JP3851948B2 - Superconductor manufacturing method - Google Patents

Superconductor manufacturing method Download PDF

Info

Publication number
JP3851948B2
JP3851948B2 JP2002136185A JP2002136185A JP3851948B2 JP 3851948 B2 JP3851948 B2 JP 3851948B2 JP 2002136185 A JP2002136185 A JP 2002136185A JP 2002136185 A JP2002136185 A JP 2002136185A JP 3851948 B2 JP3851948 B2 JP 3851948B2
Authority
JP
Japan
Prior art keywords
film
heat treatment
atm
superconductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002136185A
Other languages
Japanese (ja)
Other versions
JP2003327496A (en
Inventor
高明 真部
巌 山口
貢 相馬
俊弥 熊谷
知宏 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002136185A priority Critical patent/JP3851948B2/en
Publication of JP2003327496A publication Critical patent/JP2003327496A/en
Application granted granted Critical
Publication of JP3851948B2 publication Critical patent/JP3851948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、基材上に、YbBa2Cu37- (以下Yb123と言う)で表される、バリウム(Ba)、イッテルビウム(Yb)および銅(Cu)からなる希土類123構造型酸化物超電導体膜を設けた超電導体の製造方法に関するものである。
【0002】
【従来の技術】
超電導膜を形成するために種々の方法が開発されている。この方法の1つに、超電導膜を形成する原子種を含む有機化合物を含有する溶液を基材上に塗布し、熱処理を行うことで塗膜を熱分解させて超電導膜を形成する塗布熱分解法がある。この方法では、原子種を含む有機化合物を、溶媒である溶液中に溶解させて均一混合溶液を調製すること、この溶液を支持体上に均一に塗布すること、高温加熱処理を行い有機物物質などの成分を熱分解処理して有機成分のみを除去して、固相反応或いは液相反応を経由して超電導膜を均一に形成することが要求される。
【0003】
本発明者らは、希土類123構造型酸化物超電導相の生成過程を空気中もしくは酸素中で800〜970℃の温度で行うことを特徴とする塗布熱分解方法(以下、1段階熱処理法と言う)を提案した(特許第1778693号。特許第1778694号)。この方法によれば、約90Kのゼロ抵抗を有する希土類123構造型酸化物超電導膜が得られる。この塗布熱分解方法は、他の方法、例えば真空蒸着法などで必要とされる真空装置を必要としないため、低コストの製膜方法であるという点に特徴があり、また長尺・大面積の基材に対しても製膜が容易であるという特徴を有している。また、塗布熱分解方法により作製された超電導膜の特性は、他の製法と比較して良好なものであるとして高く評価されているものである。
【0004】
引き続いて、酸素分圧を2段階で制御する2段階熱処理法が開発された(特許第1991979号。特許第2091583号)。この方法では、塗布熱分解法で形成した前駆体膜から希土類123構造型超電導相を結晶化させる最終熱処理工程において、熱処理初期の酸素分圧を低く設定(酸素分圧:1×10-4〜1×10-3atm)し、熱処理途中で雰囲気を高酸素分圧(例えば純酸素)に切り替える2段階で熱処理を行うことで、熱処理温度を750〜800℃に低温化できる。これにより、チタン酸ストロンチウム、ランタンアルミネート、セリア中間層を介したサファイア基材等の各種単結晶基材の上に面内配向(エピタキシャル配向)した膜が形成可能となり、液体窒素温度で百万A/cm2を越える高い臨界電流密度が達成できる。
【0005】
各種基材材料の中で、セリア中間層を介したサファイア基材は、価格やその誘電特性といった観点から応用上極めて重要である。上記二段階熱処理法を用いることでも、サファイア基材上にバリウム(Ba)、イットリウム(Y)および銅(Cu)からなるエピタキシャル希土類123構造型酸化物超電導体(Y123と言う)膜を形成することは可能である(2001年春季応用物理学関係連合講演会30p−ZK9)が、Y123とCeO2は750℃以上での熱処理によって反応生成物BaCeO3の生成を伴うため、この生成反応を防ぎつつエピタキシャルY123膜を生成するためには、極めて狭い温度範囲(740−750℃)に精密に制御しつつ熱処理温度を実行する必要があった。従って、超電導膜の製膜温度をさらに低温化させることが、歩留まりの向上、量産化を図る上で重要な課題となっていた。
【0006】
また、Y123とサファイアとは熱膨張率の差が大きいため、一定以上の膜厚のY123をサファイア上に形成すると、その熱処理温度から室温まで冷却する間にクラックが入るという問題点がある。クラックが入らない最大の膜厚は臨界膜厚と呼ばれており、臨界膜厚は熱処理温度に依存することが知られている(Appl.Phys.Lett.58,(1991)1682)。例えば、熱処理温度を750℃から700℃まで50℃低下させることができれば、臨界膜厚は350nmから500nmまで増大すると計算予測されることから、サファイア基材上への超電導膜の製膜では、熱処理温度を従来の温度より低温化させることへの強い要望があった。
【0007】
さらに、各種基材材料の中で、セリア中間層あるいはYSZ中間層を被覆した金属テープ基材は、超電導体の電力ケーブル、線材応用を目指すうえで極めて重要である。この場合も、CeO2とY123との反応生成物BaCeO3、あるいはYSZとY123との反応生成物BaZrO3、の生成反応を防ぎつつエピタキシャルY123膜を生成するためには、熱処理温度を低温化させることが、歩留まりの向上、量産化を図る上で重要な課題となっていた。また、金属テープ基材は高温熱処理にて酸化劣化しやすいことから、この面からも熱処理温度を低温化させることが重要な課題となっていた。
【0008】
【発明が解決しようとする課題】
本発明は、従来の塗布熱分解法における問題点を克服し、エピタキシャル配向した希土類123型超電導体膜を低められた温度での熱処理が可能な超電導体の製造方法を提供することをその課題とする。
【0009】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、以下の要件を採用すると前記課題を解決することができることを見出した。
希土類123型超電導体膜の希土類元素として、その全部もしくは一部をYbとすること。
最終熱処理工程において、第1段階として温度範囲675〜800℃かつ高酸素分圧雰囲気(酸素分圧として0.25atm〜1atm)にて熱処理を行い、第2段階として675〜850℃かつ低酸素分圧(酸素分圧として1×10-5〜1×10-3atm)にて熱処理を行い、第3段階としての初期に酸素、あるいは高酸素圧の雰囲気を用い、次に雰囲気を低酸素圧に切り替え、温度範囲200〜500℃かつ高酸素分圧(酸素分圧として0.2atm〜1atm)にて熱処理を行うという3段階熱処理を用いること。
【0010】
上記2点の要件を満足することにより、YbBa2Cu48(以下Yb124と言う)を含む酸化物混合体を反応中間物とした化学反応経路を経て、従来の1段階塗布熱分解法又は2段階塗布熱分解法と比べてより低温、例えば700℃前後の熱処理温度にてエピタキシャル配向したYb123超電導体膜が形成できる。
【0011】
即ち、本発明により、以下の方法が提供される。
第1の発明は、基材上にYbBa2Cu37- で表される希土類123構造型酸化物超電導体膜を設けた超電導体の製造方法において、炭酸バリウムまたはフッ化バリウムとイッテルビウム酸化物と銅酸化物の混合物からなる前駆体膜を基材上に形成し、次に該前駆体膜を、酸素分圧0.25atm〜1atmの高酸素分圧雰囲気下で温度675〜800℃の範囲にて熱処理を行いYbBa2Cu48を形成させる1段階、酸素分圧1×10-5〜1×10-3atmの低酸素分圧下で温度675〜850℃の範囲にて熱処理を行い正方晶YbBa2Cu36を形成させる第2段階、及び酸素分圧0.2atm〜1atmの高酸素分圧下で温度200〜500℃の範囲にて熱処理を行い斜方晶YbBa2Cu37- を形成させる第3段階の熱処理を順次行うことにより、エピタキシャル配向したYbBa2Cu37- 膜を形成させることを特徴とする超電導体の製造方法である。
【0012】
第2の発明は、前記前駆体膜を溶液塗布熱分解法により形成する第1の発明の超電導体の製造方法である。
【0013】
第3の発明は、前記前駆体膜を真空蒸着法により形成する第1の発明の超電導体の製造方法である。
【0014】
第4の発明は、前記前駆体膜のYbの一部がY、La、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Erの中から選ばれた少なくとも1種の他の希土類元素で置換されており、前記エピタキシャル配向したYbBa2Cu37- 膜のYbの1部が該他の希土類元素で置換されている第1〜第3のいずれかの発明の超電導体の製造方法である。
【0015】
削除
【0016】
【発明の実施の形態】
本発明の方法により製造される超電導体は、基材上に下記組成の酸化物超電導体膜を設けた構造を持つ:
YbBa2Cu37-
又は(RE1- Yb)Ba2Cu37-
(式中、REは、Y、La、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Erから選ばれる希土類原子を表し、xは1>x>0の数であり、yは0.5>y>0の数である)。以下に本発明の製造方法を希土類元素がYb単独である場合について説明するが、以下の説明はYbとREとの組み合わせを用いる場合にも同様に適用されるものである。
【0017】
本発明の方法においては、先ず、基材上に炭酸バリウムまたはフッ化バリウムとイッテルビウム酸化物と銅酸化物の混合物からなる前駆体膜を形成する。
基材としては、Yb123のエピタキシャル成長が可能な各種セラミックスの単結晶が使用できる。基材の具体例としては、チタン酸ストロンチウム、ランタンアルミネート、LSAT(LaAlO3−SrTaO3の固溶体)、NdGaO3などのペロブスカイト類縁化合物、MgO、MgAl24などの岩塩類縁型化合物、Al23などのコランダム型化合物、YSZ(イットリア安定化ジルコニア)、CeO2などの蛍石型化合物等、が挙げられる。また、これら各種セラミックスの配向膜が被覆されたセラミックス基材、例えばCeO2コートAl23、あるいはこれら各種セラミックスの配向膜が被覆された金属、例えばYSZコート銀、YSZコートニッケル、YSZコートハステロイ等が挙げられる。
【0018】
本発明の1態様においては、前駆体膜は溶液塗布熱分解法により基材上に形成される。溶液塗布熱分解法においては、最終的な生成物である酸化物超電導体膜を構成する金属元素の組成に化学量論的にほぼ対応する金属元素組成を持つ金属含有化合物混合溶液を作り、これを基材のうえに塗布、乾燥、熱分解して前駆体薄膜をする。具体的には、超電導体の成分となる金属であるバリウム、イッテルビウム(又はイッテルビウムと他の希土類元素の組み合わせ)、及び銅の金属含有化合物を溶媒に溶解させた塗布溶液を調製する。
【0019】
溶媒に溶解させる金属含有化合物としては、金属のアルコキシド、有機酸塩、無機酸塩、キレート化合物のほか、ハロゲン化物、水酸化物及び酸化物などの各種のものが挙げられる。
【0020】
金属含有化合物の好ましい具体例としては、ナフテン酸、2−エチルヘキサン酸、カプリル酸、ステアリン酸、ラウリン酸、酪酸、プロピオン酸、蓚酸、クエン酸、乳酸、フエノール、カテコール、安息香酸、サリチル酸、EDTA、トリフルオロ酢酸、硝酸、炭酸、塩酸などの有機酸又は無機酸の金属塩、エタノール、プロパノール、ブタノール、エチレングリコール、グリセリン、2−ペンテン−4−オン−2−オールなどのアルコール金属アルコキシド、金属アセチルアセトナトなどのキレート化合物などが挙げられる。
【0021】
金属含有化合物溶液の調製は、あらかじめ所定の成分組成に配合した金属含有化合物の混合物を溶媒に溶解して実施しえるほか、各金属化合物の溶液をあらかじめ調製し、その後これらの溶液を混合することによっても行える。溶液中の金属濃度は、特に制約されず、その上限は金属含有化合物換算で、通常3〜40重量%、好ましくは5〜30重量%である。さらに、この溶液に粘度調節剤として、高分子物質を適量必要に応じ添加することもできる。
【0022】
本発明で塗布溶液の調製に用いる溶媒は、例えば、蟻酸、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、カプリル酸、ラウリン酸、ステアリン酸、ナフテン酸、リノール酸、オレイン酸、蓚酸、クエン酸、乳酸、フエノール、p−トルイル酸などの有機酸、ハロゲン化有機酸の他、アセチルアセトン等のケトン類、N−メチルアセトアミド、ホルムアミドホルムド、ジメチルホルムアミドなどのアミド類、ジメチルスルホキシドなどの硫黄含有溶媒、ピリジン、メチルピリジン、ビニルピリジンなどのピリジン誘導体を挙げることができる。これらの溶媒は1種類又は必要に応じて2種類またはそれ以上を組み合わせて用いることができる。
【0023】
本発明において使用する好ましい塗布溶液を、金属含有化合物との関連で例示すると以下の通りである。
(1)金属アセチルアセトナト又はその誘導体含有溶液
この溶液の場合には、金属アセチルアセトナト、又は、アセチルアセトン誘導体の金属塩が安定的に溶解するように、有機酸、ピリジン、ピリジン誘導体又はこれらの混合物が用いられる。有機酸としては、蟻酸、酢酸、プロピオン酸、酪酸、カプリル酸、ラウリン酸、ステアリン酸、ナフテン酸、リノール酸、オレイン酸、蓚酸、クエン酸、乳酸、フエノール、p−トルイル酸などが挙げられ、ピリジン誘導体としては、メチルピリジン、ビニルピリジンなどを挙げることができる。これらの溶媒は、必要に応じて、他の溶媒、例えば、メタノール、エタノール、プロパノール、ブタノール、アセトンなどのアルコールやケトンと併用することができる。
【0024】
(2)金属アルコキシド含有溶液
この溶液の場合には、各金属アルコキシドが安定的に溶解させることができるように、有機酸、ピリジン、ピリジン誘導体又はこれらの混合物を用いることが好ましい。上記の溶媒は、必要に応じ、他の溶媒、例えば、メタノール、エタノール、プロパノール、ブタノール、アセトンなどのアルコールやケトンとの混合溶媒として用いることができる。金属アルコキシドは、又、脂肪族系及び芳香族系の炭化水素やアルコールなどの溶液とすることができる。
【0025】
(3)金属硝酸塩含有溶液
この溶液の場合、金属種によっては、水溶液として用することができる。Ba硝酸塩などの水に溶解しにくいものも安定的に溶解させることができるという点から、アセチルアセトン、ジメチルスルホキシド、ホルムアミド、メチルアセトアミド、プロピオン酸、ピリジンまたはこれらの誘導体を用いることが好ましい。上記の溶媒は、必要に応じ、メタノール、エタノールやアセトンなどとの混合溶媒とすることができる。
【0026】
(4)金属有機酸塩
この溶液の場合は、溶媒としては、有機酸やピリジン、ピリジン誘導体又はこれらの溶媒とアルコール、ケトン類、炭化水素類との混合物が用いられる。金属有機酸塩は、又、脂肪族系又は芳香族系の炭化水素やアルコ−ルの溶液とすることができる。
【0027】
金属含有化合物が溶解された塗布溶液を基材の上に塗布して金属含有化合物の溶液薄膜を形成する。塗布は、浸漬法、スプレー法、はけ塗り法、スピンコート法などの各種の公知方法が採用される。
【0028】
前記のようにして形成した薄膜を乾燥させる。乾燥は、室温、又は加温した状態で、常圧、減圧下または真空条件下で行うことができる。塗布と乾燥を繰り返して行うことにより、膜厚を増大させることができる。繰り返し操作は適宜数回行うが、通常2回乃至10回程度行う。この乾燥工程は、この乾燥の次の焼成処理における初期の段階で、乾燥を行うことにより、乾燥工程を実施せず、その結果、焼成工程に含ませて行うこともできる。
得られた乾燥塗膜は、次に熱分解を行って前駆体膜を形成する。熱分解は通常最高温度450℃、空気または酸素含有雰囲気の条件下で行う。原料金属含有化合物がトリフルオロ酢酸塩の場合、熱分解によりフッ化バリウムを含む前駆体が生成する。それ以外の金属含有化合物(フッ素を含まない化合物)の場合は、熱分解により炭酸バリウムを含む前駆体が生成する。
【0029】
前駆体膜は、上記のような溶液塗布熱分解法以外の公知の方法により形成することができる。このような方法としては、例えば、真空蒸着法や化学気相析出法(CVD法)が挙げられる。実用的には化学気相析出法はコストの点で有利な方法とは言えない。
【0030】
上記のようにして得た、炭酸バリウムまたはフッ化バリウムとイッテルビウム酸化物と銅酸化物との混合物からなる前駆体膜を金属酸化物超電導膜とするために、本発明の方法においては、以下の、高酸素分圧下での第1熱処理段階、低酸素分圧下での第2熱処理段階、及び高酸素分圧での第3熱処理段階の3段階熱処理を行う。これら3つの段階は、いずれもベースガス中に存在させる酸素分圧を変更させることにより行うことができる。ベースガスとしては、窒素、アルゴン、ヘリウムなどの不活性ガスが用いられる。3段階熱処理は下記の通り行うことができる。
【0031】
(1)第1熱処理段階
まず、前駆体膜を、高酸素分圧雰囲気(酸素分圧として0.5atm〜1atm)中にて、700〜800℃、好ましくは700〜750℃、の温度範囲内の所定の温度まで昇温し、この条件下で一定時間(2分から1時間程度)保持することで、炭酸バリウムあるいはフッ化バリウムを分解させる。この段階で、配向したYb124を含む酸化物混合相が反応中間物として膜中に形成される。第1熱処理段階の雰囲気中には水蒸気が存在しても良い。
【0032】
(2)第2熱処理段階
第1熱処理段階で得られた膜を、次に、処理雰囲気を低酸素圧雰囲気(酸素分圧として1×10-4〜1×10-3atm)中にて、700〜850℃、好ましくは700〜750℃、の温度範囲内の所定の温度にて、一定時間(通常30分から2時間程度)保持する。この段階で、配向した反応中間物のYb124が分解し、エピタキシャル配向した正方晶Yb123が膜中に形成される。
【0033】
(3)第3熱処理段階
引き続いて、第2熱処理段階で得られた膜を、雰囲気を高酸素圧雰囲気(酸素分圧として0.2atm〜1atm)に切り替えて、200〜500℃の所定温度にて熱処理を行う。第3熱処理段階は、通常、上記高酸素圧雰囲気下で、500℃から室温まで30分以上時間をかけながら徐冷することによって行うことができる。また、上記所定温度(200〜500℃の間)で一定時間(通常30分〜数時間程度)保持し、その後室温まで急冷することも可能である。この第3熱処理段階で、正方晶Yb123が酸素を吸収して斜方晶Yb123に転化し、最終的にエピタキシャル配向した超電導Yb123膜が形成される。尚、酸素分圧0.21atmのガスは、空気をそのまま用いることができる。
【0034】
以上の3段階熱処理は、同一加熱炉中で連続して行うこともできるし、各ステップ後に一旦室温付近まで冷却して別の加熱炉に移動させた後、次のステップを行うことも可能である。以上の(1)〜(3)の3段階熱処理を行うことにより、目的とするエピタキシャル配向したYb123相(あるいは(Yb、RE)123相)からなる、膜厚が100Å〜20μmの超電導膜を得ることができる。
【0035】
【実施例】
次に、本発明を実施例によりさらに詳細に説明する。本発明は、これに限定されるものではない。
【0036】
実施例1
ランタンアルミネート基材上に、Ba−アセチルアセトナト、Yb−アセチルアセトナトおよびCu−アセチルアセトナトを溶解した塗布溶液を、スピンコート法で塗布して、塗布膜を形成した。この塗布膜を、次に、空気中において昇温速度2℃/分で室温から500℃に加熱昇温させ、この温度で30分間保持した後冷却した。この溶液の塗布と加熱昇温を3回繰り返して、炭酸バリウム、酸化イッテルビウムおよび酸化銅からなる前駆体膜(膜厚:300nm)を基材上に形成した。
次に、このようにして得た前駆体膜を、純酸素気流中で720℃まで加熱昇温し、720℃に到達後3分保持した(第1熱処理段階)。その後、ガスを酸素濃度が1×10-4atmに調節されたアルゴンガス気流に切り替え、この温度で1時間保持した(第2熱処理段階)。更に、その雰囲気のまま室温まで一旦冷却した後、純酸素気流中300℃にて2時間保持してその後室温まで徐冷するという酸素処理(第3熱処理段階)を行ってYb123膜を作製した。
このようにして基材上に形成された膜のX線回折の結果、Yb123がエピタキシャル成長していることが確認された。次に、誘導法により膜の超電導臨界温度を測定したところ、Tc=87Kが得られた。また、液体窒素中で誘導法により膜の臨界電流密度を測定したところ、3×105A/cm2が得られた。さらに、誘電体共振器法で膜のマイクロ波表面抵抗を測定したところ、12GHz、70Kにおいて、3.5mΩが得られた。
【0037】
実施例2
実施例1において、第1熱処理段階が終了した時点で膜を室温まで急冷した膜試料、および第2熱処理段階が終了した時点で膜を室温まで急冷した膜試料をそれぞれ作製した。これらの生成相をX線回折により分析した結果、それぞれ配向したYb124、正方晶Yb123が観察され、実施例1の作製プロセスにおいて、Yb123超電導膜が、反応中間物としてのYb124を経て生成することが確認できた。
【0038】
実施例3
CeO2をバッファー層としたサファイアR面基材上に、Ba−アセチルアセトナト、Yb−アセチルアセトナトおよびCu−アセチルアセトナトを溶解した塗布溶液を、スピンコート法で塗布して、塗布膜を形成した。これを空気中において、昇温速度2℃/分で室温から500℃に加熱昇温させ、この温度で30分間保持した後冷却した。この溶液の塗布と加熱昇温を3回繰り返して、炭酸バリウム、酸化イッテルビウムおよび酸化銅からなる前駆体膜(膜厚:300nm)を得た。
次に、このようにして形成した前駆体膜を、純酸素気流中で700℃まで加熱昇温させ、700℃に到達後1分保持した(第1熱処理段階)。引き続き酸素濃度が1×10-4atmに調節されたアルゴン+酸素混合ガス気流に切り替えて1時間保持した(第2熱処理段階)。その後、雰囲気を純酸素気流中に切り替えて、室温まで徐冷するという酸素処理(第3熱処理段階)を行ってYb123膜を作製した。このようにして基材上に形成された膜は、X線回折の結果、Yb123がエピタキシャル成長していることが確認された。また、電子顕微鏡による表面観察の結果、クラックの存在は認められなかった。誘導法により膜の超電導臨界温度を測定したところ、Tc=87Kが得られた。
【0039】
実施例4
実施例3において、溶液の塗布と加熱昇温の繰り返し数の回数のみ増やすことで、膜厚500nmの前駆体膜を作製した。これを実施例2と同一の3段階熱処理工程を経てYb123膜を作製した。X線回折の結果Yb123がエピタキシャル成長していることが確認された。また、電子顕微鏡による表面観察の結果、クラックの存在は認められなかった。誘導法により膜の超電導臨界温度を測定したところ、Tc=87Kが得られた。
【0040】
比較例1
CeO2をバッファー層としたサファイアR面基材上に、Ba−アセチルアセトナト、Y−アセチルアセトナトおよびCu−アセチルアセトナトを溶解した塗布溶液を、スピンコート法で塗布して、塗布膜を形成した。この塗布膜を、空気中において、昇温速度2℃/分で室温から500℃に加熱昇温させ、この温度で30分間保持した後冷却した。この溶液の塗布と加熱昇温を繰り返し、繰り返し回数を変えることにより種々の厚み(膜厚:100〜500nm)の、炭酸バリウム、酸化イッテルビウムおよび酸化銅からなる前駆体膜を形成した。
次に、このようにして形成した前駆体膜を、引き続き酸素濃度が1×10-4atmに調節されたアルゴン+酸素混合ガス気流中750℃まで加熱昇温させ、1時間保持した(従来法第1熱処理段階)。その後、雰囲気を純酸素気流中に切り替えて、室温まで徐冷するという酸素処理(従来法第2熱処理段階)を行ってY123膜を作製した。このようにして基材上に形成された膜は、膜厚100〜500nmのすべての範囲で、X線回折の結果、Y123がエピタキシャル成長していることが確認された。電子顕微鏡による表面観察の結果、膜厚400nm以下の膜についてクラックが認められなかった一方、膜厚500nmの膜については、クラックが表面に存在することが確認された。
【0041】
実施例5
YSZ単結晶基材上に、Ba−アセチルアセトナト、Yb−アセチルアセトナトおよびCu−アセチルアセトナトを溶解した塗布溶液を、スピンコート法で塗布して、塗布膜を形成した。塗布膜を、空気中において、昇温速度2℃/分で室温から500℃に加熱昇温させ、この温度で30分間保持した後冷却した。この溶液の塗布と加熱昇温を3回繰り返して、炭酸バリウム、酸化イッテルビウムおよび酸化銅からなる前駆体膜(膜厚:300nm)を得た。
次に、このようにして形成した前駆体膜を、純酸素気流中で700℃まで加熱昇温させ、700℃に到達後1分保持した(第1熱処理段階)、引き続き酸素濃度が1×10-4atmに調節されたアルゴン+酸素混合ガス気流に切り替えて1時間保持した(第2熱処理段階)。その後、雰囲気を純酸素気流中に切り替えて、室温まで徐冷するという酸素処理(第3熱処理段階)を行ってYb123膜を作製した。このようにして基材上に形成された膜は、X線回折の結果、Yb123がエピタキシャル成長していることが確認された。また、膜と基材との反応生成物BaZrO3は確認されなかった。誘導法により膜の超電導臨界温度を測定したところ、Tc=87Kが得られた。
【0042】
実施例6
CeO2をバッファー層としたサファイアR面基材上に、Ba−アセチルアセトナト、Yb−アセチルアセトナト、Y−アセチルアセトナトおよびCu−アセチルアセトナトを溶解した塗布溶液(金属元素比でBa:Y:Yb:Cu=4:1:1:6)を、スピンコート法で塗布して、塗布膜を形成した。この塗布膜を、空気中において、昇温速度2℃/分で室温から500℃に加熱昇温させ、この温度で30分間保持した後冷却した。この溶液の塗布と加熱昇温を3回繰り返して、炭酸バリウム、酸化イッテルビウムおよび酸化銅からなる前駆体膜(膜厚:300nm)を形成した。
次に、このようにして形成した前駆体膜を、純酸素気流中で750℃まで加熱昇温させ、750℃に到達後(第1熱処理段階)、酸素濃度が1×10-4atmに調節されたアルゴン+酸素混合ガス気流に切り替え、この温度で1時間保持した(第2熱処理段階)。その後、その雰囲気のまま室温まで一旦冷却した後、純酸素気流中300℃にて酸素処理を行って(第3熱処理段階)膜を作製した。このようにして基材上に形成された膜は、X線回折の結果、エピタキシャル配向した希土類123相単相が観察され、Yb123結晶のYbサイトの一部をYがランダムに置換した(Yb,Y)123膜であることが明らかとなった。
また、次に、誘導法により膜の超電導臨界温度を測定したところ、Tc=88Kが得られた。また、液体窒素中で誘導法により膜の臨界電流密度を測定したところ、Jc=8×105A/cm2が得られた。
【0043】
実施例7
実施例6と同様の方法で形成した前駆体膜を、純酸素気流中で700℃まで加熱昇温させ、700℃に到達後(第1熱処理段階)、酸素濃度が1×10-4atmに調節されたアルゴン+酸素混合ガス気流に切り替え、この温度で2時間保持した(第2熱処理段階)。その後、その雰囲気のまま室温まで一旦冷却した後、純酸素気流中300℃にて酸素処理を行って(第3熱処理段階)膜を作製した。このようにして基材上に形成された膜は、X線回折の結果、エピタキシャル配向した希土類123相単相が観察され、Yb123結晶のYbサイトの一部をYがランダムに置換した(Yb,Y)123膜であることが明らかとなった。
また、次に、誘導法により膜の超電導臨界温度を測定したところ、Tc=85Kが得られた。
【0044】
実施例8
ランタンアルミネート基材およびCeO2をバッファー層としたサファイアR面基材上に、フッ化バリウム、フッ化イッテルビウムおよび酸化銅の3種を3元蒸発源とした真空蒸着法(全圧1×10-6torr)にて室温堆積させ、これらの混合物からなる前駆体膜(膜厚:300nm)を形成した。
次に、このようにして形成した前駆体膜を、70℃露点の水蒸気を含む酸素気流中で720℃まで加熱昇温させ、720℃に到達後(第1熱処理段階)、70℃露点の水蒸気を含み、かつ酸素濃度が1×10-4atmに調節されたアルゴン+酸素+水蒸気混合ガス気流に切り替え、この温度で1時間保持した(第2熱処理段階)。その後、その雰囲気のまま室温まで一旦冷却した後、純酸素気流中300℃にて酸素処理を行って(第3熱処理段階)Yb123膜を作製した。このようにして両基材上に形成された膜は、X線回折の結果、Yb123がエピタキシャル成長していることが確認された。誘導法により膜の超電導臨界温度を測定したところ、Tc=88Kが得られた。
【0045】
【発明の効果】
本発明においては、従来と比べ低められた温度での熱処理にて、エピタキシャル配向したYb123膜を形成することが可能となる。これにより、CeO2等、超電導体と化学反応性の高い材料の上への超電導膜形成、あるいは金属テープ基材といった耐熱性の弱い基材上への超電導膜形成が容易となる。また、基材と超電導体膜との熱膨張率の差異に基づくクラック発生の問題を低減し、超電導体膜との熱膨張率の差異の大きいサファイア基材上へ、より大きい膜厚の膜をクラックフリーで形成することが可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a YbBa on a substrate.2CuThreeO7- yThe present invention relates to a method of manufacturing a superconductor provided with a rare earth 123 structure type oxide superconductor film made of barium (Ba), ytterbium (Yb) and copper (Cu), which is represented by (hereinafter referred to as Yb123).
[0002]
[Prior art]
Various methods have been developed for forming superconducting films. One of these methods is a coating pyrolysis in which a superconducting film is formed by applying a solution containing an organic compound containing an atomic species that forms a superconducting film on a substrate and then thermally treating the film to thermally decompose. There is a law. In this method, an organic compound containing an atomic species is dissolved in a solvent solution to prepare a uniform mixed solution, the solution is uniformly coated on a support, and a high-temperature heat treatment is performed to form an organic substance material. It is required to form a superconducting film uniformly through a solid-phase reaction or a liquid-phase reaction by removing only organic components by thermally decomposing these components.
[0003]
The inventors of the present invention perform a process of generating a rare earth 123 structure type oxide superconducting phase in air or oxygen at a temperature of 800 to 970 ° C. (hereinafter referred to as a one-step heat treatment method). (Patent No. 1778693. Patent No. 1778694). According to this method, a rare earth 123 structure type oxide superconducting film having a zero resistance of about 90K can be obtained. This coating pyrolysis method is characterized in that it is a low-cost film-forming method because it does not require a vacuum device that is required for other methods, for example, vacuum deposition, etc. It has the characteristic that film formation is easy also to the base material of this. Moreover, the characteristics of the superconducting film produced by the coating pyrolysis method are highly evaluated as being favorable compared to other production methods.
[0004]
Subsequently, a two-stage heat treatment method was developed in which the oxygen partial pressure was controlled in two stages (Japanese Patent No. 1991979, Japanese Patent No. 2091583). In this method, in the final heat treatment step of crystallizing the rare earth 123 structure type superconducting phase from the precursor film formed by the coating pyrolysis method, the oxygen partial pressure at the initial stage of heat treatment is set low (oxygen partial pressure: 1 × 10-Four~ 1x10-3atm), and performing the heat treatment in two stages in which the atmosphere is switched to a high oxygen partial pressure (for example, pure oxygen) during the heat treatment, the heat treatment temperature can be lowered to 750 to 800 ° C. This makes it possible to form in-plane oriented (epitaxially oriented) films on various single crystal substrates such as strontium titanate, lanthanum aluminate, and sapphire substrates via a ceria intermediate layer. A / cm2High critical current density exceeding can be achieved.
[0005]
Among various substrate materials, a sapphire substrate through a ceria intermediate layer is extremely important in application from the viewpoint of price and dielectric properties. An epitaxial rare earth 123 structure type oxide superconductor (referred to as Y123) film made of barium (Ba), yttrium (Y) and copper (Cu) is also formed on the sapphire substrate by using the above two-step heat treatment method. Is possible (2001 Spring Applied Physics-related Joint Lecture 30p-ZK9), but Y123 and CeO2Is a reaction product BaCeO by heat treatment at 750 ° C. or higher.ThreeTherefore, in order to produce the epitaxial Y123 film while preventing this production reaction, it was necessary to execute the heat treatment temperature while precisely controlling the temperature within a very narrow temperature range (740 to 750 ° C.). Therefore, further lowering the temperature for forming the superconducting film has been an important issue in improving yield and mass production.
[0006]
Further, since the difference in coefficient of thermal expansion between Y123 and sapphire is large, there is a problem in that if Y123 having a film thickness of a certain thickness or more is formed on sapphire, cracks occur during cooling from the heat treatment temperature to room temperature. The maximum film thickness without cracks is called the critical film thickness, and it is known that the critical film thickness depends on the heat treatment temperature (Appl. Phys. Lett. 58, (1991) 1682). For example, if the heat treatment temperature can be lowered by 50 ° C. from 750 ° C. to 700 ° C., the critical film thickness is predicted to increase from 350 nm to 500 nm. Therefore, in the formation of a superconducting film on a sapphire substrate, heat treatment is performed. There has been a strong demand to lower the temperature from the conventional temperature.
[0007]
Further, among various base materials, a metal tape base material coated with a ceria intermediate layer or a YSZ intermediate layer is extremely important for aiming at superconductor power cable and wire application. Again, CeO2Product BaCeO with Y123ThreeOr the reaction product BaZrO of YSZ and Y123ThreeIn order to produce the epitaxial Y123 film while preventing the production reaction, lowering the heat treatment temperature has been an important issue in improving yield and mass production. Further, since the metal tape base material is easily oxidized and deteriorated by high-temperature heat treatment, it has been an important issue to reduce the heat treatment temperature from this aspect.
[0008]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method of manufacturing a superconductor capable of overcoming the problems in the conventional coating pyrolysis method and heat-treating an epitaxially oriented rare earth 123 type superconductor film at a reduced temperature. To do.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the following problems can be solved by adopting the following requirements.
All or part of the rare earth element of the rare earth 123 type superconductor film is Yb.
In the final heat treatment step, heat treatment is performed in a temperature range of 675 to 800 ° C. and a high oxygen partial pressure atmosphere (oxygen partial pressure of 0.25 atm to 1 atm) as a first step, and 675 to 850 ° C. and a low oxygen content as a second step. Pressure (1 × 10 as oxygen partial pressure)-Five~ 1x10-3atm) at the initial stage as a third stage, using an oxygen or high oxygen pressure atmosphere, and then switching the atmosphere to a low oxygen pressure, with a temperature range of 200-500 ° C. and a high oxygen partial pressure (oxygen content). Use a three-stage heat treatment in which heat treatment is performed at a pressure of 0.2 atm to 1 atm).
[0010]
By satisfying the above two requirements, YbBa2CuFourO8Through a chemical reaction path using an oxide mixture containing (hereinafter referred to as Yb124) as a reaction intermediate, the temperature is lower than that of the conventional one-step coating pyrolysis method or two-step coating pyrolysis method, for example, around 700 ° C. A Yb123 superconductor film epitaxially oriented at the heat treatment temperature can be formed.
[0011]
That is, according to the present invention, the following method is provided.
1st invention is YbBa on a base material.2CuThreeO7- yA precursor film made of barium carbonate or a mixture of barium fluoride, ytterbium oxide, and copper oxide is formed on a base material in a method of manufacturing a superconductor provided with a rare earth 123 structure type oxide superconductor film represented by Then, the precursor film is heat-treated in a high oxygen partial pressure atmosphere with an oxygen partial pressure of 0.25 atm to 1 atm in a temperature range of 675 to 800 ° C., and YbBa2CuFourO8One stage to form oxygen, oxygen partial pressure 1 × 10-Five~ 1x10-3Heat treatment is performed at a temperature range of 675 to 850 ° C. under a low oxygen partial pressure of atm, and tetragonal YbBa2CuThreeO6The orthorhombic YbBa is heat-treated at a temperature in the range of 200 to 500 ° C. under the second stage of forming the oxygen and a high oxygen partial pressure of oxygen partial pressure of 0.2 atm to 1 atm.2CuThreeO7- yBy sequentially performing the third stage heat treatment to form YbBa epitaxially oriented2CuThreeO7- yA method of manufacturing a superconductor characterized by forming a film.
[0012]
A second invention is a method of manufacturing a superconductor according to the first invention, wherein the precursor film is formed by a solution coating pyrolysis method.
[0013]
A third invention is a method of manufacturing a superconductor according to the first invention, wherein the precursor film is formed by a vacuum deposition method.
[0014]
According to a fourth aspect of the present invention, a part of Yb of the precursor film is at least one other rare earth element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, and Er. Substituted and epitaxially oriented YbBa2CuThreeO7- yThe method for producing a superconductor according to any one of the first to third inventions, wherein a part of Yb of the film is substituted with the other rare earth element.
[0015]
  Delete
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The superconductor produced by the method of the present invention has a structure in which an oxide superconductor film having the following composition is provided on a substrate:
YbBa2CuThreeO7- y
Or (RE1- xYbx) Ba2CuThreeO7- y
(Wherein, RE represents a rare earth atom selected from Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, x is a number of 1> x> 0, and y is 0. 5> y> 0). The production method of the present invention will be described below in the case where the rare earth element is Yb alone, but the following description is similarly applied to the case where a combination of Yb and RE is used.
[0017]
In the method of the present invention, first, a precursor film made of a mixture of barium carbonate or barium fluoride, ytterbium oxide and copper oxide is formed on a substrate.
As the base material, single crystals of various ceramics capable of epitaxial growth of Yb123 can be used. Specific examples of the substrate include strontium titanate, lanthanum aluminate, LSAT (LaAlOThree-SrTaOThreeSolid solution), NdGaOThreePerovskite related compounds such as MgO, MgAl2OFourRock salt related compounds such as Al2OThreeCorundum type compounds such as YSZ (yttria stabilized zirconia), CeO2And fluorite-type compounds. Also, ceramic substrates coated with these various ceramic alignment films, such as CeO2Coat Al2OThreeOr a metal coated with an orientation film of these various ceramics, such as YSZ-coated silver, YSZ-coated nickel, YSZ-coated Hastelloy, and the like.
[0018]
In one embodiment of the present invention, the precursor film is formed on the substrate by a solution coating pyrolysis method. In the solution coating pyrolysis method, a metal-containing compound mixed solution having a metal element composition almost stoichiometrically corresponding to the composition of the metal element constituting the oxide superconductor film, which is the final product, is prepared. Is coated on a substrate, dried, and thermally decomposed to form a precursor thin film. Specifically, a coating solution is prepared by dissolving a metal-containing compound of barium, ytterbium (or a combination of ytterbium and another rare earth element), which is a metal serving as a component of a superconductor, and a copper metal-containing compound.
[0019]
Examples of the metal-containing compound dissolved in the solvent include metal alkoxides, organic acid salts, inorganic acid salts, chelate compounds, and various compounds such as halides, hydroxides and oxides.
[0020]
Preferred examples of the metal-containing compound include naphthenic acid, 2-ethylhexanoic acid, caprylic acid, stearic acid, lauric acid, butyric acid, propionic acid, succinic acid, citric acid, lactic acid, phenol, catechol, benzoic acid, salicylic acid, EDTA. , Metal salts of organic or inorganic acids such as trifluoroacetic acid, nitric acid, carbonic acid and hydrochloric acid, alcohol metal alkoxides such as ethanol, propanol, butanol, ethylene glycol, glycerin and 2-penten-4-one-2-ol, metals Examples include chelate compounds such as acetylacetonate.
[0021]
The metal-containing compound solution can be prepared by dissolving a mixture of metal-containing compounds previously formulated in a predetermined component composition in a solvent, and preparing each metal compound solution in advance, and then mixing these solutions. Can also be done. The metal concentration in the solution is not particularly limited, and the upper limit is usually 3 to 40% by weight, preferably 5 to 30% by weight, in terms of a metal-containing compound. Furthermore, an appropriate amount of a polymer substance can be added to this solution as a viscosity modifier, if necessary.
[0022]
Solvents used for preparing the coating solution in the present invention include, for example, formic acid, acetic acid, trifluoroacetic acid, propionic acid, butyric acid, caprylic acid, lauric acid, stearic acid, naphthenic acid, linoleic acid, oleic acid, succinic acid, citric acid, Organic acids such as lactic acid, phenol and p-toluic acid, halogenated organic acids, ketones such as acetylacetone, amides such as N-methylacetamide, formamideform, dimethylformamide, sulfur-containing solvents such as dimethylsulfoxide, Examples thereof include pyridine derivatives such as pyridine, methylpyridine, and vinylpyridine. These solvents can be used alone or in combination of two or more as required.
[0023]
Examples of preferred coating solutions used in the present invention are as follows in relation to metal-containing compounds.
(1) Metal acetylacetonate or its derivative-containing solution
In the case of this solution, an organic acid, pyridine, a pyridine derivative, or a mixture thereof is used so that metal acetylacetonate or a metal salt of an acetylacetone derivative is stably dissolved. Examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, caprylic acid, lauric acid, stearic acid, naphthenic acid, linoleic acid, oleic acid, succinic acid, citric acid, lactic acid, phenol, and p-toluic acid. Examples of pyridine derivatives include methyl pyridine and vinyl pyridine. These solvents can be used in combination with other solvents, for example, alcohols and ketones such as methanol, ethanol, propanol, butanol, and acetone as necessary.
[0024]
(2) Metal alkoxide-containing solution
In the case of this solution, it is preferable to use an organic acid, pyridine, a pyridine derivative, or a mixture thereof so that each metal alkoxide can be stably dissolved. The above solvent can be used as a mixed solvent with other solvents, for example, alcohols such as methanol, ethanol, propanol, butanol, and acetone, and ketones as necessary. The metal alkoxide can also be a solution of aliphatic and aromatic hydrocarbons or alcohols.
[0025]
(3) Metal nitrate containing solution
In the case of this solution, depending on the metal species, it can be used as an aqueous solution. In view of the ability to stably dissolve a material such as Ba nitrate that is difficult to dissolve in water, it is preferable to use acetylacetone, dimethylsulfoxide, formamide, methylacetamide, propionic acid, pyridine or a derivative thereof. Said solvent can be made into a mixed solvent with methanol, ethanol, acetone, etc. as needed.
[0026]
(4) Metal organic acid salt
In the case of this solution, as a solvent, an organic acid, pyridine, a pyridine derivative, or a mixture of these solvents with alcohols, ketones, and hydrocarbons is used. The metal organic acid salt can also be a solution of aliphatic or aromatic hydrocarbon or alcohol.
[0027]
A coating solution in which the metal-containing compound is dissolved is applied onto a substrate to form a solution thin film of the metal-containing compound. For the application, various known methods such as a dipping method, a spray method, a brush coating method, and a spin coating method are employed.
[0028]
The thin film formed as described above is dried. Drying can be performed at normal temperature, reduced pressure, or vacuum conditions at room temperature or in a heated state. By repeatedly applying and drying, the film thickness can be increased. The repeated operation is performed several times as appropriate, but is usually performed 2 to 10 times. This drying step can be performed by performing drying at an initial stage in the next baking treatment after the drying, so that the drying step is not performed, and as a result, included in the baking step.
The obtained dried coating film is then thermally decomposed to form a precursor film. Pyrolysis is usually performed under conditions of a maximum temperature of 450 ° C. and an atmosphere containing air or oxygen. When the starting metal-containing compound is trifluoroacetate, a precursor containing barium fluoride is generated by thermal decomposition. In the case of other metal-containing compounds (compounds not containing fluorine), a precursor containing barium carbonate is generated by thermal decomposition.
[0029]
The precursor film can be formed by a known method other than the solution coating pyrolysis method as described above. Examples of such a method include a vacuum vapor deposition method and a chemical vapor deposition method (CVD method). Practically, chemical vapor deposition is not an advantageous method in terms of cost.
[0030]
In order to make the precursor film made of barium carbonate or a mixture of barium fluoride, ytterbium oxide and copper oxide obtained as described above as a metal oxide superconducting film, in the method of the present invention, A three-stage heat treatment is performed: a first heat treatment stage under a high oxygen partial pressure, a second heat treatment stage under a low oxygen partial pressure, and a third heat treatment stage under a high oxygen partial pressure. All of these three stages can be performed by changing the partial pressure of oxygen present in the base gas. As the base gas, an inert gas such as nitrogen, argon, or helium is used. The three-stage heat treatment can be performed as follows.
[0031]
(1) First heat treatment stage
First, the temperature of the precursor film is raised to a predetermined temperature within a temperature range of 700 to 800 ° C., preferably 700 to 750 ° C. in a high oxygen partial pressure atmosphere (oxygen partial pressure of 0.5 atm to 1 atm). Under these conditions, barium carbonate or barium fluoride is decomposed by holding for a certain period of time (about 2 minutes to 1 hour). At this stage, an oxide mixed phase containing oriented Yb 124 is formed in the film as a reaction intermediate. Water vapor may be present in the atmosphere of the first heat treatment stage.
[0032]
(2) Second heat treatment stage
The film obtained in the first heat treatment stage is then treated with a low oxygen pressure atmosphere (oxygen partial pressure of 1 × 10 10-Four~ 1x10-3atm) at a predetermined temperature within a temperature range of 700 to 850 ° C., preferably 700 to 750 ° C., for a predetermined time (usually about 30 minutes to 2 hours). At this stage, the oriented reaction intermediate Yb 124 is decomposed, and epitaxially oriented tetragonal Yb 123 is formed in the film.
[0033]
(3) Third heat treatment stage
Subsequently, the film obtained in the second heat treatment stage is subjected to a heat treatment at a predetermined temperature of 200 to 500 ° C. by switching the atmosphere to a high oxygen pressure atmosphere (0.2 atm to 1 atm as an oxygen partial pressure). The third heat treatment step can be usually performed by slowly cooling from 500 ° C. to room temperature over 30 minutes in the high oxygen pressure atmosphere. It is also possible to hold at the predetermined temperature (between 200 and 500 ° C.) for a certain time (usually about 30 minutes to several hours) and then rapidly cool to room temperature. In this third heat treatment stage, tetragonal Yb123 absorbs oxygen and converts to orthorhombic Yb123, and finally a superconducting Yb123 film epitaxially oriented is formed. Note that air can be used as it is as the gas having an oxygen partial pressure of 0.21 atm.
[0034]
The above three-stage heat treatment can be performed continuously in the same heating furnace, or after each step, once cooled to near room temperature and moved to another heating furnace, the next step can be performed. is there. By performing the above-described three-step heat treatment of (1) to (3), a superconducting film having a film thickness of 100 to 20 μm made of the target epitaxially oriented Yb123 phase (or (Yb, RE) 123 phase) is obtained. be able to.
[0035]
【Example】
Next, the present invention will be described in more detail with reference to examples. The present invention is not limited to this.
[0036]
Example 1
A coating solution in which Ba-acetylacetonate, Yb-acetylacetonate and Cu-acetylacetonate were dissolved was applied on a lanthanum aluminate substrate by a spin coating method to form a coating film. Next, the coating film was heated from room temperature to 500 ° C. in air at a temperature rising rate of 2 ° C./min, kept at this temperature for 30 minutes, and then cooled. Application of this solution and heating and heating were repeated three times to form a precursor film (thickness: 300 nm) made of barium carbonate, ytterbium oxide and copper oxide on the substrate.
Next, the precursor film thus obtained was heated to 720 ° C. in a pure oxygen stream and held for 3 minutes after reaching 720 ° C. (first heat treatment stage). After that, the oxygen concentration of the gas is 1 × 10-FourIt switched to the argon gas flow adjusted to atm, and hold | maintained at this temperature for 1 hour (2nd heat treatment stage). Further, after being cooled to room temperature in that atmosphere, an oxygen treatment (third heat treatment stage) was performed in which it was kept in a pure oxygen stream at 300 ° C. for 2 hours and then gradually cooled to room temperature to produce a Yb123 film.
As a result of X-ray diffraction of the film formed on the substrate in this manner, it was confirmed that Yb123 was epitaxially grown. Next, when the superconducting critical temperature of the film was measured by an induction method, Tc = 87K was obtained. Further, when the critical current density of the film was measured by an induction method in liquid nitrogen, 3 × 10FiveA / cm2was gotten. Furthermore, when the microwave surface resistance of the film was measured by the dielectric resonator method, 3.5 mΩ was obtained at 12 GHz and 70K.
[0037]
Example 2
In Example 1, a film sample in which the film was rapidly cooled to room temperature when the first heat treatment stage was completed, and a film sample in which the film was rapidly cooled to room temperature when the second heat treatment stage was completed were prepared. As a result of analyzing these produced phases by X-ray diffraction, oriented Yb124 and tetragonal Yb123 are observed, respectively. In the production process of Example 1, a Yb123 superconducting film is produced via Yb124 as a reaction intermediate. It could be confirmed.
[0038]
Example 3
CeO2A coating solution in which Ba-acetylacetonate, Yb-acetylacetonate and Cu-acetylacetonate were dissolved was applied on a sapphire R-plane base material using a spin coat method to form a coating film. . In the air, this was heated from room temperature to 500 ° C. at a temperature rising rate of 2 ° C./min, kept at this temperature for 30 minutes, and then cooled. Application of this solution and heating and heating were repeated three times to obtain a precursor film (film thickness: 300 nm) composed of barium carbonate, ytterbium oxide and copper oxide.
Next, the precursor film thus formed was heated to 700 ° C. in a pure oxygen stream and held for 1 minute after reaching 700 ° C. (first heat treatment stage). The oxygen concentration continues to be 1 × 10-FourIt switched to the argon + oxygen mixed gas stream adjusted to atm, and hold | maintained for 1 hour (2nd heat treatment stage). Thereafter, the atmosphere was switched to a pure oxygen stream, and oxygen treatment (third heat treatment stage) of gradually cooling to room temperature was performed to produce a Yb123 film. As a result of X-ray diffraction, it was confirmed that Yb123 was epitaxially grown on the film formed on the substrate in this way. As a result of surface observation with an electron microscope, the presence of cracks was not observed. When the superconducting critical temperature of the film was measured by the induction method, Tc = 87K was obtained.
[0039]
Example 4
In Example 3, a precursor film having a thickness of 500 nm was produced by increasing only the number of repetitions of application of the solution and heating and heating. This was subjected to the same three-stage heat treatment process as in Example 2 to produce a Yb123 film. As a result of X-ray diffraction, it was confirmed that Yb123 was epitaxially grown. As a result of surface observation with an electron microscope, the presence of cracks was not observed. When the superconducting critical temperature of the film was measured by the induction method, Tc = 87K was obtained.
[0040]
Comparative Example 1
CeO2A coating solution in which Ba-acetylacetonate, Y-acetylacetonato and Cu-acetylacetonato were dissolved was applied on a sapphire R-plane base material using a spin coat method to form a coating film. . The coating film was heated from room temperature to 500 ° C. in air at a temperature rising rate of 2 ° C./min, held at this temperature for 30 minutes, and then cooled. By repeatedly applying this solution and heating and raising the temperature and changing the number of repetitions, precursor films made of barium carbonate, ytterbium oxide and copper oxide having various thicknesses (film thickness: 100 to 500 nm) were formed.
Next, the oxygen concentration of the precursor film thus formed is continuously 1 × 10-FourThe temperature was raised to 750 ° C. in an argon + oxygen mixed gas stream adjusted to atm, and held for 1 hour (conventional method first heat treatment stage). Thereafter, the atmosphere was switched to a pure oxygen stream, and oxygen treatment (conventional method second heat treatment stage) of gradually cooling to room temperature was performed to produce a Y123 film. As a result of X-ray diffraction, it was confirmed that Y123 was epitaxially grown in the entire film thickness range of 100 to 500 nm. As a result of surface observation with an electron microscope, no crack was observed for a film having a film thickness of 400 nm or less, whereas it was confirmed that a crack was present on the surface of a film having a film thickness of 500 nm.
[0041]
Example 5
A coating solution in which Ba-acetylacetonato, Yb-acetylacetonato and Cu-acetylacetonato were dissolved was applied onto a YSZ single crystal substrate by a spin coating method to form a coating film. The coating film was heated from room temperature to 500 ° C. in air at a temperature rising rate of 2 ° C./min, held at this temperature for 30 minutes, and then cooled. Application of this solution and heating and heating were repeated three times to obtain a precursor film (film thickness: 300 nm) composed of barium carbonate, ytterbium oxide and copper oxide.
Next, the precursor film thus formed was heated to 700 ° C. in a pure oxygen stream and held for 1 minute after reaching 700 ° C. (first heat treatment stage). Subsequently, the oxygen concentration was 1 × 10.-FourIt switched to the argon + oxygen mixed gas stream adjusted to atm, and hold | maintained for 1 hour (2nd heat treatment stage). Thereafter, the atmosphere was switched to a pure oxygen stream, and oxygen treatment (third heat treatment stage) of gradually cooling to room temperature was performed to produce a Yb123 film. As a result of X-ray diffraction, it was confirmed that Yb123 was epitaxially grown on the film formed on the substrate in this way. Also, the reaction product BaZrO between the membrane and the substrateThreeWas not confirmed. When the superconducting critical temperature of the film was measured by the induction method, Tc = 87K was obtained.
[0042]
Example 6
CeO2A coating solution in which Ba-acetylacetonato, Yb-acetylacetonato, Y-acetylacetonato and Cu-acetylacetonato are dissolved on a sapphire R-plane base material having a buffer layer (Ba: Y: in terms of metal elements) Yb: Cu = 4: 1: 1: 6) was applied by spin coating to form a coating film. The coating film was heated from room temperature to 500 ° C. in air at a temperature rising rate of 2 ° C./min, held at this temperature for 30 minutes, and then cooled. Application of this solution and heating and heating were repeated three times to form a precursor film (film thickness: 300 nm) made of barium carbonate, ytterbium oxide and copper oxide.
Next, the precursor film thus formed is heated to 750 ° C. in a pure oxygen stream, and after reaching 750 ° C. (first heat treatment stage), the oxygen concentration is 1 × 10 5.-FourIt switched to the argon + oxygen mixed gas stream adjusted to atm, and was hold | maintained at this temperature for 1 hour (2nd heat treatment stage). Then, after cooling to room temperature in that atmosphere, oxygen treatment was performed at 300 ° C. in a pure oxygen stream (third heat treatment stage) to produce a film. As a result of X-ray diffraction, the film formed on the substrate in this way has observed an epitaxially-arranged rare earth 123 phase single phase, and Y has randomly substituted some of the Yb sites of the Yb123 crystal (Yb, Y) It was found to be 123 film.
Next, when the superconducting critical temperature of the film was measured by an induction method, Tc = 88K was obtained. Further, when the critical current density of the film was measured by an induction method in liquid nitrogen, Jc = 8 × 10FiveA / cm2was gotten.
[0043]
Example 7
The precursor film formed by the same method as in Example 6 was heated to 700 ° C. in a pure oxygen stream, and after reaching 700 ° C. (first heat treatment stage), the oxygen concentration was 1 × 10.-FourIt switched to the argon + oxygen mixed gas stream adjusted to atm, and was hold | maintained at this temperature for 2 hours (2nd heat treatment stage). Then, after cooling to room temperature in that atmosphere, oxygen treatment was performed at 300 ° C. in a pure oxygen stream (third heat treatment stage) to produce a film. As a result of X-ray diffraction, the film formed on the substrate in this way has observed an epitaxially-arranged rare earth 123 phase single phase, and Y has randomly substituted some of the Yb sites of the Yb123 crystal (Yb, Y) It was found to be 123 film.
Next, when the superconducting critical temperature of the film was measured by an induction method, Tc = 85K was obtained.
[0044]
Example 8
Lanthanum aluminate substrate and CeO2On a sapphire R-plane substrate with a buffer layer, and using a three-way evaporation source of barium fluoride, ytterbium fluoride and copper oxide (total pressure 1 × 10-6at room temperature to form a precursor film (thickness: 300 nm) made of a mixture of these.
Next, the precursor film thus formed is heated to 720 ° C. in an oxygen stream containing water vapor at 70 ° C. dew point, and after reaching 720 ° C. (first heat treatment stage), water vapor at 70 ° C. dew point. And the oxygen concentration is 1 × 10-FourIt switched to argon + oxygen + water vapor | steam mixed gas stream adjusted to atm, and hold | maintained at this temperature for 1 hour (2nd heat treatment stage). Then, after cooling to room temperature in that atmosphere, oxygen treatment was performed at 300 ° C. in a pure oxygen stream (third heat treatment stage) to produce a Yb123 film. As a result of X-ray diffraction, it was confirmed that Yb123 was epitaxially grown on the films formed on both substrates in this manner. When the superconducting critical temperature of the film was measured by the induction method, Tc = 88K was obtained.
[0045]
【The invention's effect】
In the present invention, it is possible to form an epitaxially oriented Yb123 film by a heat treatment at a temperature lower than that in the prior art. As a result, CeO2For example, it is easy to form a superconducting film on a material having high chemical reactivity with the superconductor, or to form a superconducting film on a base material having a low heat resistance such as a metal tape base material. In addition, the problem of crack generation based on the difference in thermal expansion coefficient between the base material and the superconductor film is reduced, and a film having a larger film thickness is formed on the sapphire base material having a large difference in thermal expansion coefficient from the superconductor film. It can be formed free of cracks.

Claims (4)

基材上にYbBa2Cu37- の組成を持つ希土類123構造型酸化物超電導体膜を設けた超電導体の製造方法において、炭酸バリウムまたはフッ化バリウムとイッテルビウム酸化物と銅酸化物の混合物からなる前駆体膜を基材上に形成し、次に該前駆体膜を、酸素分圧0.25atm〜1atmの高酸素分圧雰囲気下で温度675〜800℃の範囲にて熱処理を行いYbBa2Cu48を形成させる1段階、酸素分圧1×10-5〜1×10-3atmの低酸素分圧下で温度675〜850℃の範囲にて熱処理を行い正方晶YbBa2Cu36を形成させる第2段階、及び酸素分圧0.2atm〜1atmの高酸素分圧下で温度200〜500℃の範囲にて熱処理を行い斜方晶YbBa2Cu37- を形成させる第3段階の熱処理を順次行うことにより、エピタキシャル配向したYbBa2Cu37- 膜を形成させることを特徴とする超電導体の製造方法。In a superconductor manufacturing method in which a rare earth 123 structure type oxide superconductor film having a composition of YbBa 2 Cu 3 O 7- y is provided on a base material, barium carbonate or barium fluoride, ytterbium oxide, and copper oxide A precursor film made of a mixture is formed on a substrate, and then the precursor film is subjected to a heat treatment in a temperature range of 675 to 800 ° C. in a high oxygen partial pressure atmosphere with an oxygen partial pressure of 0.25 atm to 1 atm. One step of forming YbBa 2 Cu 4 O 8 , heat treatment is performed at a temperature range of 675 to 850 ° C. under a low oxygen partial pressure of 1 × 10 −5 to 1 × 10 −3 atm of tetragonal YbBa 2 Cu. Forming orthorhombic YbBa 2 Cu 3 O 7- y by heat treatment at a temperature range of 200 to 500 ° C. under the second stage of forming 3 O 6 and high oxygen partial pressure of 0.2 atm to 1 atm In order of the third stage heat treatment The method for producing a superconductor, characterized in that to form YbBa 2 Cu 3 O 7- y film epitaxially oriented performed. 前記前駆体膜を溶液塗布熱分解法により形成する請求項1記載の超電導体の製造方法。The method for producing a superconductor according to claim 1, wherein the precursor film is formed by a solution coating pyrolysis method. 前記前駆体膜を真空蒸着法により形成する請求項1記載の超電導体の製造方法。The method of manufacturing a superconductor according to claim 1, wherein the precursor film is formed by a vacuum deposition method. 前記前駆体膜のYbの一部がY、La、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Erの中から選ばれた少なくとも1種の他の希土類元素で置換されており、前記エピタキシャル配向したYbBa2Cu37- 膜のYbの1部が該他の希土類元素で置換されている請求項1〜3のいずれかに記載の超電導体の製造方法。A part of Yb of the precursor film is substituted with at least one other rare earth element selected from Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, The method for producing a superconductor according to any one of claims 1 to 3, wherein a part of Yb of the epitaxially oriented YbBa 2 Cu 3 O 7- y film is substituted with the other rare earth element.
JP2002136185A 2002-05-10 2002-05-10 Superconductor manufacturing method Expired - Lifetime JP3851948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002136185A JP3851948B2 (en) 2002-05-10 2002-05-10 Superconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136185A JP3851948B2 (en) 2002-05-10 2002-05-10 Superconductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2003327496A JP2003327496A (en) 2003-11-19
JP3851948B2 true JP3851948B2 (en) 2006-11-29

Family

ID=29698298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136185A Expired - Lifetime JP3851948B2 (en) 2002-05-10 2002-05-10 Superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3851948B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227019B2 (en) * 2003-12-15 2012-07-24 Superpower Inc. High-throughput ex-situ method for rare-earth-barium-copper-oxide (REBCO) film growth
KR100910601B1 (en) * 2004-10-01 2009-08-03 아메리칸 수퍼컨덕터 코포레이션 Thick superconductor films with improved performance
JP5156188B2 (en) * 2005-12-14 2013-03-06 公益財団法人国際超電導産業技術研究センター Method for manufacturing thick film tape-shaped RE (123) superconductor
JP5273561B2 (en) * 2009-12-09 2013-08-28 独立行政法人産業技術総合研究所 Manufacturing method of superconducting film
RU2521827C2 (en) * 2010-02-05 2014-07-10 Санам Ко., Лтд. Method of producing ceramic conductor, system for producing same and superconductor using same
JP2012204189A (en) * 2011-03-25 2012-10-22 Furukawa Electric Co Ltd:The Method of manufacturing superconducting wire rod
JP2013006759A (en) * 2011-05-23 2013-01-10 Furukawa Electric Co Ltd:The Oxide superconducting thin film
KR20140020999A (en) * 2011-05-23 2014-02-19 후루카와 덴키 고교 가부시키가이샤 Oxide superconducting thin film
KR101456152B1 (en) * 2012-08-06 2014-11-03 서울대학교산학협력단 Superconductor and method of forming the same
JP5591900B2 (en) * 2012-10-10 2014-09-17 公益財団法人国際超電導産業技術研究センター Method for manufacturing thick film tape-shaped RE (123) superconductor
KR20160006829A (en) 2014-07-09 2016-01-20 서울대학교산학협력단 Superconductor, superconducting wire, and method of forming the same
KR101719266B1 (en) * 2016-06-27 2017-04-06 서울대학교산학협력단 Superconductor, superconducting wire, and method of forming the same
CN106222749B (en) * 2016-08-19 2018-09-28 陕西师范大学 Easily remove the preparation method of the remaining single-domain Gd-Ba-Cu-O superconducting block of liquid phase source

Also Published As

Publication number Publication date
JP2003327496A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
RU2232448C2 (en) Method for producing oxide superconductor film and oxide superconductor item
US6077344A (en) Sol-gel deposition of buffer layers on biaxially textured metal substances
JP3556586B2 (en) Method for producing oxide superconductor, raw material for oxide superconductor, and method for producing raw material for oxide superconductor
WO1991016149A1 (en) Preparation of highly textured oxide superconductor films from precursor solutions
JP3851948B2 (en) Superconductor manufacturing method
JP5445982B2 (en) Rare earth superconducting film forming solution and method for producing the same
US7732376B2 (en) Oxide superconducting film and method of preparing the same
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
US20100093545A1 (en) Method for making high jc superconducting films and polymer-nitrate solutions used therefore
US7625843B2 (en) Method for manufacturing a metal organic deposition precursor solution using super-conduction oxide and film superconductor
JP2011528316A (en) Compositions and methods for the production of rare earth metal-Ba2Cu3O7-δ thin films
JP4729766B2 (en) Method for producing superconducting oxide material
JP2008198396A (en) Manufacturing method of superconductive oxide material
Shi et al. The development of Y Ba2Cu3Ox thin films using a fluorine-free sol–gel approach for coated conductors
Wong-Ng et al. Phase evolution of Ba2YCu3O6+ x films during the BaF2 process
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JPH07106905B2 (en) Method for manufacturing superconductor and superconductor
Yamagiwa et al. Epitaxial growth of REBa2Cu3O7− y films on various substrates by chemical solution deposition
JP5273561B2 (en) Manufacturing method of superconducting film
JP4547540B2 (en) Method for producing rare earth 123 type superconducting film oriented on yttrium aluminate single crystal
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JP3612556B2 (en) Superconductor comprising superconducting thin film formed on the surface of an alumina single crystal substrate, and method for forming a superconducting thin film on the surface of an alumina single crystal substrate
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
Celik et al. Growth of Nd2O3 buffer layers on Ni tapes by reel-to-reel sol–gel process for YBCO coated conductors
Jin et al. Effect of fluorine on the intermediate phase evolution for GdBCO film growth

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Ref document number: 3851948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term