JP2011195435A - Method for producing superconducting film, and calcination film and firing film obtained by the method - Google Patents

Method for producing superconducting film, and calcination film and firing film obtained by the method Download PDF

Info

Publication number
JP2011195435A
JP2011195435A JP2011037342A JP2011037342A JP2011195435A JP 2011195435 A JP2011195435 A JP 2011195435A JP 2011037342 A JP2011037342 A JP 2011037342A JP 2011037342 A JP2011037342 A JP 2011037342A JP 2011195435 A JP2011195435 A JP 2011195435A
Authority
JP
Japan
Prior art keywords
film
metal
superconducting
superconducting film
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011037342A
Other languages
Japanese (ja)
Other versions
JP2011195435A5 (en
Inventor
Hiroaki Matsui
浩明 松井
Kenichi Tsukada
謙一 塚田
Tetsuo Tsuchiya
哲男 土屋
Toshiya Kumagai
俊弥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011037342A priority Critical patent/JP2011195435A/en
Publication of JP2011195435A publication Critical patent/JP2011195435A/en
Publication of JP2011195435A5 publication Critical patent/JP2011195435A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a superconducting film for obtaining large film thickness and a high orientational property at a low cost, in heat processing formation of the superconducting film with thermal decomposition of a metal organic compound.SOLUTION: In producing a superconducting film material with film thickness of nearly 0.6 to several μm, the uniformity of element distribution of a calcination film obtained at a calcination step is remarkably improved by radiation of KrCl ultraviolet excimer lamp light with illuminance of 15 mW/cmor more before the calcination step in a coating thermal decomposition method, and the superconducting film with large film thickness and the high orientational property is produced after undergoing a subsequent firing step.

Description

本発明は、電力輸送、電力機器、情報機器材料等の分野で用いる、超電導物質の製造方法、より詳しくは、限流器、マイクロ波フィルタ、テープ材料、線材などへの応用を目指して支持体上に超電導物質をコーティングした超電導材料膜の製造方法に関する。   The present invention relates to a method for producing a superconducting material used in the fields of electric power transportation, electric power equipment, information equipment, and the like, and more specifically, a support for the purpose of application to a current limiter, a microwave filter, a tape material, a wire, etc. The present invention relates to a method of manufacturing a superconducting material film having a superconducting material coated thereon.

従来、超電導膜を製造する方法として、(1)一般式(RE)BaCu(式中、REは、希土類元素を表す。)で表される高温超電導酸化物(以下、「RE123」と略称する)を構成する希土類元素を含む有機化合物溶液を基板に塗った後の乾燥工程、(2)有機成分の分解工程(仮焼成)、(3)超電導物質の形成工程(本焼成)を全て熱エネルギーにより行う方法、所謂塗布熱分解法が知られている(特許文献1等参照)。
上記工程(1)、(2)において、フッ素を含まない金属トリメチル酢酸塩溶液を基板に塗布し、加湿した酸素気流中あるいは0.02atm以下の酸素分圧の窒素気流中で仮焼成を行うことも提案されている(非特許文献1)
また、上記工程(1)、(2)において、出発原料としてフッ素を含んだ金属有機化合物を用いて、雰囲気ガスに水蒸気を含ませることにより、高い臨界電流特性をもつ超電導膜が得られることが知られている(非特許文献2〜4)。
Conventionally, as a method for producing a superconducting film, (1) a high-temperature superconducting oxide (hereinafter referred to as “RE123”) represented by the general formula (RE) Ba 2 Cu 3 O 7 (wherein RE represents a rare earth element) (Hereinafter abbreviated as “)”, a drying step after the substrate is coated with an organic compound solution containing a rare earth element, (2) an organic component decomposition step (preliminary firing), and (3) a superconducting material formation step (main firing). There is known a method in which all of the above is performed by thermal energy, a so-called coating pyrolysis method (see Patent Document 1, etc.).
In the above steps (1) and (2), a metal trimethylacetate solution containing no fluorine is applied to the substrate and pre-baked in a humidified oxygen stream or a nitrogen stream with an oxygen partial pressure of 0.02 atm or less. Has also been proposed (Non-Patent Document 1).
Also, in the above steps (1) and (2), a superconducting film having high critical current characteristics can be obtained by using a metal organic compound containing fluorine as a starting material and including water vapor in the atmospheric gas. It is known (Non-Patent Documents 2 to 4).

さらに、上記工程(2)及び工程(3)と並行してあるいは工程(2)の前に、紫外エキシマレーザー光、或いはXe又はKrClを光源とする紫外エキシマランプ光を照射することで、金属有機化合物の熱分解及び超電導物質の熱処理形成を行う時間を短縮し、配向性を制御して、効率良く、性能が高い、膜厚100nm程度の超電導性材料を製造する製造方法も知られている(特許文献2)。
一方、パルスレーザー堆積(PLD)法により、膜厚10μm以上のエピタキシャル成長した超電導膜が得られている(非特許文献5)が、この方法は塗布熱分解法よりもはるかに高コストである。
Furthermore, in parallel with the above steps (2) and (3) or before the step (2), irradiation with an ultraviolet excimer laser beam or an ultraviolet excimer lamp light source using Xe or KrCl as a metal organic There is also known a manufacturing method for manufacturing a superconducting material having a thickness of about 100 nm with high efficiency and high performance by shortening the time for thermal decomposition of a compound and heat treatment formation of a superconducting substance and controlling the orientation ( Patent Document 2).
On the other hand, an epitaxially grown superconducting film having a thickness of 10 μm or more has been obtained by the pulse laser deposition (PLD) method (Non-patent Document 5), but this method is much more expensive than the coating pyrolysis method.

特公平7−106905号公報Japanese Patent Publication No. 7-106905 特開2007−70216号公報JP 2007-70216 A

Y.Xu et al. J.Mater.Res.18(2003)677Y. Xu et al. J. et al. Mater. Res. 18 (2003) 677 B.Zhao et al. Physica C386(2003)348B. Zhao et al. Physica C386 (2003) 348 A.Gupta et al. Appl.Phys.Lett.52(1988)2077A. Gupta et al. Appl. Phys. Lett. 52 (1988) 2077 P.C.McIntyre et al.J.Mater.Res.5(1990)2771P. C. McIntyre et al. J. et al. Mater. Res. 5 (1990) 2771 荒木ら、低温工学 35(2000)516Araki et al., Cryogenic Engineering 35 (2000) 516 A.Ichinose et al.Physica C468(2008)1627−1630A. Ichinose et al. Physica C468 (2008) 1627-1630

従来の金属有機化合物の熱分解を用いた超電導膜材料の製造方法においては、0.6μm程度以下の膜厚については高い配向性が得られる一方で、0.6〜数μm程度の膜厚では配向性の制御が困難だった。したがって、これまでは、0.6〜数μm程度の膜厚で、高い配向性をもつ超電導膜を得ようとした場合、その製造方法は高コストなパルスレーザー堆積法に限られていた。
本発明は、こうした現状を鑑みてなされたものであって、金属有機化合物の熱分解による超電導膜の熱処理形成において、低コストで大きい膜厚と配向性を得るための製造方法を提供することを目的とするものである。
In a conventional method for producing a superconducting film material using thermal decomposition of a metal organic compound, high orientation is obtained for a film thickness of about 0.6 μm or less, while a film thickness of about 0.6 to several μm is obtained. It was difficult to control the orientation. Therefore, until now, when trying to obtain a superconducting film having a high orientation with a film thickness of about 0.6 to several μm, its manufacturing method has been limited to a high-cost pulse laser deposition method.
The present invention has been made in view of the current situation, and provides a manufacturing method for obtaining a large film thickness and orientation at low cost in the heat treatment formation of a superconducting film by thermal decomposition of a metal organic compound. It is the purpose.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、0.6〜数μm程度の膜厚の超電導膜材料の製造において、塗布熱分解法における仮焼成工程の一部を特定の波長と強度を持った紫外エキシマランプ光の照射処理で置き換えることにより、工程(2)で得られる仮焼成膜の元素分布の均一性が著しく向上し、その後の工程(3)を経て、大きい膜厚と配向性をもつ超電導膜が製造できることが判明した。さらに、工程(2)における雰囲気に水蒸気を含ませることにより、高い臨界電流密度を有する超電導膜が得られることも判明した。   As a result of intensive studies to achieve the above object, the present inventors have identified a part of the pre-baking step in the coating pyrolysis method in the production of a superconducting film material having a thickness of about 0.6 to several μm. By substituting with an irradiation process of ultraviolet excimer lamp light having the wavelength and intensity, the uniformity of the elemental distribution of the pre-baked film obtained in the step (2) is remarkably improved, and is increased through the subsequent step (3). It was found that a superconducting film having a film thickness and orientation can be produced. Furthermore, it was also found that a superconducting film having a high critical current density can be obtained by including water vapor in the atmosphere in step (2).

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
〈1〉支持体上に、超電導性複合金属酸化物に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程(1)、該支持体上に形成された塗布膜中の有機成分を熱分解させる仮焼成工程(2)、及び超電導物質への変換を行う本焼成工程(3)を経てエピタキシャル成長させた超電導膜を製造するに際し、工程(2)の前に、KrCl紫外エキシマランプ光を15mW/cm以上の照度で照射することを特徴とする高配向性超電導膜の製造方法。
〈2〉前記高配向性超電導膜が、膜厚0.6μm以上の厚膜であることを特徴とする〈1〉に記載の高配向性超電導膜の製造方法。
〈3〉前記工程(2)を、露点が20℃以上の水蒸気を含む雰囲気中で行うことを特徴とする〈1〉又は〈2〉に記載の高配向性超電導膜の製造方法。
〈4〉前記金属含有化合物の有機溶媒溶液が、希土類金属、バリウム、及び銅からなる各金属成分を必須成分として含有することを特徴とする〈1〉〜〈3〉のいずれかに記載の高配向性超電導厚膜の製造方法。
〈5〉前記金属含有化合物の有機溶媒溶液が、希土類元素、バリウム、及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解して調製された均一な溶液であることを特徴とする〈1〉〜〈4〉のいずれかに記載の高配向性超電導膜の製造方法。
〈6〉前記金属カルボン酸塩、金属アセチルアセトナト、カルボン酸のうち少なくとも1種が、ハロゲンを含むことを特徴とする〈5〉に記載の高配向性超電導膜の製造方法。
〈7〉〈1〉〜〈6〉のいずれかに記載の超電導膜の製造方法における仮焼成工程(2)後に得られる、元素分布の均一な仮焼成膜。
〈8〉〈1〉〜〈6〉のいずれかに記載の超電導膜の製造方法における本焼成工程(3)後に得られる、高配向性本焼成膜。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
<1> A step (1) of applying an organic solvent solution of a metal-containing compound blended so as to have a metal seed composition corresponding to a superconducting composite metal oxide on a support, and drying the solution (1); In producing a superconducting film epitaxially grown through a preliminary firing step (2) for thermally decomposing organic components in the formed coating film and a main firing step (3) for converting into a superconducting substance, step (2) Before the above, a method for producing a highly oriented superconducting film, wherein KrCl ultraviolet excimer lamp light is irradiated at an illuminance of 15 mW / cm 2 or more.
<2> The method for producing a highly oriented superconducting film according to <1>, wherein the highly oriented superconducting film is a thick film having a thickness of 0.6 μm or more.
<3> The method for producing a highly oriented superconducting film according to <1> or <2>, wherein the step (2) is performed in an atmosphere containing water vapor having a dew point of 20 ° C. or higher.
<4> The organic solvent solution of the metal-containing compound contains each metal component composed of rare earth metal, barium, and copper as an essential component. The high value according to any one of <1> to <3> A method for producing an oriented superconducting thick film.
<5> An organic solvent solution of the metal-containing compound is mixed with a metal carboxylate having 1 to 8 carbon atoms and / or a metal acetylacetonato powder mixture of a metal species containing a rare earth element, barium, and copper, and pyridine and After adding at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to produce a metal complex and volatilizing an excess solvent, 1 having 1 to 8 carbon atoms The method for producing a highly oriented superconducting film according to any one of <1> to <4>, which is a homogeneous solution prepared by dissolving in a monovalent linear alcohol and / or water.
<6> The method for producing a highly oriented superconducting film according to <5>, wherein at least one of the metal carboxylate, metal acetylacetonate, and carboxylic acid contains halogen.
<7> A pre-baked film having a uniform element distribution obtained after the pre-baking step (2) in the method for manufacturing a superconducting film according to any one of <1> to <6>.
<8> A highly oriented main-fired film obtained after the main firing step (3) in the method for producing a superconducting film according to any one of <1> to <6>.

本発明の超電導膜の製造方法によれば、仮焼成膜の元素分布の均一性が著しく向上するので、膜厚が大きい場合でも、超電導特性が優れた配向性の高い超電導膜を、低コストで、製造効率よく、大量に生産できる。また、工程(2)における雰囲気に水蒸気を含ませることにより、高い臨界電流密度を有する超電導膜を得ることができる。   According to the method for producing a superconducting film of the present invention, the uniformity of the element distribution of the pre-fired film is remarkably improved. Therefore, even when the film thickness is large, a superconducting film with excellent superconducting properties and high orientation can be obtained at low cost. Can be produced in large quantities with high production efficiency. Moreover, a superconducting film having a high critical current density can be obtained by including water vapor in the atmosphere in the step (2).

本発明による超電導膜の製造プロセスを示す概略図Schematic showing the manufacturing process of the superconducting film according to the present invention 本発明の製膜プロセス(上段)と従来の熱のみによるプロセス(下段)による仮焼成膜の断面透過電子顕微鏡像(左)と銅元素の分布像(右)Cross-sectional transmission electron microscope image (left) and copper element distribution image (right) of the pre-fired film by the film forming process of the present invention (upper stage) and the conventional process using only heat (lower stage) 実施例における、ランプ照射、仮焼成及び本焼成の各工程と、焼成温度の関係を模式的に示す図The figure which shows typically the relationship of each process of lamp irradiation, temporary baking, and this baking, and a baking temperature in an Example. 本発明の製膜プロセス(実施例5)(左)と従来の熱のみによるプロセス(比較例9)(右)で作製した本焼成膜の断面透過電子顕微鏡像Cross-sectional transmission electron microscope image of the fired film produced by the film forming process of the present invention (Example 5) (left) and the conventional heat only process (Comparative Example 9) (right)

図1は、本発明による超電導膜の製造プロセスを示す概略図である。
図1に示すように、本発明は、支持体上に、超電導性複合金属酸化物に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程(1)、該支持体上に形成された塗布膜中の有機成分の熱分解仮焼成工程(2)、超電導物質への変換を行う本焼成工程(3)をへて超電導膜を製造する際に、工程(2)の前に、KrClエキシマランプ光を15mW/cm以上の照度で照射することを特徴とするものであり、これにより、工程(2)で得られる仮焼成膜の元素分布の均一性が著しく向上し、工程(3)を経て、大きい膜厚と配向性をもつ超電導膜材料が製造できるものである。また、工程(2)を、露点が20℃以上の水蒸気を含む雰囲気中で行うことにより、高い臨界電流密度が得られるものである。
FIG. 1 is a schematic view showing a manufacturing process of a superconducting film according to the present invention.
As shown in FIG. 1, in the present invention, a step of applying an organic solvent solution of a metal-containing compound blended so as to have a metal seed composition corresponding to a superconducting composite metal oxide on a support and drying ( 1) When manufacturing a superconducting film through the pyrolysis pre-baking step (2) of the organic component in the coating film formed on the support and the main baking step (3) for converting it into a superconducting substance. Before the step (2), KrCl excimer lamp light is irradiated at an illuminance of 15 mW / cm 2 or more, and thereby, the element distribution of the temporarily fired film obtained in the step (2) The uniformity is remarkably improved, and a superconducting film material having a large film thickness and orientation can be manufactured through the step (3). Moreover, a high critical current density is obtained by performing a process (2) in the atmosphere containing water vapor | steam whose dew point is 20 degreeC or more.

本発明の超電導膜の製造方法について、順に説明する。
[金属含有化合物の有機溶媒溶液の調製工程]
本発明の方法に用いられる、金属含有化合物の有機溶媒溶液には、希土類金属、バリウム(Ba)、及び銅(Cu)からなる各金属成分を必須成分として含有する。この溶液は、酸化物超電導膜形成のために用いられるものであり、又、加熱処理を行って、これらの金属成分を含有する無機化合物を合成するために用いることができる。
The manufacturing method of the superconducting film of this invention is demonstrated in order.
[Preparation process of organic solvent solution of metal-containing compound]
The organic solvent solution of the metal-containing compound used in the method of the present invention contains each metal component composed of rare earth metal, barium (Ba), and copper (Cu) as an essential component. This solution is used to form an oxide superconducting film, and can be used to synthesize an inorganic compound containing these metal components by performing a heat treatment.

前記必須成分である希土類金属元素には、イットリウム(Y)及びランタノイド元素である、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)を含有する。これらの希土類金属はこれらの中から選ばれる複数の金属を用いることもできる。   The essential rare earth metal elements include yttrium (Y) and lanthanoid elements, lanthanum (La), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium (Dy). , Holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). These rare earth metals can also use a plurality of metals selected from these.

超電導膜を製造することを目的とする場合には、上記の希土類金属、バリウム及び銅の必須金属成分の他に、上記以外の希土類金属として例えばセリウム(Ce)やプラセオジム(Pr)、テルビウム(Tb)等、または他の成分としてカルシウム、又はストロンチウム等を少量含ませることにより、得られる超電導膜の電気的特性を変化させることができる。
また、この他にも超電導膜を形成する際に用いることができる金属種として用いることができるものであれば、適宜用いることができる。
For the purpose of producing a superconducting film, in addition to the above-mentioned rare earth metal, barium and copper essential metal components, other rare earth metals such as cerium (Ce), praseodymium (Pr), terbium (Tb ) Or the like, or by containing a small amount of calcium, strontium, or the like as another component, the electrical characteristics of the resulting superconducting film can be changed.
In addition, any metal species that can be used as a metal species that can be used when forming a superconducting film can be used as appropriate.

希土類金属、バリウム、銅からなる超電導膜を形成しようとする場合には、希土類金属、バリウム及び銅の比率として、1:2:3の割合の希土類123系(以下たとえば希土類金属がイットリウムの場合、Y123という)超電導膜、1:2:4の割合の希土類124系(以下たとえば希土類金属がイットリウムの場合、Y124という)超電導膜などが存在する。したがって、原料溶液における前記元素種の混合割合は、モル比で、1:2:3〜1:2:4のものが好ましいが、たとえばバリウムが欠損した組成などでも好ましい結果を得ることができるため、この割合にしばられるものではない。
また、上記溶液に銀などの1価金属、カルシウムやストロンチウムなどの2価金属、超電導相を構成する必須希土類金属以外の希土類金属などの3価金属、ジルコニウム、ハフニウムなどの4価金属を添加することにより、添加元素又はその化合物が含有された超電導体を形成することが可能である。カルシウムやストロンチウム等の添加元素又はその化合物が含有された超電導体は、それらが含有されない超電導体とは異なる電気的特性を有するため、溶液中の金属の比率を制御することで、超電導体の電気的特性、例えば臨界温度や臨界電流密度などの諸特性を制御することが可能となる。
When a superconducting film made of rare earth metal, barium, and copper is to be formed, the ratio of rare earth metal, barium, and copper is a rare earth 123 system having a ratio of 1: 2: 3 (hereinafter, for example, when the rare earth metal is yttrium, A superconducting film having a ratio of 1: 2: 4 (hereinafter referred to as Y124 when the rare earth metal is yttrium, for example). Therefore, the mixing ratio of the element species in the raw material solution is preferably a molar ratio of 1: 2: 3 to 1: 2: 4. However, for example, a preferable result can be obtained even in a composition lacking barium. , This ratio is not something that can be tied.
Also, a monovalent metal such as silver, a divalent metal such as calcium or strontium, a trivalent metal such as a rare earth metal other than the essential rare earth metal constituting the superconducting phase, or a tetravalent metal such as zirconium or hafnium is added to the above solution. Thus, it is possible to form a superconductor containing an additive element or a compound thereof. Superconductors containing additive elements such as calcium and strontium or their compounds have different electrical characteristics from superconductors that do not contain them, so by controlling the ratio of metals in the solution, It is possible to control various characteristics such as critical temperature and critical current density.

本発明の製造方法に用いる前記溶液は、希土類元素、バリウム及び銅を含有する金属種の金属イオンに対して、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数1〜8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、炭素数が1〜8の直鎖アルコール及び/又は水に溶解されて、均一溶液とされている。   The said solution used for the manufacturing method of this invention is a pyridine and / or at least 1 type of tertiary amine, and at least 1 type of C1-C1 with respect to the metal ion of the metal species containing rare earth elements, barium, and copper. A metal complex in which a carboxylic acid group of 8 and an acetylacetonato group are coordinated as necessary is dissolved in a linear alcohol having 1 to 8 carbon atoms and / or water to form a uniform solution.

該金属錯体における配位子の1つである「三級アミン」としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等が用いられ、また、「炭素数1〜8のカルボン酸基」のカルボン酸としては、例えば、2−エチルヘキサン酸、カプリル酸、酪酸、プロピオン酸、酢酸、シュウ酸、クエン酸、乳酸、安息香酸、サリチル酸等が挙げられる。
また、前記の炭素数1〜8の1価の直鎖アルコールとしては、メタノール、エタノール、n−プロパノール、n−ブタノール、n−ペンタノール等が上げられ、これらの混合物を用いることもできる。
また、金属錯体を溶解するのに、水を用いることもでき、また、1種類以上の前記の炭素数1〜8の1価の直鎖アルコールと水の混合物を用いることもできる。
As the “tertiary amine” which is one of the ligands in the metal complex, for example, trimethylamine, triethylamine, tripropylamine, tributylamine and the like are used, and “a carboxylic acid group having 1 to 8 carbon atoms” is used. Examples of the carboxylic acid include 2-ethylhexanoic acid, caprylic acid, butyric acid, propionic acid, acetic acid, oxalic acid, citric acid, lactic acid, benzoic acid, and salicylic acid.
Moreover, as said C1-C8 monovalent | monohydric linear alcohol, methanol, ethanol, n-propanol, n-butanol, n-pentanol etc. are raised, These mixtures can also be used.
Further, water can be used to dissolve the metal complex, and a mixture of one or more kinds of the monovalent linear alcohol having 1 to 8 carbon atoms and water can also be used.

また、本発明の製造に用いるこの均一溶液は、好ましくは、前記の炭素数が1〜8の直鎖アルコールに溶解した後、さらに、多価アルコール類を添加して、均一溶液とされているものが用いられる。多価アルコール類を添加することにより、前述の仮焼成工程、及び本焼成工程におけるクラックの発生を、防止することができるためである。
前記多価アルコール類としては、エチレングリコール、ヘキシレングリコール、オクチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール等が挙げられる。
The homogeneous solution used in the production of the present invention is preferably made into a uniform solution by further adding polyhydric alcohols after dissolving in the linear alcohol having 1 to 8 carbon atoms. Things are used. This is because the addition of polyhydric alcohols can prevent the occurrence of cracks in the above-described preliminary firing step and main firing step.
Examples of the polyhydric alcohols include ethylene glycol, hexylene glycol, octylene glycol, glycerin, diethylene glycol, triethylene glycol, tetraethylene glycol, and propylene glycol.

本発明の超電導膜製造用溶液の調製は、具体的には、希土類元素、バリウム及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解し、好ましくは、さらに多価アルコール類を添加して、均一な溶液とすることにより調製される。
また、前記の金属カルボン酸塩、金属アセチルアセトナト、及びカルボン酸のうち少なくとも1種がハロゲンを含むものであってもよい。
Specifically, the preparation of the superconducting film manufacturing solution of the present invention is performed on a metal carboxylate having 1 to 8 carbon atoms and / or a metal acetylacetonate powder mixture of rare earth elements, barium and copper. , Pyridine and / or at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to produce a metal complex and volatilizing an excess solvent, It is prepared by dissolving in 8 monovalent linear alcohol and / or water, and preferably adding a polyhydric alcohol to obtain a uniform solution.
Moreover, at least 1 sort (s) among the said metal carboxylate, metal acetylacetonate, and carboxylic acid may contain a halogen.

〔原料溶液の塗布及び乾燥工程(=工程(1))〕
この工程は、前記の溶液を、基材上に塗布して、金属含有化合物の溶液塗布膜を形成する工程である。この場合、その溶液塗布法としては、従来公知の方法、例えば、浸漬法、スピンコート法、スプレー法、ハケ塗り法等の各種の方法を用いることができる。
基材としては、各種の材料及び形状のものを用いることができる。この場合、材料としては、ニッケル、銅、金、銀、ステンレス、ハステロイ等の金属や合金、アルミナ、ジルコニア、チタニア、チタン酸ストロンチウム、ランタンアルミネート、ネオジムガレート、イットリウムアルミネート等の金属酸化物、炭化ケイ素等のセラミックスが用いられ、またその形状としては、曲面及び平面を問わず採用され、例えば、板状、線状、コイル状、繊維状、編織布状、管状等任意の形状が採用される。支持体は、多孔質のものであってもよい。さらに複合金属酸化物と基材との反応を防止するため及び/または両者の格子ミスマッチを緩和するため、基材の表面に金属膜や、ジルコニア、セリア等の金属酸化物膜を中間層としてあらかじめ形成することができる。
このようにして基材上に形成された溶液塗布膜を、室温又は加温下で常圧又は減圧下で乾燥させる。この乾燥工程後に続く、KrCl紫外エキシマランプ光の照射工程又は仮焼成工程の初期において乾燥を完結することができるため、この乾燥工程においては塗布膜を完全に乾燥させなくとも良い。
[Coating and drying step of raw material solution (= step (1))]
In this step, the solution is applied onto a substrate to form a solution coating film of a metal-containing compound. In this case, as the solution coating method, conventionally known methods, for example, various methods such as a dipping method, a spin coating method, a spray method, and a brush coating method can be used.
As the substrate, various materials and shapes can be used. In this case, as materials, metals and alloys such as nickel, copper, gold, silver, stainless steel, hastelloy, alumina, zirconia, titania, strontium titanate, lanthanum aluminate, neodymium gallate, yttrium aluminate, etc., Ceramics such as silicon carbide are used, and any shape such as a curved surface or a flat surface can be used. For example, any shape such as a plate shape, a wire shape, a coil shape, a fiber shape, a woven fabric shape, and a tubular shape can be adopted. The The support may be porous. Further, in order to prevent the reaction between the composite metal oxide and the base material and / or to relax the lattice mismatch between the two, a metal film or a metal oxide film such as zirconia or ceria is previously formed on the surface of the base material as an intermediate layer. Can be formed.
The solution coating film formed on the substrate in this way is dried under normal pressure or reduced pressure at room temperature or under heating. Since the drying can be completed at the initial stage of the irradiation process of the KrCl ultraviolet excimer lamp light or the preliminary baking process subsequent to the drying process, the coating film does not need to be completely dried in this drying process.

〔KrCl紫外エキシマランプ光の照射工程〕
特許文献2には、紫外エキシマランプとして、Xeエキシマランプ及びKrClエキシマランプが挙げられている。
しかし、本発明では、後述する実施例及び比較例に示すとおり、KrCl紫外エキシマランプを用い、且つ、照度を15mW/cm以上とすることで、はじめて0.6〜数μm程度の膜厚であっても配向性のよい超電導膜が得られるものであり、Xeエキシマランプ照射では高い配向性は得られない。
KrCl紫外エキシマランプ光の照射は、室温、大気中で、照度が15mW/cm以上、好ましくは20〜50mW/cm、照射時間が5分以上の条件下で行われる。照度が2〜10mW/cmのとき、膜厚が0.4μm程度までは高い配向性が得られるが、1μmになると配向性は低下する。ここで照度を10〜15mW/cmに増加すると、膜厚が1μmだけでなく0.4μm以下でも配向性は低下する。しかしながら、本発明では、さらに照度を15mW/cm以上、好ましくは20mW/cm以上とすることにより、予想外に良い結果が得られることが判明した。尚、照度をさらに上げて30〜50mW/cmとした場合でも、20mW/cmの場合と同様に良好な結果が得られた。50mW/cmは市販のエキシマランプを用いて安定に得られる最大の照度である。
[KrCl ultraviolet excimer lamp light irradiation process]
Patent Document 2 includes a Xe excimer lamp and a KrCl excimer lamp as ultraviolet excimer lamps.
However, in the present invention, as shown in Examples and Comparative Examples described later, by using a KrCl ultraviolet excimer lamp and setting the illuminance to 15 mW / cm 2 or more, the film thickness is about 0.6 to several μm for the first time. Even if it exists, a superconducting film with good orientation can be obtained, and high orientation cannot be obtained by Xe excimer lamp irradiation.
Irradiation with KrCl ultraviolet excimer lamp light is performed at room temperature and in the atmosphere under the conditions that the illuminance is 15 mW / cm 2 or more, preferably 20 to 50 mW / cm 2 and the irradiation time is 5 minutes or more. When the illuminance is 2 to 10 mW / cm 2 , high orientation can be obtained until the film thickness is about 0.4 μm, but when the thickness is 1 μm, the orientation is lowered. Here, when the illuminance is increased to 10 to 15 mW / cm 2 , the orientation is lowered not only at 1 μm but also at 0.4 μm or less. However, in the present invention, it has been found that unexpectedly good results can be obtained by further setting the illuminance to 15 mW / cm 2 or more, preferably 20 mW / cm 2 or more. Incidentally, even when the 30~50mW / cm 2 is further increased the intensity, 20 mW / cm when two similarly good results were obtained. 50 mW / cm 2 is the maximum illuminance that can be stably obtained using a commercially available excimer lamp.

〔仮焼成工程(=工程(2))〕
この工程は、前記のようにして基材上に形成された金属含有化合物の膜にKrCl紫外エキシマランプ光を照射した後、加熱焼成し、その膜を、炭酸バリウム、希土類金属酸化物及び銅酸化物からなる膜に変換させる工程である。
最高焼成温度としては、400〜650℃、好ましくは450〜550℃の温度が採用され、この温度まで徐々に昇温してこの温度に20〜600分間、相当膜厚が0.5μm以上の場合好ましくは150〜300分間保持したのち降温する。
[Temporary firing step (= step (2))]
In this process, the film of the metal-containing compound formed on the substrate as described above is irradiated with KrCl ultraviolet excimer lamp light and then heated and fired, and the film is oxidized with barium carbonate, rare earth metal oxide and copper oxide. This is a step of converting into a film made of a product.
As the maximum firing temperature, a temperature of 400 to 650 ° C., preferably 450 to 550 ° C. is adopted. When the temperature is gradually raised to this temperature and the equivalent film thickness is 0.5 μm or more for 20 to 600 minutes. Preferably, the temperature is lowered after holding for 150 to 300 minutes.

また、仮焼成における酸素分圧は0.2atm以上とする。酸素分圧がこれ以下では酸素の供給が不足するため、仮焼成後に炭素に富んだ有機成分が膜中に残りやすい。この仮焼成膜中の炭素に富んだ有機成分は、本焼成を低酸素分圧下で行う際に膜を部分的に還元性にするため、Y123が不均一に生成して臨界電流密度も低くなる。   Moreover, the oxygen partial pressure in temporary baking shall be 0.2 atm or more. If the oxygen partial pressure is less than this, the supply of oxygen is insufficient, so that an organic component rich in carbon is likely to remain in the film after pre-baking. The carbon-rich organic component in the pre-fired film partially makes the film reducible when the main calcination is carried out under a low oxygen partial pressure, so that Y123 is generated non-uniformly and the critical current density is also lowered. .

さらに、仮焼成の雰囲気を、露点が20℃以上の水蒸気をふくむ雰囲気とすることにより、高い臨界電流密度が得られる。
水蒸気を含まない場合、及び水蒸気の露点が20℃以下の場合には、仮焼成後に炭素に富んだ有機成分が膜中に残りやすく、本焼成後のY123膜の臨界電流密度が低くなる。仮焼成工程において水蒸気は、式(1)で表す水性ガス反応による炭素成分のガス化と同様の機構により、膜中の炭素成分の除去を促進するものと考えられる。
C + HO → CO + H (1)
Furthermore, a high critical current density can be obtained by setting the pre-baking atmosphere to an atmosphere containing water vapor having a dew point of 20 ° C. or higher.
When water vapor is not contained, and when the dew point of water vapor is 20 ° C. or lower, an organic component rich in carbon tends to remain in the film after temporary baking, and the critical current density of the Y123 film after the main baking becomes low. In the calcination step, water vapor is considered to promote the removal of the carbon component in the film by the same mechanism as the gasification of the carbon component by the water gas reaction represented by the formula (1).
C + H 2 O → CO + H 2 (1)

〔本焼成工程(=工程(3))〕
この工程は、前記仮焼成工程で形成された膜を焼成して炭酸バリウムから炭酸ガスを除去しつつ、炭酸バリウムと希土類金属酸化物と銅酸化物を反応させる工程である。本発明においては、この焼成工程は、酸素分圧0.01〜100Pa、特に1〜20Paにおいて実施することが好ましい。
このような焼成条件の採用により、前記仮焼成工程で形成された膜中の炭酸バリウムの分解が促進されるとともに、複合金属酸化物膜が形成される。また、この焼成工程では、前記のように低酸素濃度又は低酸素分圧の条件を採用することから、炭酸バリウムの分解は低められた温度で円滑に実施することができるため、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この工程における一般的な焼成温度は650〜900℃である。本発明における前記のような焼成条件により、従来見られたような基材及び/又は中間層と複合金属酸化物との間の反応を実質的に防止することができる。
[Main firing step (= step (3))]
This step is a step of reacting barium carbonate, rare earth metal oxide, and copper oxide while baking the film formed in the preliminary baking step to remove carbon dioxide from the barium carbonate. In the present invention, this firing step is preferably carried out at an oxygen partial pressure of 0.01 to 100 Pa, particularly 1 to 20 Pa.
By adopting such firing conditions, decomposition of barium carbonate in the film formed in the preliminary firing step is promoted, and a composite metal oxide film is formed. Further, in this firing step, since the conditions of low oxygen concentration or low oxygen partial pressure are adopted as described above, the decomposition of barium carbonate can be carried out smoothly at a reduced temperature. Alternatively, the reaction between the intermediate layer and the composite metal oxide can be substantially avoided. The general firing temperature in this step is 650 to 900 ° C. According to the firing conditions as described above in the present invention, it is possible to substantially prevent the reaction between the base material and / or the intermediate layer and the composite metal oxide as conventionally observed.

〔酸化工程〕
この工程は、前記本焼成工程で形成された複合金属酸化物膜を、分子状酸素を用いて酸化処理し、酸素を吸収させて、超電導性を有する複合金属酸化物膜とする工程である。
前記本焼成工程では、雰囲気中の酸素分圧が0.01〜100Paとなるように保持したため、得られる複合金属酸化物膜の超電導特性は不満足のものであるが、この酸化工程により超電導特性にすぐれた複合金属酸化物膜に変換することができる。
この酸素を吸収させる酸化工程は、酸素分圧0.2〜1.2atmで行わせることが好ましい。
分子状酸素としては、純酸素又は空気が用いられる。酸化剤として空気を用いる場合、その中に含まれる炭酸ガスによって膜の超電導特性が悪影響を受けることから、空気中の炭酸ガス分圧は、脱炭酸により、1Pa以下、好ましくは0.5Pa以下に調整するのがよい。
この酸化工程は、中高温で行われ、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この酸化工程の温度は、一般には、300〜900℃である。本発明の方法を実施する場合、前記仮焼成工程、本焼成工程及び酸化工程は、同一装置内で連続的に実施することができる。
[Oxidation process]
This step is a step in which the composite metal oxide film formed in the main firing step is oxidized using molecular oxygen to absorb oxygen to form a composite metal oxide film having superconductivity.
In the main firing step, since the oxygen partial pressure in the atmosphere is maintained at 0.01 to 100 Pa, the superconducting properties of the obtained composite metal oxide film are unsatisfactory. It can be converted into an excellent composite metal oxide film.
The oxidation step for absorbing oxygen is preferably performed at an oxygen partial pressure of 0.2 to 1.2 atm.
As the molecular oxygen, pure oxygen or air is used. When air is used as the oxidant, the superconducting properties of the film are adversely affected by the carbon dioxide contained therein, so the carbon dioxide partial pressure in the air is reduced to 1 Pa or less, preferably 0.5 Pa or less by decarboxylation. It is good to adjust.
This oxidation step is performed at a medium to high temperature, and the reaction between the substrate and / or the intermediate layer and the composite metal oxide can be substantially avoided. The temperature of this oxidation process is generally 300 to 900 ° C. When implementing the method of this invention, the said temporary baking process, this baking process, and an oxidation process can be continuously implemented in the same apparatus.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
市販品(和光純薬工業株式会社製)のイットリウム、バリウム及び銅のアセチルアセトナト粉末を、金属成分のモル比で1:2:3となるように秤量し、これらを混合して粉体混合物を得た。この混合物にピリジンおよびプロピオン酸を、粉体混合物がすべて溶解するまでの量を添加した。これを加熱処理し、過剰な前記溶媒成分(ピリジンおよびプロピオン酸)を除去し、非晶質乾固物の酢酸基−プロピオン酸基−ピリジン配位金属錯体を得た。次に、これをメタノールに溶解させて、金属元素の割合がY:Ba:Cu=1:2:3の液体状の金属錯体(配位子として酢酸基、ピリジン、プロピオン酸基の3種類を含む)からなる塗布溶液を得た。溶液の濃度は、溶液1gあたり希土類金属種が0.1〜0.2ミリモル含まれる量とした。
この溶液を、あらかじめ酸化セリウムを表面に蒸着させた2cm角のチタン酸ストロンチウム(100)基板の上にスピンコート法で塗布した。この塗布膜に対して、室温、大気中でKrClエキシマランプを照射する(エム・ディ・エキシマ社製MEIR-S-1-200-222、照度:20mW/cm、照射時間:18分)。次に、このランプ照射した試料を、酸素気流中で500℃まで昇温して有機成分を除去する仮焼成を行った。
また、同一基板上に、上記スピンコート塗布工程、ランプ照射工程および仮焼成工程を最大3回(製造されるY123膜として最大膜厚1μm)繰り返す実験を行ったところ、膜厚は塗布回数に比例して増加することを確認した。また、工程を繰り返した後の塗布膜も良好な平滑性を有することを確認した。
すなわち、塗布溶液が下地仮焼成膜を溶解することがなく、スピンコート塗布工程、ランプ照射工程および仮焼成工程の繰り返しにより厚膜が形成できることを確認した。
この仮焼成膜は、淡褐色かつ透明で良好な平滑性を有していた。この仮焼成膜について、透過電子顕微鏡(TEM)−エネルギー分散型X線分光器(EDS)による断面の組成分析を行ったところ、非常に均一な元素分布を有することが示された。この結果を図2に示す。
Example 1
A commercially available product (manufactured by Wako Pure Chemical Industries, Ltd.) yttrium, barium and copper acetylacetonate powders are weighed so that the molar ratio of metal components is 1: 2: 3, and these are mixed to obtain a powder mixture. Got. To this mixture, pyridine and propionic acid were added in amounts until the powder mixture was completely dissolved. This was heat-treated to remove excess solvent components (pyridine and propionic acid) to obtain an amorphous dry solid of acetic acid group-propionic acid group-pyridine coordination metal complex. Next, this is dissolved in methanol, and a liquid metal complex in which the ratio of the metal element is Y: Ba: Cu = 1: 2: 3 (the three types of acetate, pyridine, and propionic acid groups as ligands). A coating solution comprising: The concentration of the solution was such that 0.1 to 0.2 mmol of rare earth metal species was contained per 1 g of the solution.
This solution was applied by spin coating on a 2 cm square strontium titanate (100) substrate on which cerium oxide was previously deposited. This coating film is irradiated with a KrCl excimer lamp at room temperature in the atmosphere (MEIR-S-1-200-222, manufactured by MDI Excimer, illuminance: 20 mW / cm 2 , irradiation time: 18 minutes). Next, the sample irradiated with this lamp was heated to 500 ° C. in an oxygen stream to perform preliminary firing to remove organic components.
In addition, when an experiment was repeated on the same substrate, the spin coating application process, the lamp irradiation process, and the pre-baking process were repeated up to 3 times (maximum film thickness of 1 μm as a manufactured Y123 film), the film thickness was proportional to the number of coatings. And confirmed that it increased. Moreover, it confirmed that the coating film after repeating a process also has favorable smoothness.
That is, it was confirmed that the coating solution did not dissolve the preliminary calcination film, and that a thick film could be formed by repeating the spin coating application process, the lamp irradiation process, and the calcination process.
This pre-fired film was light brown and transparent and had good smoothness. About this temporary baking film | membrane, when the composition analysis of the cross section by a transmission electron microscope (TEM) -energy dispersive X-ray spectrometer (EDS) was conducted, it was shown that it has very uniform element distribution. The result is shown in FIG.

これらの仮焼成膜について、本焼成工程を760℃にて2時間酸素分圧10Paの気流中で行った後、大気圧で酸素を吸収させて膜厚1μmのY123超電導膜を作製した。
図3は、本実施例における、ランプ照射、仮焼成及び本焼成の各工程と、焼成温度の関係を模式的に示す図である。
得られた本焼成後の膜試料(膜厚1μm)を、マックサイエンス社製X線回折装置MXP3を用いたX線回折法により分析したところ、膜が(001)配向性をもつY123構造の超電導体単相であることを確認した。次に同装置を用いたX線極点測定によりY123の面内配向性を調べたところ、単結晶基板上にエピタキシャル成長していることを確認した。また、断面TEM像によっても膜全体の高いエピタキシャル配向性を確認した。さらに、この膜の超電導特性を、テバ社製クライオスキャンを用いた誘導法により評価したところ、液体窒素温度での臨界電流密度(Jc)として平均0.5MA/cmが得られた。
About these temporary baking films | membranes, after performing this baking process in 760 degreeC for 2 hours in the airflow of oxygen partial pressure 10Pa, oxygen was absorbed at atmospheric pressure and the Y123 superconducting film with a film thickness of 1 micrometer was produced.
FIG. 3 is a diagram schematically showing the relationship between the steps of lamp irradiation, preliminary firing and main firing and the firing temperature in this example.
The obtained film sample after film firing (film thickness: 1 μm) was analyzed by an X-ray diffraction method using an X-ray diffractometer MXP3 manufactured by MacScience. The film was superconductive with a Y123 structure having (001) orientation. It was confirmed to be a single body phase. Next, when the in-plane orientation of Y123 was examined by X-ray pole measurement using the same apparatus, it was confirmed that it was epitaxially grown on the single crystal substrate. Moreover, the high epitaxial orientation of the whole film was also confirmed by a cross-sectional TEM image. Furthermore, when the superconducting properties of this film were evaluated by an induction method using a cryoscan manufactured by Teva, an average critical current density (Jc) at a liquid nitrogen temperature of 0.5 MA / cm 2 was obtained.

(実施例2)
仮焼成時の気流に露点24℃の水蒸気を含ませた他は、実施例1と同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、高い(001)配向性をもつY123構造の超電導体単相が得られ、誘導法による液体窒素温度での臨界電流密度(Jc)として平均1.2MA/cmが得られた。このように、仮焼成時の雰囲気に水蒸気を含ませることにより、高いJcが得られた。
(Example 2)
A fired film having a film thickness of 1 μm was produced in the same manner as in Example 1 except that water vapor of 24 ° C. was included in the air flow during the pre-baking, and the result was high by analysis using an X-ray diffraction method (001). ) A superconductor single phase having a Y123 structure with orientation was obtained, and an average critical current density (Jc) at a liquid nitrogen temperature by an induction method was 1.2 MA / cm 2 . Thus, high Jc was obtained by including water vapor | steam in the atmosphere at the time of temporary baking.

(実施例3)
イットリウム、バリウム及び銅のアセチルアセトナト粉末混合物の溶解の際に、ピリジンの代わりにトリプロピルアミンを用いた他は、実施例2と同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、高い(001)配向性をもつY123構造の超電導体単相が得られ、誘導法による液体窒素温度での臨界電流密度(Jc)として平均1.1MA/cmが得られた。
(Example 3)
When the acetylacetonate powder mixture of yttrium, barium and copper was dissolved, a fired film having a thickness of 1 μm was prepared in the same manner as in Example 2 except that tripropylamine was used instead of pyridine. Analysis using the line diffraction method yielded a superconductor single phase having a high (001) orientation and a Y123 structure, and an average critical current density (Jc) at liquid nitrogen temperature by an induction method was 1.1 MA / cm 2 on average. was gotten.

(実施例4)
イットリウム、バリウム及び銅のアセチルアセトナト粉末混合物の溶解の際に、ピリジンおよびプロピオン酸に加えてバリウムのモル数の0.1倍量のトリフルオロ酢酸を添加した他は、実施例2と同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、高い(001)配向性をもつY123構造の超電導体単相が得られ、誘導法による液体窒素温度での臨界電流密度(Jc)として平均1.0MA/cmが得られた。
Example 4
Except for adding pyridine and propionic acid in addition to pyridine and propionic acid, 0.1 mol of trifluoroacetic acid was added in the dissolution of the yttrium, barium and copper acetylacetonate powder mixture. As a result, a fired film having a film thickness of 1 μm was produced. As a result of analysis using an X-ray diffraction method, a superconductor single phase having a high (001) orientation was obtained. An average of 1.0 MA / cm 2 was obtained as the critical current density (Jc).

(比較例1、2)
ランプ照度を4および8mW/cmにした他は実施例2と同様にして、それぞれ膜厚0.4および1μmの本焼成膜を作製したところ、いずれの比較例の場合も、膜厚0.4μmの本焼成膜では、X線回折法を用いた分析により、高い(001)配向性をもつY123構造の超電導体単相が得られたが、膜厚1μmの本焼成膜では、(001)配向性は低く、誘導法による液体窒素温度での平均Jcは0.1MA/cmであった。
(Comparative Examples 1 and 2)
Except that the lamp illuminance was set to 4 and 8 mW / cm 2 , a fired film having a film thickness of 0.4 and 1 μm was produced in the same manner as in Example 2, respectively. In the 4 μm main fired film, a Y123-structure superconductor single phase having a high (001) orientation was obtained by analysis using the X-ray diffraction method, but in the 1 μm thick main fired film, (001) The orientation was low, and the average Jc at the liquid nitrogen temperature by the induction method was 0.1 MA / cm 2 .

(比較例3)
ランプ照度を12mW/cmにした他は実施例2と同様にしてスピンコート塗布工程、ランプ照射工程および仮焼成工程の繰り返しにより仮焼成膜を作製したところ、白く濁った仮焼成膜が得られた。また、これらの仮焼成膜について、実施例1と同様にして本焼成を行って、膜厚0.4および1μmの本焼成膜を作製したところ、いずれの膜も、X線回折法を用いた分析により、Y123構造の超電導体単相が得られなかった。
前記比較例1、2および本比較例3の結果から、KrClエキシマランプ光照射において、ランプ照度が15mW/cm以下である場合、膜厚1μmの本焼成膜では、(001)配向性は低く平均Jcも低いことがわかる。
(Comparative Example 3)
A pre-baked film was produced by repeating the spin coat coating process, the lamp irradiation process, and the pre-baking process in the same manner as in Example 2 except that the lamp illuminance was 12 mW / cm 2. It was. Further, these preliminary fired films were fired in the same manner as in Example 1 to produce 0.4 and 1 μm thick fired films. Both films used the X-ray diffraction method. By analysis, a superconductor single phase having a Y123 structure was not obtained.
From the results of Comparative Examples 1 and 2 and Comparative Example 3, when the lamp illuminance is 15 mW / cm 2 or less in KrCl excimer lamp light irradiation, the (001) orientation is low in the fired film having a thickness of 1 μm. It can be seen that the average Jc is also low.

(比較例4)
光源にXeエキシマランプ(エム・ディ・エキシマ社製MEIR-S-1-330、照度:20mW/cm、照射時間:18分)を用いた他は実施例2と同様にして膜厚0.4および1μmの本焼成膜を作製したところ、いずれの膜も、X線回折法を用いた分析により、Y123構造の超電導体単相が得られなかった。
(Comparative Example 4)
As in Example 2, the film thickness was reduced to 0. 0, except that a Xe excimer lamp (MEIR-S-1-330, manufactured by MDI Excimer, illuminance: 20 mW / cm 2 , irradiation time: 18 minutes) was used as the light source. When the fired films of 4 and 1 μm were produced, no superconductor single phase having a Y123 structure was obtained in any film by analysis using an X-ray diffraction method.

(比較例5〜7)
ランプ照度を4、8、12mW/cmにした他は比較例4と同様にして膜厚0.4および1μmの本焼成膜を作製したところ、いずれの比較例の場合も、膜厚0.4μmの本焼成膜では、X線回折法を用いた分析により、高い(001)配向性をもつY123構造の超電導体単相が得られたが、膜厚1μmの本焼成膜では、(001)配向性は低かった。
前記比較例4および本比較例5〜7の結果から、Xeエキシマランプ光照射では、膜厚1μmの本焼成膜について高い配向性は得られないことがわかる。
(Comparative Examples 5-7)
A fired film having a film thickness of 0.4 and 1 μm was prepared in the same manner as in Comparative Example 4 except that the lamp illuminance was changed to 4, 8, and 12 mW / cm 2 . In the 4 μm main fired film, a Y123-structure superconductor single phase having a high (001) orientation was obtained by analysis using the X-ray diffraction method, but in the 1 μm thick main fired film, (001) The orientation was low.
From the results of Comparative Example 4 and Comparative Examples 5 to 7, it is understood that high orientation cannot be obtained for the fired film having a thickness of 1 μm by Xe excimer lamp light irradiation.

(比較例8)
実施例2においてランプ照射を含まない他は同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、Y123構造の超電導体を含んでいたが、(001)配向性は低かった。
(Comparative Example 8)
A fired film having a film thickness of 1 μm was prepared in the same manner as in Example 2 except that lamp irradiation was not included. As a result of analysis using an X-ray diffraction method, a superconductor having a Y123 structure was included, but (001) The orientation was low.

(実施例5)
アセチルアセトナトを酢酸塩にした他は、実施例3と同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、高い(001)配向性をもつY123構造の超電導体単相が得られ、誘導法による液体窒素温度での臨界電流密度(Jc)として平均1.1MA/cmが得られた。
(Example 5)
A fired film having a film thickness of 1 μm was prepared in the same manner as in Example 3 except that acetylacetonate was changed to acetate. As a result of analysis using an X-ray diffraction method, a Y123 structure having high (001) orientation was obtained. The superconductor single phase was obtained, and an average of 1.1 MA / cm 2 was obtained as the critical current density (Jc) at the liquid nitrogen temperature by the induction method.

(比較例9)
実施例5においてランプ照射を行わない他は同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、Y123構造の超電導体を含んでいたが、(001)配向性は低かった。
図4に、実施例5(ランプ照射あり)と比較例9(ランプ照射なし)で作製した本焼成膜の断面TEM像を示す。
実施例5では、基板面から膜表面までエピタキシャル成長し、基板との界面付近に高密度の結晶の乱れが見られるのに対し、比較例9では、基板から0.1〜0.2μm厚まではエピタキシャル成長しているが、その上の膜は配向性が大きく乱れていることが分かる。
(Comparative Example 9)
A fired film having a thickness of 1 μm was produced in the same manner as in Example 5 except that lamp irradiation was not performed. As a result of analysis using an X-ray diffraction method, a superconductor having a Y123 structure was included. The orientation was low.
FIG. 4 shows cross-sectional TEM images of the fired films produced in Example 5 (with lamp irradiation) and Comparative Example 9 (without lamp irradiation).
In Example 5, epitaxial growth from the substrate surface to the film surface was observed, and high-density crystal disorder was observed in the vicinity of the interface with the substrate, whereas in Comparative Example 9, from the substrate to a thickness of 0.1 to 0.2 μm Although it is epitaxially grown, it can be seen that the orientation on the film thereon is greatly disturbed.

(実施例6)
イットリウム塩をガドリニウム塩にした他は、実施例5と同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、高い(001)配向性をもつGd123構造の超電導体単相が得られ、誘導法による液体窒素温度での平均Jcは1.0MA/cmであった。
(Example 6)
A fired film having a film thickness of 1 μm was produced in the same manner as in Example 5 except that the yttrium salt was changed to gadolinium salt. As a result of analysis using an X-ray diffraction method, a Gd123 structure having a high (001) orientation was obtained. A superconductor single phase was obtained, and the average Jc at the liquid nitrogen temperature by the induction method was 1.0 MA / cm 2 .

(比較例10)
実施例6においてランプ照射を含まない他は同様にして膜厚1μmの本焼成膜を作製したところ、X線回折法を用いた分析により、Gd123構造の超電導体を含んでいたが、(001)配向性は低かった。
(Comparative Example 10)
A fired film having a film thickness of 1 μm was prepared in the same manner as in Example 6 except that lamp irradiation was not included. As a result of analysis using an X-ray diffraction method, a superconductor having a Gd123 structure was included. The orientation was low.

Claims (8)

支持体上に、超電導性複合金属酸化物に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程(1)、該支持体上に形成された塗布膜中の有機成分を熱分解させる仮焼成工程(2)、及び超電導物質への変換を行う本焼成工程(3)を経てエピタキシャル成長させた超電導膜を製造するに際し、工程(2)の前に、KrCl紫外エキシマランプ光を15mW/cm以上の照度で照射することを特徴とする高配向性超電導膜の製造方法。 A step (1) of applying an organic solvent solution of a metal-containing compound blended so as to have a metal seed composition corresponding to the superconducting composite metal oxide on the support, followed by drying (1), formed on the support When manufacturing the superconducting film epitaxially grown through the preliminary firing step (2) for thermally decomposing the organic component in the coating film and the main firing step (3) for conversion to a superconducting substance, before the step (2) Irradiating KrCl ultraviolet excimer lamp light with an illuminance of 15 mW / cm 2 or more. 前記高配向性超電導膜が、膜厚0.6μm以上の厚膜であることを特徴とする請求項1に記載の高配向性超電導膜の製造方法。   The method for producing a highly oriented superconducting film according to claim 1, wherein the highly oriented superconducting film is a thick film having a thickness of 0.6 μm or more. 前記工程(2)を、露点が20℃以上の水蒸気を含む雰囲気中で行うことを特徴とする請求項1又は2に記載の高配向性超電導膜の製造方法。   The method for producing a highly oriented superconducting film according to claim 1 or 2, wherein the step (2) is performed in an atmosphere containing water vapor having a dew point of 20 ° C or higher. 前記金属含有化合物の有機溶媒溶液が、希土類金属、バリウム、及び銅からなる各金属成分を必須成分として含有することを特徴とする請求項1〜3のいずれか1項に記載の高配向性超電導厚膜の製造方法。   The highly oriented superconductivity according to any one of claims 1 to 3, wherein the organic solvent solution of the metal-containing compound contains, as essential components, metal components composed of rare earth metals, barium, and copper. Thick film manufacturing method. 前記金属含有化合物の有機溶媒溶液が、希土類元素、バリウム、及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解して調製された均一な溶液であることを特徴とする請求項1〜4のいずれか1項に記載の高配向性超電導膜の製造方法。   The organic solvent solution of the metal-containing compound is mixed with 1 to 8 carbon carboxylate and / or metal acetylacetonate powder of a metal species containing rare earth elements, barium and copper, pyridine and / or at least One tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms are added to produce a metal complex, and an excess solvent is volatilized. The method for producing a highly oriented superconducting film according to any one of claims 1 to 4, which is a homogeneous solution prepared by dissolving in a chain alcohol and / or water. 前記の金属カルボン酸塩、金属アセチルアセトナト、及びカルボン酸のうち少なくとも1種がハロゲンを含むことを特徴とする請求項5に記載の高配向性超電導膜の製造方法。   6. The method for producing a highly oriented superconducting film according to claim 5, wherein at least one of the metal carboxylate, metal acetylacetonate, and carboxylic acid contains halogen. 請求項1〜6のいずれか1項に記載の超電導膜の製造方法における仮焼成工程(2)後に得られる、元素分布の均一な仮焼成膜。   A pre-baked film having a uniform element distribution obtained after the pre-baking step (2) in the method of manufacturing a superconducting film according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の超電導膜の製造方法における本焼成工程(3)後に得られる、高配向性本焼成膜。
A highly oriented main-fired film obtained after the main-baking step (3) in the method for producing a superconducting film according to any one of claims 1 to 6.
JP2011037342A 2010-02-24 2011-02-23 Method for producing superconducting film, and calcination film and firing film obtained by the method Pending JP2011195435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037342A JP2011195435A (en) 2010-02-24 2011-02-23 Method for producing superconducting film, and calcination film and firing film obtained by the method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010038072 2010-02-24
JP2010038072 2010-02-24
JP2011037342A JP2011195435A (en) 2010-02-24 2011-02-23 Method for producing superconducting film, and calcination film and firing film obtained by the method

Publications (2)

Publication Number Publication Date
JP2011195435A true JP2011195435A (en) 2011-10-06
JP2011195435A5 JP2011195435A5 (en) 2013-10-17

Family

ID=44874103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037342A Pending JP2011195435A (en) 2010-02-24 2011-02-23 Method for producing superconducting film, and calcination film and firing film obtained by the method

Country Status (1)

Country Link
JP (1) JP2011195435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207946A1 (en) * 2013-06-28 2014-12-31 National Institute Of Advanced Industrial Science And Technology Surface layer superconductor and fabrication method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284525A (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
JP2003300726A (en) * 2002-04-08 2003-10-21 Internatl Superconductivity Technology Center Tape-like oxide superconductor and manufacturing method therefor
JP2007070216A (en) * 2005-08-10 2007-03-22 National Institute Of Advanced Industrial & Technology Method for producing superconducting material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284525A (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for forming superconductive thin film
JP2003300726A (en) * 2002-04-08 2003-10-21 Internatl Superconductivity Technology Center Tape-like oxide superconductor and manufacturing method therefor
JP2007070216A (en) * 2005-08-10 2007-03-22 National Institute Of Advanced Industrial & Technology Method for producing superconducting material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CSNC200759050400; 相馬貢他: 'エキシマレーザアシストMOD法によるYBCOの高速・低温製膜' 応用物理学会学術講演会講演予稿集 Vol.67, No.1, 20060829, p.252, (社)応用物理学会 *
CSNC201008030455; 相馬貢他: '背面照射エキシマレーザアシストMOD(ELAMOD)法によるYBCO薄膜の高特性化' 応用物理学会学術講演会講演予稿集 Vol.68, No.1, 20070904, p.279 *
JPN6014028274; 相馬貢他: '背面照射エキシマレーザアシストMOD(ELAMOD)法によるYBCO薄膜の高特性化' 応用物理学会学術講演会講演予稿集 Vol.68, No.1, 20070904, p.279 *
JPN6014028277; 相馬貢他: 'エキシマレーザアシストMOD法によるYBCOの高速・低温製膜' 応用物理学会学術講演会講演予稿集 Vol.67, No.1, 20060829, p.252, (社)応用物理学会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207946A1 (en) * 2013-06-28 2014-12-31 National Institute Of Advanced Industrial Science And Technology Surface layer superconductor and fabrication method of the same
JP2016531061A (en) * 2013-06-28 2016-10-06 国立研究開発法人産業技術総合研究所 Method for producing surface superconductor and surface superconductor

Similar Documents

Publication Publication Date Title
JP5445982B2 (en) Rare earth superconducting film forming solution and method for producing the same
JP3556586B2 (en) Method for producing oxide superconductor, raw material for oxide superconductor, and method for producing raw material for oxide superconductor
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
JP4738322B2 (en) Oxide superconductor and manufacturing method thereof
JP2006228754A (en) Forming method of superconductor and reactor
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP3851948B2 (en) Superconductor manufacturing method
JP2014047100A (en) Method for manufacturing oxide superconductor
JP5273561B2 (en) Manufacturing method of superconducting film
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP5729592B2 (en) Superconducting film manufacturing method, pre-fired film obtained by the method, and superconducting film
JP2011195435A (en) Method for producing superconducting film, and calcination film and firing film obtained by the method
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
JP2006044963A (en) Oxide superconductor and method for manufacturing the same
US20130053249A1 (en) Method for obtaining superconducting tapes from metal-organic solutions having low fluorine content
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
KR100998310B1 (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof
JP3612556B2 (en) Superconductor comprising superconducting thin film formed on the surface of an alumina single crystal substrate, and method for forming a superconducting thin film on the surface of an alumina single crystal substrate
JP2010135134A (en) Manufacturing method for re123 superconductive thin-film wire rod, and re123 superconductive thin-film wire rod
JP2013100218A (en) Manufacturing method of superconducting film, and superconducting film and temporary calcination film obtained by the method
JP4861290B2 (en) Superconductor and manufacturing method thereof
JP2011159453A (en) Method of manufacturing oxide superconducting thin film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106