same method as in Example 1 except that an IBAD composite substrate was used as a substrate, coating of a raw material solution, calcination heat treatment and crystallization heat treatment were performed to form a superconductor.

【0037】このIBAD複合基板は、ハステロイテープ上
にIBAD法でYSZを成膜したものを長さ10mm、幅10mmに切
断し、その上にスパッタ法により0.5μm厚のCeO2中間
層を形成したものである。
This IBAD composite substrate was obtained by forming a YSZ film on a Hastelloy tape by the IBAD method, cutting it into a length of 10 mm and a width of 10 mm, and forming a CeO 2 intermediate layer having a thickness of 0.5 μm thereon by the sputtering method. It is a thing.

【0038】さらに、実施例1と同様にしてJc値の測定
並びに及びX線回折による結晶相の同定及び超電導膜の
配向性を評価した。これらの結果を表2に示す。
Further, in the same manner as in Example 1, the Jc value was measured, the crystal phase was identified by X-ray diffraction, and the orientation of the superconducting film was evaluated. The results are shown in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】比較例2 基板として、実施例2と同様のIBAD複合基板を用いた以
外は比較例1と同様の方法により、原料溶液の塗布、仮
焼熱処理及び結晶化熱処理を行って超電導体を作成し
た。
Comparative Example 2 By the same method as in Comparative Example 1 except that the same IBAD composite substrate as in Example 2 was used as the substrate, coating of the raw material solution, calcination heat treatment and crystallization heat treatment were performed to obtain a superconductor. Created.

【0041】さらに、実施例1と同様にしてJc値の測定
並びに及びX線回折による結晶相の同定及び超電導膜の
配向性を評価した。これらの結果を表2に示した。
Further, in the same manner as in Example 1, the Jc value was measured, the crystal phase was identified by X-ray diffraction, and the orientation of the superconducting film was evaluated. The results are shown in Table 2.

【0042】本発明の実施例2では、X線回折によるθ-2
θ測定の結果、YBCO以外の不純物相は認められなかっ
た。また、YBCOの(102)面における極図形測定により
得られたYBCO膜は4回対称性を示し、そのピークの半値
幅(Δφ)は、平均で5°であった。また基板に対して
垂直方向に結晶のc軸が配向している比率が95〜98%を示
しており、基板から膜表面に向けて均質なエピタキシャ
ル成長をしていることがわかる。
In Example 2 of the present invention, θ-2 by X-ray diffraction was used.
As a result of θ measurement, no impurity phase other than YBCO was observed. The YBCO film obtained by polarographic measurement on the (102) plane of YBCO exhibited 4-fold symmetry, and the half-value width (Δφ) of its peak was 5 ° on average. The ratio of the crystal c-axis oriented in the direction perpendicular to the substrate is 95 to 98%, which indicates that uniform epitaxial growth is performed from the substrate to the film surface.

【0043】従って、本発明の実施例2においては、膜
厚の増加に伴うJcの低下がほとんど認められず、3回コ
ーティングしたYBCO膜において2MA/cm2の高特性が得ら
れた。
Therefore, in Example 2 of the present invention, almost no decrease in Jc with the increase in film thickness was observed, and a high characteristic of 2 MA / cm 2 was obtained in the YBCO film coated three times.

【0044】他方、比較例2による3回コーティングした
YBCO膜は8回対称性を示し、そのピークの半値幅は平均
で13°であった。また、基板に対して垂直方向にc軸が
配向している比率が80%であることが判った。
On the other hand, the coating of Comparative Example 2 was performed three times.
The YBCO film showed 8-fold symmetry, and the full width at half maximum of its peak was 13 ° on average. It was also found that the ratio of the c-axis oriented in the direction perpendicular to the substrate was 80%.

【0045】その結果、Jc値は膜厚の増加に伴って急激
に低下し、3回コーティングしたYBCO膜において0.3MA/c
m2であった。
As a result, the Jc value sharply decreased with the increase of the film thickness, and was 0.3 MA / c in the YBCO film coated three times.
It was m 2 .

【0046】これによって、IBAD基板を用いた場合も、
本発明により厚膜のテープ状酸化物超電導体が著しく高
特性を示すことがわかった。
As a result, even when the IBAD substrate is used,
According to the present invention, it was found that the thick film tape-shaped oxide superconductor exhibits remarkably high characteristics.

【0047】[0047]

【発明の効果】本発明により、非真空成膜プロセスであ
るMOD法を用いて金属基板上に従来技術と比べて著しく
高い臨界電流特性を有する長尺の酸化物超電導厚膜を連
続的に高速成膜することが可能になり、また超電導マク
ネットや超電導ケーブルへの応用に適するテープ状酸化
物超電導線材の製造のコストを著しく削減することが可
能になる。
According to the present invention, by using the MOD method which is a non-vacuum film forming process, a long oxide superconducting thick film having a significantly higher critical current characteristic than that of the prior art can be continuously and rapidly formed on a metal substrate. It becomes possible to form a film, and it is possible to significantly reduce the cost of manufacturing a tape-shaped oxide superconducting wire suitable for application to a superconducting macnet or a superconducting cable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるテープ状酸化物超電導体の最外
層を除く層の仮焼熱処理パターンの一実施例を示す図で
ある。
FIG. 1 is a diagram showing an example of a calcination heat treatment pattern of layers excluding the outermost layer of the tape-shaped oxide superconductor in the present invention.

【図2】本発明における最外層の仮焼熱処理のパターン
の一実施例を示す図である。
FIG. 2 is a diagram showing an example of a pattern of calcination heat treatment of the outermost layer in the present invention.

【図3】比較例の仮焼熱処理のパターンを示す図であ
る。
FIG. 3 is a diagram showing a pattern of calcination heat treatment of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 39/24 H01L 39/24 B (71)出願人 000173784 財団法人鉄道総合技術研究所 東京都国分寺市光町2丁目8番地38 (72)発明者 本庄 哲吏 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 富士 広 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 中村 雄一 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 和泉 輝郎 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 塩原 融 東京都江東区東雲1−10−13 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 Fターム(参考) 4G047 JA03 JA04 JA05 JC02 KA04 KC01 KD02 KD04 LA01 LA06 LB01 4M113 AD35 AD36 AD68 BA04 BA23 BA29 CA34 4M114 AA10 AA29 DB62 5G321 AA01 AA04 BA01 BA03 CA18 CA22 CA24 CA27 DB25 DB46 DB47 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 39/24 H01L 39/24 B (71) Applicant 000173784 Ichimitsu, Kokubunji, Tokyo Metropolitan Railway Research Institute 2-chome, 38 38 (72) Inventor Tetsuro Honjo 1-10-13 Shinonome, Koto-ku, Tokyo International Superconductivity Technology Center, Superconductivity Research Institute (72) Inventor Fuji Hiro Shinonome, Koto-ku, Tokyo 1-10-13 International Superconductivity Industrial Technology Research Center Superconductivity Research Institute (72) Inventor Yuichi Nakamura 1-10-13 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Research Center Superconductivity Research Institute (72) Inventor Teruo Izumi 1-10-13 Shinonome, Koto-ku, Tokyo International Superconductivity Technology Center, Superconductivity Foundation Within the Institute of Engineering (72) Inventor Yuru Shiobara 1-10-13 Shinonome, Koto-ku, Tokyo International Superconducting Industrial Technology Research Center Superconducting Research Institute F-term (reference) 4G047 JA03 JA04 JA05 JC02 KA04 KC01 KD02 KD04 LA01 LA06 LB01 4M113 AD35 AD36 AD68 BA04 BA23 BA29 CA34 4M114 AA10 AA29 DB62 5G321 AA01 AA04 BA01 BA03 CA18 CA22 CA24 CA27 DB25 DB46 DB47

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】基板上に、酸化物超電導体を構成する各金
属元素を所定のモル比で含む金属有機酸塩の混合溶液を
塗布後、仮焼熱処理を施した酸化物超電導前駆体に結晶
化熱処理を施した酸化物超電導体において、前記仮焼熱
処理中の昇温速度が0.1〜0.6℃/minの工程を含むことを
特徴とするテープ状酸化物超電導体。
1. An oxide superconducting precursor obtained by applying a mixed solution of a metal organic acid salt containing a metal element constituting an oxide superconductor in a predetermined molar ratio onto a substrate and then subjecting it to a calcination heat treatment. A tape-shaped oxide superconductor characterized by comprising a step of increasing the heating rate during the calcining heat treatment in the range of 0.1 to 0.6 ° C./min in the oxide superconductor subjected to the chemical heat treatment.
【請求項2】基板上に、酸化物超電導体を構成する各金
属元素を所定のモル比で含む金属有機酸塩の混合溶液を
塗布後、仮焼熱処理を施した酸化物超電導前駆体に結晶
化熱処理を施した酸化物超電導体において、前記仮焼熱
処理中の昇温速度が0.1〜0.6℃/minの工程を含み、結晶
化後の超電導膜の厚さを[t] μm、77Kにおける臨界電
流密度を[Jc]MA/cm2とした場合に[t]×[Jc]≧0.8の特性
を有することを特徴とするテープ状酸化物超電導体。
2. An oxide superconducting precursor obtained by applying a mixed solution of a metal organic acid salt containing each metal element constituting an oxide superconductor in a predetermined molar ratio onto a substrate and then subjecting it to calcination heat treatment to crystallize. In the oxide superconductor which has been subjected to the heat treatment for crystallization, including the step of the temperature rising rate during the calcination heat treatment of 0.1 to 0.6 ° C / min, the thickness of the superconducting film after crystallization is [t] μm, the critical value at 77K. A tape-shaped oxide superconductor having a characteristic of [t] × [Jc] ≧ 0.8 when the current density is [Jc] MA / cm 2 .
【請求項3】200〜250℃の仮焼熱処理中の昇温速度が0.
1〜0.6℃/minであることを特徴とする請求項1又は2記
載のテープ状酸化物超電導体。
3. The rate of temperature rise during calcination heat treatment at 200 to 250 ° C. is 0.
The tape-shaped oxide superconductor according to claim 1 or 2, which has a temperature of 1 to 0.6 ° C / min.
【請求項4】仮焼熱処理及び/又は結晶化熱処理は、水
蒸気分圧が4.0vol%以下の雰囲気中で施されることを特
徴とする請求項1乃至3いずれか1項記載のテープ状酸化
物超電導体。
4. The tape-shaped oxidation according to any one of claims 1 to 3, wherein the calcination heat treatment and / or the crystallization heat treatment are performed in an atmosphere having a water vapor partial pressure of 4.0 vol% or less. Thing superconductor.
【請求項5】酸化物超電導前駆体は、複数層形成されて
いることを特徴とする請求項1乃至4いずれか1項記載の
テープ状酸化物超電導体。
5. The tape-shaped oxide superconductor according to claim 1, wherein a plurality of oxide superconducting precursors are formed.
【請求項6】最外層の酸化物超電導前駆体を除く酸化物
超電導前駆体の仮焼熱処理が、400℃未満であることを
特徴とする請求項5記載のテープ状酸化物超電導体。
6. The tape-shaped oxide superconductor according to claim 5, wherein the calcination heat treatment of the oxide superconducting precursor excluding the oxide superconducting precursor of the outermost layer is less than 400 ° C.
【請求項7】最外層の酸化物超電導前駆体を除く酸化物
超電導前駆体の仮焼熱処理が、250〜350℃の温度範囲で
あることを特徴とする請求項6記載のテープ状酸化物超
電導体。
7. The tape-shaped oxide superconductor according to claim 6, wherein the calcination heat treatment of the oxide superconducting precursor excluding the oxide superconducting precursor of the outermost layer is in the temperature range of 250 to 350 ° C. body.
【請求項8】最外層の酸化物超電導前駆体を除く酸化物
超電導前駆体の仮焼熱処理は、水蒸気分圧が1.0〜3.2vo
l%の雰囲気中で施されることを特徴とする請求項5乃至
7いずれか1項記載のテープ状酸化物超電導体。
8. The calcination heat treatment of the oxide superconducting precursor excluding the oxide superconducting precursor of the outermost layer has a water vapor partial pressure of 1.0 to 3.2 vo.
The tape-shaped oxide superconductor according to any one of claims 5 to 7, which is applied in an atmosphere of 1%.
【請求項9】結晶化熱処理は、水蒸気分圧1.0〜3.2vol%
の雰囲気中で施されることを特徴とする請求項1乃至8
いずれか1項記載のテープ状酸化物超電導体。
9. The crystallization heat treatment is carried out at a steam partial pressure of 1.0 to 3.2 vol%.
9. The method according to claim 1, wherein the treatment is performed in an atmosphere of
The tape-shaped oxide superconductor according to any one of claims 1.
【請求項10】金属有機酸塩は、トリフルオロ酢酸塩、
オクチル酸塩、ナフテン酸塩又は酢酸塩のいずれか1種
以上からなることを特徴とする請求項1又は2記載のテ
ープ状酸化物超電導体。
10. The metal organic acid salt is trifluoroacetate,
3. The tape-shaped oxide superconductor according to claim 1, comprising at least one kind of octylate, naphthenate and acetate.
【請求項11】金属有機酸塩は、少なくともトリフルオ
ロ酢酸塩(TFA塩)を含むことを特徴とする請求項10記
載のテープ状酸化物超電導体。
11. The tape-shaped oxide superconductor according to claim 10, wherein the metal organic acid salt contains at least trifluoroacetic acid salt (TFA salt).
【請求項12】酸化物超電導体は、RE1+xBa2-xCu3O
Y(ここでREは、Y、Nd、Sm、Gd、Eu、Yb、Pr又はHoから
選択された少なくとも1種類以上の元素を示す。以下同
じ)からなることを特徴とする請求項1乃至11いずれか1
項記載のテープ状酸化物超電導体。
12. The oxide superconductor is RE 1 + x Ba 2-x Cu 3 O.
12. Y (wherein RE represents at least one or more elements selected from Y, Nd, Sm, Gd, Eu, Yb, Pr or Ho. The same applies hereinafter) 1 to 11. Either 1
The tape-shaped oxide superconductor according to the item.
【請求項13】酸化物超電導体を構成する各金属元素を
所定のモル比で含む金属有機酸塩の混合溶液を基板上に
塗布した後、200〜250℃の温度範囲を0.1〜0.6℃/minの
昇温速度で仮焼熱処理を施して酸化物超電導前駆体を形
成し、次いで前記酸化物超電導前駆体に結晶化熱処理を
施すことにより、結晶化後の超電導膜の厚さを[t] μ
m、77Kにおける臨界電流密度を[Jc]MA/cm2とした場合
に[t]×[Jc]≧0.8の特性を有する酸化物超電導膜を前記
基板上に形成することを特徴とするテープ状酸化物超電
導体の製造方法。
13. A mixed solution of a metal organic acid salt containing each metal element constituting an oxide superconductor in a predetermined molar ratio is coated on a substrate, and then a temperature range of 200 to 250 ° C. is set to 0.1 to 0.6 ° C. / The oxide superconducting precursor is formed by performing calcination heat treatment at a temperature rising rate of min, and then the oxide superconducting precursor is subjected to crystallization heat treatment to reduce the thickness of the superconducting film after crystallization to [t]. μ
A tape-shaped oxide superconducting film having a characteristic of [t] × [Jc] ≧ 0.8 when the critical current density at m and 77K is [Jc] MA / cm 2 Manufacturing method of oxide superconductor.
【請求項14】基板上に、酸化物超電導体を構成する各
金属元素を所定のモル比で含む金属有機酸塩の混合溶液
を塗布した後、水蒸気分圧4.0vol%の雰囲気中で200〜25
0℃の温度範囲を0.1〜0.6℃/minの昇温速度で仮焼熱処
理を施して酸化物超電導前駆体を形成し、次いで前記酸
化物超電導前駆体に水蒸気分圧1.0〜3.2vol%の雰囲気中
で結晶化熱処理を施すことを特徴とするテープ状酸化物
超電導体の製造方法。
14. A substrate is coated with a mixed solution of a metal organic acid salt containing each metal element constituting an oxide superconductor in a predetermined molar ratio, and then 200 to 200% in an atmosphere having a water vapor partial pressure of 4.0 vol%. twenty five
A calcination heat treatment is performed in a temperature range of 0 ° C. at a temperature rising rate of 0.1 to 0.6 ° C./min to form an oxide superconducting precursor, and then the oxide superconducting precursor is provided with an atmosphere of water vapor partial pressure of 1.0 to 3.2 vol%. A method for producing a tape-shaped oxide superconductor, characterized in that crystallization heat treatment is performed in the film.
JP2002105037A 2001-05-15 2002-04-08 Tape-like oxide superconductor and manufacturing method therefor Withdrawn JP2003300726A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002105037A JP2003300726A (en) 2002-04-08 2002-04-08 Tape-like oxide superconductor and manufacturing method therefor
PCT/JP2002/004687 WO2002093590A1 (en) 2001-05-15 2002-05-15 Oxide supercoductor in the form of tape and method for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105037A JP2003300726A (en) 2002-04-08 2002-04-08 Tape-like oxide superconductor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003300726A true JP2003300726A (en) 2003-10-21

Family

ID=29389923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105037A Withdrawn JP2003300726A (en) 2001-05-15 2002-04-08 Tape-like oxide superconductor and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003300726A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052688A1 (en) * 2005-11-02 2007-05-10 Rigaku Corporation Method and device for measuring microcrystal grain orientation distribution
JP2007515053A (en) * 2003-12-15 2007-06-07 スーパーパワー インコーポレイテッド High-throughput ex-situ method for rare earth / barium / copper / oxide (REBCO) thin film growth
JP2007526199A (en) * 2004-01-16 2007-09-13 アメリカン・スーパーコンダクター・コーポレーション Oxide film with nanodot flux and pinning center
JPWO2005088653A1 (en) * 2004-03-12 2008-01-31 財団法人国際超電導産業技術研究センター Rare earth oxide superconductor and manufacturing method thereof
WO2008023454A1 (en) 2006-08-23 2008-02-28 International Superconductivity Technology Center, The Juridical Foundation MANUFACTURING METHOD OF TAPE-SHAPED Re-BASE (123) SUPERCONDUCTOR
WO2009087720A1 (en) 2008-01-08 2009-07-16 International Superconductivity Technology Center, The Juridical Foundation Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
JP2010123516A (en) * 2008-11-21 2010-06-03 Fujikura Ltd Method of manufacturing substrate for oxide superconductor, method of manufacturing oxide superconductor, and device for forming cap layer for oxide superconductor
JP2011121804A (en) * 2009-12-09 2011-06-23 National Institute Of Advanced Industrial Science & Technology Method for producing superconducting film
JP2011159453A (en) * 2010-01-29 2011-08-18 National Institute Of Advanced Industrial Science & Technology Method of manufacturing oxide superconducting thin film
JP2011195435A (en) * 2010-02-24 2011-10-06 National Institute Of Advanced Industrial Science & Technology Method for producing superconducting film, and calcination film and firing film obtained by the method
JP2012113860A (en) * 2010-11-22 2012-06-14 Sumitomo Electric Ind Ltd Superconducting oxide thin film wire rod, and method for manufacturing the same
US8409657B2 (en) 2005-12-14 2013-04-02 The Jurical Foundation Process for producing thick-film tape-shaped re-type (123) superconductor
JP2013201014A (en) * 2012-03-23 2013-10-03 Toshiba Corp Oxide superconductor, oriented oxide thin film, and manufacturing method for oxide superconductor
JP2014026858A (en) * 2012-07-27 2014-02-06 International Superconductivity Technology Center Method for manufacturing tape-like re-based oxide superconducting wire material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515053A (en) * 2003-12-15 2007-06-07 スーパーパワー インコーポレイテッド High-throughput ex-situ method for rare earth / barium / copper / oxide (REBCO) thin film growth
JP2007526199A (en) * 2004-01-16 2007-09-13 アメリカン・スーパーコンダクター・コーポレーション Oxide film with nanodot flux and pinning center
JP4579909B2 (en) * 2004-03-12 2010-11-10 財団法人国際超電導産業技術研究センター Rare earth oxide superconductor and manufacturing method thereof
JPWO2005088653A1 (en) * 2004-03-12 2008-01-31 財団法人国際超電導産業技術研究センター Rare earth oxide superconductor and manufacturing method thereof
JP4685877B2 (en) * 2005-11-02 2011-05-18 株式会社リガク Method and apparatus for measuring orientation distribution of microcrystalline grains
JPWO2007052688A1 (en) * 2005-11-02 2009-04-30 株式会社リガク Method and apparatus for measuring orientation distribution of microcrystalline grains
WO2007052688A1 (en) * 2005-11-02 2007-05-10 Rigaku Corporation Method and device for measuring microcrystal grain orientation distribution
US8409657B2 (en) 2005-12-14 2013-04-02 The Jurical Foundation Process for producing thick-film tape-shaped re-type (123) superconductor
WO2008023454A1 (en) 2006-08-23 2008-02-28 International Superconductivity Technology Center, The Juridical Foundation MANUFACTURING METHOD OF TAPE-SHAPED Re-BASE (123) SUPERCONDUCTOR
EP2234121A1 (en) * 2008-01-08 2010-09-29 International Superconductivity Technology Center, The Juridical Foundation Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
EP2234121A4 (en) * 2008-01-08 2012-08-22 Int Superconductivity Tech Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
US8326387B2 (en) 2008-01-08 2012-12-04 International Superconductivity Technology Center, The Juridical Foundation Re-type oxide superconducting wire and process for producing the same
WO2009087720A1 (en) 2008-01-08 2009-07-16 International Superconductivity Technology Center, The Juridical Foundation Re-based oxide superconducting rod material and process for producing the re-based oxide superconducting rod material
KR101540782B1 (en) 2008-01-08 2015-08-06 고에키 자이단호진 고쿠사이 초덴도 산교 기쥬쓰 겐큐 센터 Re-type oxide superconducting wire and process for producing the same
JP2010123516A (en) * 2008-11-21 2010-06-03 Fujikura Ltd Method of manufacturing substrate for oxide superconductor, method of manufacturing oxide superconductor, and device for forming cap layer for oxide superconductor
JP2011121804A (en) * 2009-12-09 2011-06-23 National Institute Of Advanced Industrial Science & Technology Method for producing superconducting film
JP2011159453A (en) * 2010-01-29 2011-08-18 National Institute Of Advanced Industrial Science & Technology Method of manufacturing oxide superconducting thin film
JP2011195435A (en) * 2010-02-24 2011-10-06 National Institute Of Advanced Industrial Science & Technology Method for producing superconducting film, and calcination film and firing film obtained by the method
JP2012113860A (en) * 2010-11-22 2012-06-14 Sumitomo Electric Ind Ltd Superconducting oxide thin film wire rod, and method for manufacturing the same
JP2013201014A (en) * 2012-03-23 2013-10-03 Toshiba Corp Oxide superconductor, oriented oxide thin film, and manufacturing method for oxide superconductor
JP2014026858A (en) * 2012-07-27 2014-02-06 International Superconductivity Technology Center Method for manufacturing tape-like re-based oxide superconducting wire material

Similar Documents

Publication Publication Date Title
JP4713012B2 (en) Tape-shaped oxide superconductor
US7622424B2 (en) Thick superconductor films with improved performance
US6730410B1 (en) Surface control alloy substrates and methods of manufacture therefor
US6673387B1 (en) Control of oxide layer reaction rates
WO2001026165A2 (en) Method and apparatus for forming buffer layers
EP1198848A1 (en) Coated conductor thick film precursor
WO2007069524A1 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JP5513154B2 (en) Oxide superconducting wire and manufacturing method of oxide superconducting wire
US20110034336A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
JP2007188756A (en) Rare earth based tape shape oxide superconductor
JP5757718B2 (en) Manufacturing method of oxide superconducting wire
JP2008310986A (en) Tape shape oxide superconductor
US20110034338A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
JP4422959B2 (en) Method for producing Y-based tape-shaped oxide superconductor
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP4579909B2 (en) Rare earth oxide superconductor and manufacturing method thereof
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
US7473670B2 (en) Process for producing rare earth oxide superconductor
JP5562615B2 (en) Rare earth oxide superconducting wire manufacturing method
JP5380250B2 (en) Rare earth oxide superconducting wire and method for producing the same
JP2813287B2 (en) Superconducting wire
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire
JP2019125436A (en) Oxide superconducting wire

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705