JP5273561B2 - Manufacturing method of superconducting film - Google Patents

Manufacturing method of superconducting film Download PDF

Info

Publication number
JP5273561B2
JP5273561B2 JP2009279681A JP2009279681A JP5273561B2 JP 5273561 B2 JP5273561 B2 JP 5273561B2 JP 2009279681 A JP2009279681 A JP 2009279681A JP 2009279681 A JP2009279681 A JP 2009279681A JP 5273561 B2 JP5273561 B2 JP 5273561B2
Authority
JP
Japan
Prior art keywords
film
metal
metal oxide
superconducting
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279681A
Other languages
Japanese (ja)
Other versions
JP2011121804A (en
Inventor
巖 山口
高明 真部
俊弥 熊谷
貢 相馬
和吉 近藤
国男 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009279681A priority Critical patent/JP5273561B2/en
Publication of JP2011121804A publication Critical patent/JP2011121804A/en
Application granted granted Critical
Publication of JP5273561B2 publication Critical patent/JP5273561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment process which is effective to improve the uniformity of the in-plane distribution of superconducting characteristics when a rare earth superconducting composite metal oxide film is produced by an application/thermal-decomposition method, in particular, a rare-earth superconducting film is produced on a large area substrate. <P>SOLUTION: In the heat treatment process, thin films of a metal-containing compound, applied on various supports or substrates, are calcined at a temperature of 200-650&deg;C in an atmosphere having oxygen partial pressure of 0.2-0.8 atm, and including water vapor and having a dew point of &ge;20&deg;C, thereby an organic component contained in the applied film is uniformly removed, and the uniformity of the in-plane distribution of superconducting characteristics is improved. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、超電導マイクロ波デバイス、限流器、線材などへの応用を目指した超電導性複合金属酸化物膜の製造方法に関する。   The present invention relates to a method for manufacturing a superconducting composite metal oxide film aimed at application to superconducting microwave devices, current limiters, wires, and the like.

超電導性複合金属酸化物膜(以下、単に「超電導膜」ということもある。)を形成するために種々の方法が開発されている。
この方法の中に、各種支持体上に超電導膜を形成する原子種を含む有機化合物を含有する溶液を原料とし、これを基板上に塗布し、熱処理を行うことで塗膜を熱分解させて超電導膜を形成する塗布熱分解法がある。この方法では、原子種を含む有機化合物を、溶媒中にできるだけ均一に溶解させて均一混合溶液を調製すること、この溶液を支持体上に均一に塗布すること、加熱処理を行い有機物質などの成分を熱分解処理して有機成分のみを除去すること、高温加熱処理を行い固相反応或いは液相反応を経由して超電導膜を均一に形成することが要求される。本発明者らはこの方法に積極的に関わって開発を進めてきた。そして、超電導膜の製法及び塗布溶液についての発明を行った(特許文献1、2)。
又、高温加熱処理の際に低い酸素分圧をまたは減圧を用いる方法に関しては熊谷らの発明が知られている(特許文献3、4)。この製造方法は、他の方法、例えば真空蒸着法などと比較して、真空装置を必要としないため低コストな製膜方法であるという特長、また長尺・大面積基板上への製膜が容易であるという特長を有している。また、この手法で作製された超電導膜の特性の点からも、他の製法と比較して良好なものであるとして高く評価された。
Various methods have been developed to form a superconducting composite metal oxide film (hereinafter sometimes simply referred to as “superconducting film”).
In this method, a solution containing an organic compound containing an atomic species that forms a superconducting film on various supports is used as a raw material, and this is applied on a substrate and subjected to heat treatment to thermally decompose the coating film. There is a coating pyrolysis method for forming a superconducting film. In this method, an organic compound containing an atomic species is dissolved as uniformly as possible in a solvent to prepare a homogeneous mixed solution, the solution is uniformly coated on a support, and heat treatment is performed to remove an organic substance or the like. It is required to thermally decompose the component to remove only the organic component, to perform high-temperature heat treatment, and to form a superconducting film uniformly through a solid phase reaction or a liquid phase reaction. The present inventors have been actively involved in this method and proceeded with development. And the invention about the manufacturing method and coating solution of a superconducting film was performed (patent documents 1 and 2).
The invention of Kumagai et al. Is known for a method using a low oxygen partial pressure or reduced pressure during high-temperature heat treatment (Patent Documents 3 and 4). Compared with other methods such as vacuum deposition, this manufacturing method has the advantage that it is a low-cost film forming method because it does not require a vacuum device, and the film formation on a long, large-area substrate is possible. It has the feature of being easy. Also, from the viewpoint of the characteristics of the superconducting film produced by this method, it was highly evaluated as being better than other production methods.

この塗布熱分解法による超電導膜の形成の成功に刺激され、これと類似した手法を用いた超電導膜作製に関する研究開発が世界各機関で進められ、以下の方法が発表された。
米国IBMトーマスワトソン研究所、引き続いて、マサチューセッツ工科大学では、トリフルオロ酢酸塩溶液を支持体上に塗布して、これを水蒸気雰囲気中で熱処理することにより、超電導体を形成することができるとしている(非特許文献1、2)。その後、超電導工学研究所では、このプロセスの改良及び最適化を行い、高い臨界電流特性を有する超電導膜の作製に成功したことを発表している(非特許文献3)。さらに真部らはトリフロロ酢酸又はペンタフロロプロピオン酸及びピリジン基及びアセチルアセトナト基を配位子として含む中性の超電導性材料製造用塗布溶液と、これを用いた超電導薄膜の形成方法について発明を行った(特許文献5、6)。
これらフッ素を含む有機化合物を出発原料として用いた場合、高い臨界電流特性が得られるが、熱処理中に有毒で環境負荷の大きなフッ化水素が発生する。また、本焼成工程において流すガスの向きによって特性のばらつきが起きるため、超電導限流器や超電導マイクロ波デバイスなど大面積薄膜への応用は困難である(非特許文献4)。
Stimulated by the successful formation of the superconducting film by this coating pyrolysis method, research and development on superconducting film fabrication using a similar technique was promoted in various organizations around the world, and the following methods were announced.
The IBM Thomas Watson Laboratory, USA, and subsequently the Massachusetts Institute of Technology, said that a superconductor can be formed by applying a trifluoroacetate solution on a support and heat-treating it in a steam atmosphere. (Non-Patent Documents 1 and 2). After that, the Superconducting Engineering Laboratory announced that the process was improved and optimized to successfully produce a superconducting film having high critical current characteristics (Non-patent Document 3). Furthermore, Masabe et al. Invented a coating solution for producing a neutral superconducting material containing trifluoroacetic acid or pentafluoropropionic acid and a pyridine group and an acetylacetonato group as a ligand, and a method for forming a superconducting thin film using the same. (Patent Documents 5 and 6).
When these fluorine-containing organic compounds are used as a starting material, high critical current characteristics can be obtained, but toxic and environmentally friendly hydrogen fluoride is generated during heat treatment. In addition, since variations in characteristics occur depending on the direction of gas flowing in the main firing step, it is difficult to apply to large-area thin films such as superconducting current limiters and superconducting microwave devices (Non-Patent Document 4).

一方、フッ素を含まない金属有機酸塩及びアセチルアセトナトを原料として用いると、熱処理においてフッ化水素が生成しないという特長がある。しかしながら、この場合も大面積薄膜への応用においてその均一性と臨界電流密度(Jc)の向上が課題である(非特許文献5)。
また、トリフルオロ酢酸塩の加水分解にヒントを得て、フッ素を含まない金属トリメチル酢酸塩溶液を基板に塗布し、加湿した酸素気流中あるいは0.02atm以下の酸素分圧の窒素気流中で仮焼成を行うことも提案されている(非特許文献6、7)が、大面積膜は得られていない。
On the other hand, when a metal organic acid salt not containing fluorine and acetylacetonate are used as raw materials, there is a feature that hydrogen fluoride is not generated in the heat treatment. However, in this case as well, improvement of the uniformity and critical current density (Jc) is a problem in application to large-area thin films (Non-Patent Document 5).
Also, inspired by the hydrolysis of trifluoroacetate, a metal-free trimethylacetate solution containing no fluorine was applied to the substrate, and was temporarily placed in a humidified oxygen stream or a nitrogen stream with an oxygen partial pressure of 0.02 atm or less. It has also been proposed to perform firing (Non-Patent Documents 6 and 7), but large-area films have not been obtained.

特公平4−76323号公報Japanese Examined Patent Publication No. 4-76323 特公平4−76324号公報Japanese Examined Patent Publication No. 4-76324 特公平7−10732号公報Japanese Examined Patent Publication No. 7-10732 特公平7−106905号公報Japanese Patent Publication No. 7-106905 特許第3548801号公報Japanese Patent No. 3548801 特許第3548802号公報Japanese Patent No. 3548802

A.Guptaら、Appl.Phys.Lett.52(1988)2077A. Gupta et al., Appl. Phys. Lett. 52 (1988) 2077 P.C.McIntyreら、J.Mater.Res.5(1990)2771P. C. McIntyre et al. Mater. Res. 5 (1990) 2771 荒木ら、低温工学 35(2000)516Araki et al., Cryogenic Engineering 35 (2000) 516 H.Fujiら、Physica C 392−396(2003)905H. Fuji et al., Physica C 392-396 (2003) 905 T.Manabeら、Physica C 412(2004)896T.A. Manabe et al., Physica C 412 (2004) 896 Y.Xu et al. J.Mater.Res.18(2003)677Y. Xu et al. J. et al. Mater. Res. 18 (2003) 677 B.Zhao et al.Physica C386(2003)348B. Zhao et al. Physica C386 (2003) 348

前述のとおり、フッ素を含まない金属有機化合物を原料として塗布熱分解法で希土類超電導性複合金属酸化物膜を製造する場合、超電導限流器や超電導マイクロ波デバイスなど大面積薄膜への応用において、その均一性と臨界電流密度の向上が課題である。
本発明は、こうした現状を鑑みてなされたものであって、フッ素を含まない金属有機化合物を原料として、超電導性複合金属酸化物膜を製造する際に、製造された大面積超電導膜の均一性と臨界電流密度の向上を可能とする製造方法を提供することを目的とするものである。
As mentioned above, when manufacturing rare earth superconducting composite metal oxide films by coating pyrolysis method using metal organic compounds that do not contain fluorine, in applications to large area thin films such as superconducting current limiters and superconducting microwave devices, Improvement of the uniformity and critical current density is a challenge.
The present invention has been made in view of the current situation, and the uniformity of the large-area superconducting film produced when a superconducting composite metal oxide film is produced using a metal organic compound containing no fluorine as a raw material. It is an object of the present invention to provide a manufacturing method capable of improving the critical current density.

不均一性が起こる原因としては、金属含有化合物の膜を200〜650℃で仮焼成して含有する有機成分を除去して仮焼成膜を形成する工程の際に、有機成分の除去が不完全であったり、有機成分の仮焼成が急激に起こって膜表面があれたりすることが考えられる。特に、膜の面積が大きくなった場合、膜中心部と周辺部、あるいは仮焼成工程における発熱体と膜との遠近、又はガスを流通させて仮焼成を行う場合の風上風下の影響等により不均一性が大きくなる。
そこで、本発明者らは、上記目的を達成すべく鋭意研究を重ね、大面積超電導膜を塗布熱分解法で製造する際の金属含有化合物膜の仮焼成工程を、制御された酸素分圧下で水蒸気を含んだ雰囲気中で行うことにより、製造された大面積超電導膜の均一性と臨界電流密度を向上させることが可能となるという知見を得た。
The cause of the non-uniformity is that the removal of the organic component is incomplete during the step of forming the temporary fired film by removing the organic component contained by pre-baking the metal-containing compound film at 200 to 650 ° C. It is conceivable that the pre-baking of the organic component occurs suddenly and the film surface is removed. In particular, when the area of the film becomes large, due to the influence of the windward and leeward when pre-firing is performed by circulating gas through the center and periphery of the film, the distance between the heating element and the film in the pre-firing process, or the like. Non-uniformity increases.
Therefore, the present inventors have conducted extensive research to achieve the above object, and the preliminary firing step of the metal-containing compound film at the time of producing a large-area superconducting film by a coating pyrolysis method, under controlled oxygen partial pressure. It was found that the uniformity and critical current density of the manufactured large-area superconducting film can be improved by carrying out in an atmosphere containing water vapor.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
〈1〉希土類元素、バリウム及び銅からなる超電導性複合金属酸化物膜を製造する方法において、少なくとも、
(i)金属有機酸塩及び金属アセチルアセトナトの中から選ばれるフッ素を含まない金属含有化合物を用い、超電導性複合金属酸化物に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を調製する工程、
(ii)該溶液を支持体上に塗布乾燥して支持体上に該金属含有化合物の膜を形成する工程、
(iii)該支持体上に形成された該金属含有化合物の膜を、酸素分圧が0.2〜0.8atmであり、露点が20℃以上の水蒸気をふくむ雰囲気中で、200〜650℃で仮焼成して含有する有機成分を除去して仮焼成膜を形成する工程、及び
(iv)該仮焼成膜を650〜900℃で本焼成して結晶化を行わせ、さらに900〜400℃で酸素を吸収させて超電導性複合金属酸化物膜とする工程
を含むことを特徴とする、超電導性複合金属酸化物膜の製造方法。
〈2〉前記の本焼成工程を、酸素分圧0.01〜100Paで行った後、前記の酸素を吸収させる工程を、酸素分圧0.2〜1.2atmで行わせることを特徴とする上記〈1〉の、超電導性複合金属酸化物膜の製造方法。
〈3〉前記フッ素を含まない金属含有化合物の有機溶媒溶液を調製する工程が、希土類元素、バリウム及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解して、均一な溶液とするものであることを特徴とする上記〈1〉又は〈2〉の、超電導性複合金属酸化物膜の製造方法。
〈4〉前記炭素数が1〜8の直鎖アルコール及び/または水に溶解した後、多価アルコールを添加して、均一溶液とすることを特徴とする上記〈3〉の、超電導性複合金属酸化物膜の製造方法。
〈5〉前記多価アルコールが、2価のアルコール及び3価のアルコールから選ばれる少なくとも1種であることを特徴とする上記〈4〉の、超電導性複合金属酸化物膜の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
<1> In a method for producing a superconducting composite metal oxide film composed of rare earth elements, barium and copper,
(I) A metal-containing compound formulated using a metal-containing compound not containing fluorine selected from metal organic acid salts and metal acetylacetonates so as to have a metal seed composition corresponding to a superconducting composite metal oxide Preparing an organic solvent solution;
(Ii) applying and drying the solution on a support to form a film of the metal-containing compound on the support;
(Iii) The film of the metal-containing compound formed on the support is 200 to 650 ° C. in an atmosphere containing water vapor having an oxygen partial pressure of 0.2 to 0.8 atm and a dew point of 20 ° C. or higher. And (iv) subjecting the temporary fired film to main firing at 650 to 900 ° C. for crystallization, and further 900 to 400 ° C. A method for producing a superconducting composite metal oxide film, comprising the step of absorbing oxygen to form a superconducting composite metal oxide film.
<2> After performing the main firing step at an oxygen partial pressure of 0.01 to 100 Pa, the step of absorbing the oxygen is performed at an oxygen partial pressure of 0.2 to 1.2 atm. The method for producing a superconducting composite metal oxide film according to <1>.
<3> The step of preparing an organic solvent solution of the metal-containing compound containing no fluorine is a metal carboxylate having 1 to 8 carbon atoms and / or metal acetylacetate, which is a metal species containing rare earth elements, barium and copper. After adding pyridine and / or at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to the sodium powder mixture to produce a metal complex and volatilizing excess solvent, The superconducting composite metal oxide according to the above <1> or <2>, which is dissolved in a monovalent linear alcohol having 1 to 8 carbon atoms and / or water to form a uniform solution A method for producing a membrane.
<4> The superconducting composite metal according to <3>, wherein after dissolving in the linear alcohol having 1 to 8 carbon atoms and / or water, a polyhydric alcohol is added to obtain a homogeneous solution. Manufacturing method of oxide film.
<5> The method for producing a superconducting composite metal oxide film according to <4>, wherein the polyhydric alcohol is at least one selected from divalent alcohols and trivalent alcohols.

本発明によれば、超電導限流器およびマイクロ波デバイスの特性および安定性、信頼性が大幅に向上するため、省資源、省エネルギー、低コスト化が実現される。   According to the present invention, the characteristics, stability, and reliability of the superconducting fault current limiter and the microwave device are greatly improved, so that resource saving, energy saving, and cost reduction are realized.

本発明の超電導膜の製造方法について、順に説明する。
[金属含有化合物の有機溶媒溶液の調製工程]
本発明の方法に用いられる、金属含有化合物の有機溶媒溶液には、希土類金属、バリウム(Ba)、及び銅(Cu)からなる各金属成分を必須成分として含有する。この溶液は、酸化物超電導膜形成のために用いられるものであり、又、加熱処理を行って、これらの金属成分を含有する無機化合物を合成するために用いることができる。
The manufacturing method of the superconducting film of this invention is demonstrated in order.
[Preparation process of organic solvent solution of metal-containing compound]
The organic solvent solution of the metal-containing compound used in the method of the present invention contains each metal component composed of rare earth metal, barium (Ba), and copper (Cu) as an essential component. This solution is used to form an oxide superconducting film, and can be used to synthesize an inorganic compound containing these metal components by performing a heat treatment.

前記必須成分である希土類金属元素には、イットリウム(Y)及びランタノイド元素である、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)を含有する。これらの希土類金属はこれらの中から選ばれる複数の金属を用いることもできる。   The essential rare earth metal elements include yttrium (Y) and lanthanoid elements, lanthanum (La), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium (Dy). , Holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). These rare earth metals can also use a plurality of metals selected from these.

超電導膜を製造することを目的とする場合には、上記の希土類金属、バリウム及び銅の必須金属成分の他に、上記以外の希土類金属として例えばセリウム(Ce)やプラセオジム(Pr)等、カルシウム、又はストロンチウム等の他の成分を少量含ませることにより、得られる超電導膜の電気的特性を変化させることができる。
また、この他にも超電導膜を形成する際に用いることができる金属種として用いることができるものであれば、適宜用いることができる。
For the purpose of producing a superconducting film, in addition to the above-mentioned rare earth metal, barium and copper essential metal components, other rare earth metals such as cerium (Ce) and praseodymium (Pr), calcium, Alternatively, by including a small amount of other components such as strontium, the electrical characteristics of the resulting superconducting film can be changed.
In addition, any metal species that can be used as a metal species that can be used when forming a superconducting film can be used as appropriate.

希土類金属、バリウム、銅からなる超電導膜を形成しようとする場合には、希土類金属、バリウム及び銅の比率として、1:2:3の割合の希土類123系(以下たとえば希土類金属がイットリウムの場合、Y123という)超電導膜、1:2:4の割合の希土類124系(以下たとえば希土類金属がイットリウムの場合、Y124という)超電導膜などが存在する。したがって、原料溶液における前記元素種の混合割合は、モル比で、1:2:3〜1:2:4のものが好ましいが、たとえばバリウムが欠損した組成などでも好ましい結果を得ることができるため、この割合にしばられるものではない。
又、上記溶液に銀などの1価金属、カルシウムやストロンチウムなどの2価金属、超電導相を構成する必須希土類金属以外の希土類金属などの3価金属、ジルコニウム、ハフニウムなどの4価金属を添加することにより、添加元素又はその化合物が含有された超電導体を形成することが可能である。カルシウムやストロンチウム等の添加元素又はその化合物が含有された超電導体は、それらが含有されない超電導体とは異なる電気的特性を有するため、溶液中の金属の比率を制御することで、超電導体の電気的特性、例えば臨界温度や臨界電流密度などの諸特性を制御することが可能となる。
When a superconducting film made of rare earth metal, barium, and copper is to be formed, the ratio of rare earth metal, barium, and copper is a rare earth 123 system having a ratio of 1: 2: 3 (hereinafter, for example, when the rare earth metal is yttrium, A superconducting film having a ratio of 1: 2: 4 (hereinafter referred to as Y124 when the rare earth metal is yttrium, for example). Therefore, the mixing ratio of the element species in the raw material solution is preferably a molar ratio of 1: 2: 3 to 1: 2: 4. However, for example, a preferable result can be obtained even in a composition lacking barium. , This ratio is not something that can be tied.
In addition, monovalent metals such as silver, divalent metals such as calcium and strontium, trivalent metals such as rare earth metals other than the essential rare earth metals constituting the superconducting phase, and tetravalent metals such as zirconium and hafnium are added to the above solution. Thus, it is possible to form a superconductor containing an additive element or a compound thereof. Superconductors containing additive elements such as calcium and strontium or their compounds have different electrical characteristics from superconductors that do not contain them, so by controlling the ratio of metals in the solution, It is possible to control various characteristics such as critical temperature and critical current density.

本発明の製造法に用いる前記溶液は、希土類元素、バリウム及び銅を含有する金属種の金属イオンに対して、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数1〜8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、炭素数が1〜8の直鎖アルコール及び/又は水に溶解されて、均一溶液とされている。   The solution used in the production method of the present invention is pyridine and / or at least one tertiary amine and at least one carbon number of 1 to 1 with respect to a metal ion of a metal species containing rare earth elements, barium and copper. A metal complex in which a carboxylic acid group of 8 and an acetylacetonato group are coordinated as necessary is dissolved in a linear alcohol having 1 to 8 carbon atoms and / or water to form a uniform solution.

該金属錯体における配位子の1つである「三級アミン」としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等が用いられ、また、「炭素数1〜8のカルボン酸基」のカルボン酸としては、例えば、2−エチルヘキサン酸、カプリル酸、酪酸、プロピオン酸、酢酸、シュウ酸、クエン酸、乳酸、安息香酸、サリチル酸等が挙げられる。
また、前記の炭素数1〜8の1価の直鎖アルコールとしては、メタノール、エタノール、n−プロパノール、n−ブタノール、n−ペンタノール等が上げられ、これらの混合物を用いることもできる。
また、金属錯体を溶解するのに、水を用いることもでき、また、1種類以上の前記の炭素数1〜8の1価の直鎖アルコールと水の混合物を用いることもできる。
As the “tertiary amine” which is one of the ligands in the metal complex, for example, trimethylamine, triethylamine, tripropylamine, tributylamine and the like are used, and “a carboxylic acid group having 1 to 8 carbon atoms” is used. Examples of the carboxylic acid include 2-ethylhexanoic acid, caprylic acid, butyric acid, propionic acid, acetic acid, oxalic acid, citric acid, lactic acid, benzoic acid, and salicylic acid.
Moreover, as said C1-C8 monovalent | monohydric linear alcohol, methanol, ethanol, n-propanol, n-butanol, n-pentanol etc. are raised, These mixtures can also be used.
Further, water can be used to dissolve the metal complex, and a mixture of one or more kinds of the monovalent linear alcohol having 1 to 8 carbon atoms and water can also be used.

また、本発明の製造に用いるこの均一溶液は、好ましくは、前記の炭素数が1〜8の直鎖アルコールに溶解した後、さらに、多価アルコール類を添加して、均一溶液とされているものが用いられる。多価アルコール類を添加することにより、前述の仮焼成工程、及び本焼成工程におけるクラックの発生を、防止することができるためである。
前記多価アルコール類としては、エチレングリコール、ヘキシレングリコール、オクチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール等が挙げられる。
The homogeneous solution used in the production of the present invention is preferably made into a uniform solution by further adding polyhydric alcohols after dissolving in the linear alcohol having 1 to 8 carbon atoms. Things are used. This is because the addition of polyhydric alcohols can prevent the occurrence of cracks in the above-described preliminary firing step and main firing step.
Examples of the polyhydric alcohols include ethylene glycol, hexylene glycol, octylene glycol, glycerin, diethylene glycol, triethylene glycol, tetraethylene glycol, and propylene glycol.

本発明の超電導膜製造用溶液の調製は、具体的には、希土類元素、バリウム及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解し、好ましくは、さらに多価アルコール類を添加して、均一な溶液とすることにより調製される。   Specifically, the preparation of the superconducting film manufacturing solution of the present invention is performed on a metal carboxylate having 1 to 8 carbon atoms and / or a metal acetylacetonate powder mixture of rare earth elements, barium and copper. , Pyridine and / or at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to produce a metal complex and volatilizing an excess solvent, It is prepared by dissolving in 8 monovalent linear alcohol and / or water, and preferably adding a polyhydric alcohol to obtain a uniform solution.

〔原料溶液の塗布工程〕
この工程は、前記の溶液を、基材上に塗布して、金属含有化合物の溶液塗布膜を形成する工程である。この場合、その溶液塗布法としては、従来公知の方法、例えば、浸漬法、スピンコート法、スプレー法、ハケ塗り法等の各種の方法を用いることができる。
基材としては、各種の材料及び形状のものを用いることができる。この場合、材料としては、ニッケル、銅、金、銀、ステンレス、ハステロイ等の金属や合金、アルミナ、ジルコニア、チタニア、チタン酸ストロンチウム、ランタンアルミネート、ネオジムガレート、イットリウムアルミネート等の金属酸化物、炭化ケイ素等のセラミックスが用いられ、またその形状としては、曲面及び平面を問わず採用され、例えば、板状、線状、コイル状、繊維状、編織布状、管状等任意の形状が採用される。支持体は、多孔質のものであってもよい。さらに複合金属酸化物と基材との反応を防止するため及び/または両者の格子ミスマッチを緩和するため、基材の表面に金属膜や、ジルコニア、セリア等の金属酸化物膜を中間層としてあらかじめ形成することができる。
[Raw material solution coating process]
In this step, the solution is applied onto a substrate to form a solution coating film of a metal-containing compound. In this case, as the solution coating method, conventionally known methods, for example, various methods such as a dipping method, a spin coating method, a spray method, and a brush coating method can be used.
As the substrate, various materials and shapes can be used. In this case, as materials, metals and alloys such as nickel, copper, gold, silver, stainless steel, hastelloy, alumina, zirconia, titania, strontium titanate, lanthanum aluminate, neodymium gallate, yttrium aluminate, etc., Ceramics such as silicon carbide are used, and any shape such as a curved surface or a flat surface can be used. For example, any shape such as a plate shape, a wire shape, a coil shape, a fiber shape, a woven fabric shape, and a tubular shape can be adopted. The The support may be porous. Further, in order to prevent the reaction between the composite metal oxide and the base material and / or to relax the lattice mismatch between the two, a metal film or a metal oxide film such as zirconia or ceria is previously formed on the surface of the base material as an intermediate layer. Can be formed.

〔乾燥工程〕
前記のようにして基材上に形成された溶液塗布膜を、室温又は加温下で常圧又は減圧下で乾燥させる。この乾燥工程後に続く仮焼成工程の初期において乾燥を完結することができるため、この乾燥工程においては塗布膜を完全に乾燥させなくとも良い。また、後続の仮焼成工程を乾燥工程として兼用させ得ることから、この乾燥工程は省略することもできる。
[Drying process]
The solution coating film formed on the substrate as described above is dried under normal pressure or reduced pressure at room temperature or under heating. Since the drying can be completed at the initial stage of the pre-baking process following the drying process, the coating film does not have to be completely dried in the drying process. Further, since the subsequent pre-baking step can be used as the drying step, this drying step can be omitted.

〔仮焼成工程〕
この工程は、前記のようにして基材上に形成された金属含有化合物の膜を加熱焼成し、その膜を、炭酸バリウム、希土類金属酸化物及び銅酸化物からなる膜に変換させる工程である。最高焼成温度としては、400〜650℃、好ましくは450〜550℃の温度が採用され、この温度まで徐々に昇温してこの温度に20〜600分間、相当膜厚が500nm以上の場合好ましくは150〜300分間保持したのち降温する。
仮焼成の雰囲気は、酸素分圧が0.2〜0.8atmであり、露点が20℃以上の水蒸気をふくむ雰囲気が用いられる。
この酸素分圧が上記範囲以下では酸素の供給が不足するため、仮焼成後に炭素に富んだ有機成分が膜中に残りやすい。この仮焼成膜中の炭素に富んだ有機成分は、本焼成を低酸素分圧下で行う際に膜を部分的に還元性にするため、Y123が不均一に生成して臨界電流密度も低くなる。一方、この酸素分圧が上記範囲以上では酸素の供給が過剰となり有機成分の燃焼とガスの発生が急激に起こるため、表面組織が乱れて凹凸が生じ、本焼成後のY123膜の臨界電流密度は高いものの、その分布が不均一となる。
また、水蒸気の露点が20℃以下の場合にも上記と同様に、仮焼成後に炭素に富んだ有機成分が膜中に残りやすく、本焼成後にY123が不均一に生成して臨界電流密度が低くなる。仮焼成工程において水蒸気は、式(1)で表す水性ガス反応による炭素成分のガス化と同様の機構により、膜中の炭素成分の除去を促進するものと考えられる。
C + HO → CO + H (1)
[Temporary firing process]
This step is a step of heating and baking the metal-containing compound film formed on the substrate as described above, and converting the film into a film made of barium carbonate, rare earth metal oxide, and copper oxide. . As the maximum firing temperature, a temperature of 400 to 650 ° C., preferably 450 to 550 ° C. is adopted. When the temperature is gradually raised to this temperature and this temperature is 20 to 600 minutes, the equivalent film thickness is preferably 500 nm or more. The temperature is lowered after holding for 150 to 300 minutes.
As the pre-baking atmosphere, an atmosphere including water vapor having an oxygen partial pressure of 0.2 to 0.8 atm and a dew point of 20 ° C. or higher is used.
When the oxygen partial pressure is not more than the above range, the supply of oxygen is insufficient, so that an organic component rich in carbon tends to remain in the film after pre-baking. The carbon-rich organic component in the pre-fired film partially makes the film reducible when the main calcination is carried out under a low oxygen partial pressure, so that Y123 is generated non-uniformly and the critical current density is also lowered. . On the other hand, if the oxygen partial pressure is above the above range, the supply of oxygen becomes excessive and the combustion of organic components and the generation of gas occur rapidly, so that the surface texture is disturbed and irregularities are formed, and the critical current density of the Y123 film after the main firing Is high, but its distribution is non-uniform.
Similarly, when the dew point of water vapor is 20 ° C. or lower, an organic component rich in carbon is likely to remain in the film after calcination, and Y123 is generated unevenly after calcination, resulting in a low critical current density. Become. In the calcination step, water vapor is considered to promote the removal of the carbon component in the film by the same mechanism as the gasification of the carbon component by the water gas reaction represented by the formula (1).
C + H 2 O → CO + H 2 (1)

〔本焼成工程〕
この工程は、前記仮焼成工程で形成された膜を焼成して炭酸バリウムから炭酸ガスを除去しつつ、炭酸バリウムと希土類金属酸化物と銅酸化物を反応させる工程である。本発明においては、この焼成工程は、酸素分圧0.01〜100Pa、特に1〜20Paにおいて実施することが好ましい。
このような焼成条件の採用により、前記仮焼成工程で形成された膜中の炭酸バリウムの分解が促進されるとともに、複合金属酸化物膜が形成される。また、この焼成工程では、前記のように低酸素濃度又は低酸素分圧の条件を採用することから、炭酸バリウムの分解は低められた温度で円滑に実施することができるため、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この工程における一般的な焼成温度は650〜900℃である。本発明における前記のような焼成条件により、従来見られたような基材及び/又は中間層と複合金属酸化物との間の反応を実質的に防止することができる。
[Main firing process]
This step is a step of reacting barium carbonate, rare earth metal oxide, and copper oxide while baking the film formed in the preliminary baking step to remove carbon dioxide from the barium carbonate. In the present invention, this firing step is preferably carried out at an oxygen partial pressure of 0.01 to 100 Pa, particularly 1 to 20 Pa.
By adopting such firing conditions, decomposition of barium carbonate in the film formed in the preliminary firing step is promoted, and a composite metal oxide film is formed. Further, in this firing step, since the conditions of low oxygen concentration or low oxygen partial pressure are adopted as described above, the decomposition of barium carbonate can be carried out smoothly at a reduced temperature. Alternatively, the reaction between the intermediate layer and the composite metal oxide can be substantially avoided. The general firing temperature in this step is 650 to 900 ° C. According to the firing conditions as described above in the present invention, it is possible to substantially prevent the reaction between the base material and / or the intermediate layer and the composite metal oxide as conventionally observed.

〔酸化工程〕
この工程は、前記本焼成工程で形成された複合金属酸化物膜を、分子状酸素を用いて酸化処理し、酸素を吸収させて、超電導性を有する複合金属酸化物膜とする工程である。
前記本焼成工程では、雰囲気中の酸素分圧が0.01〜100Paとなるように保持したため、得られる複合金属酸化物膜の超電導特性は不満足のものであるが、この酸化工程により超電導特性にすぐれた複合金属酸化物膜に変換することができる。
この酸素を吸収させる酸化工程は、酸素分圧0.2〜1.2atmで行わせることが好ましい。
分子状酸素としては、純酸素又は空気が用いられる。酸化剤として空気を用いる場合、その中に含まれる炭酸ガスによって膜の超電導特性が悪影響を受けることから、空気中の炭酸ガス分圧は、脱炭酸により、1Pa以下、好ましくは0.5Pa以下に調整するのがよい。
この酸化工程は、中高温で行われ、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この酸化工程の温度は、一般には、400〜900℃である。本発明の方法を実施する場合、前記仮焼成工程、本焼成工程及び酸化工程は、同一装置内で連続的に実施することができる。
[Oxidation process]
This step is a step in which the composite metal oxide film formed in the main firing step is oxidized using molecular oxygen to absorb oxygen to form a composite metal oxide film having superconductivity.
In the main firing step, since the oxygen partial pressure in the atmosphere is maintained at 0.01 to 100 Pa, the superconducting properties of the obtained composite metal oxide film are unsatisfactory. It can be converted into an excellent composite metal oxide film.
The oxidation step for absorbing oxygen is preferably performed at an oxygen partial pressure of 0.2 to 1.2 atm.
As the molecular oxygen, pure oxygen or air is used. When air is used as the oxidant, the superconducting properties of the film are adversely affected by the carbon dioxide contained therein, so the carbon dioxide partial pressure in the air is reduced to 1 Pa or less, preferably 0.5 Pa or less by decarboxylation. It is good to adjust.
This oxidation step is performed at a medium to high temperature, and the reaction between the substrate and / or the intermediate layer and the composite metal oxide can be substantially avoided. The temperature of this oxidation process is generally 400 to 900 ° C. When implementing the method of this invention, the said temporary baking process, this baking process, and an oxidation process can be continuously implemented in the same apparatus.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
(実施例1〜3)
市販品(日本化学産業株式会社製)のイットリウム、バリウム及び銅のアセチルアセトナト粉末を、金属成分のモル比で1:2:3となるように秤量し、これらを混合して粉体混合物を得た。この混合物にピリジンおよびプロピオン酸を、粉体混合物がすべて溶解するまでの量を添加した。これを加熱処理し、過剰な前記溶媒成分(ピリジンおよびプロピオン酸)を除去し、非晶質乾固物のアセチルアセトナト基−プロピオン酸基−ピリジン配位金属錯体を得た。次に、これをメタノールに溶解させて、金属元素の割合がY:Ba:Cu=1:2:3の液体状の金属錯体(配位子としてアセチルアセトナト基、ピリジン、プロピオン酸基の3種類を含む)からなる塗布溶液を得た。溶液の濃度は、溶液1gあたり希土類金属種が0.1〜0.2ミリモル含まれる量とした。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
(Examples 1-3)
A commercially available product (manufactured by Nippon Kagaku Sangyo Co., Ltd.) acetylacetonate powder of yttrium, barium and copper is weighed so that the molar ratio of metal components is 1: 2: 3, and these are mixed to obtain a powder mixture. Obtained. To this mixture, pyridine and propionic acid were added in amounts until the powder mixture was completely dissolved. This was heat-treated to remove excess solvent components (pyridine and propionic acid) to obtain an amorphous dry solid acetylacetonate group-propionic acid group-pyridine coordination metal complex. Next, this is dissolved in methanol, and a liquid metal complex in which the ratio of the metal element is Y: Ba: Cu = 1: 2: 3 (3 of acetylacetonato group, pyridine, propionic acid group as a ligand) A coating solution comprising the above was obtained. The concentration of the solution was such that 0.1 to 0.2 mmol of rare earth metal species was contained per 1 g of the solution.

この溶液を、あらかじめ酸化セリウムを表面に蒸着させた直径5cmの円盤状サファイア基板の上にスピンコート法で塗布した。この塗布膜を、酸素分圧が、それぞれ、0.2、0.5、及び0.7atmで、露点24℃の水蒸気を含んだ気流中で500℃まで昇温して有機成分を除去する仮焼成を行った。
この仮焼成膜は、いずれも淡褐色かつ透明で良好な平滑性を有していた。
これらの仮焼成膜について、本焼成工程を760℃にて2時間酸素分圧10Paの気流中で行った後、大気圧で酸素を吸収させて膜厚100nmのY123超電導体膜を作製した。
This solution was applied by spin coating on a disk-shaped sapphire substrate having a diameter of 5 cm, on which cerium oxide had been previously deposited. This coating film was heated to 500 ° C. in an air stream containing water vapor having a dew point of 24 ° C. with oxygen partial pressures of 0.2, 0.5, and 0.7 atm, respectively, to remove organic components. Firing was performed.
All of the temporarily fired films were light brown and transparent and had good smoothness.
About these temporary baking films | membranes, after performing this baking process in 720 degreeC for 2 hours in the airflow of oxygen partial pressure 10Pa, oxygen was absorbed at atmospheric pressure and the Y123 superconductor film | membrane with a film thickness of 100 nm was produced.

また、同一基板上に、上記スピンコート塗布工程と仮焼成工程を最大3回(製造されるY123膜として最大膜厚300nm)繰り返す実験を行ったところ、膜厚は塗布回数に比例して増加することを確認した。また、工程を繰り返した後の膜も良好な平滑性を有することを確認した。
すなわち、塗布溶液が下地仮焼成膜を溶解することがなく、スピンコート塗布工程と仮焼成工程の繰り返しにより厚膜が形成できることを確認した。
得られた本焼成後の膜試料 (膜厚200nm)を、マックサイエンス社製X線回折装置MXP3を用いたX線回折法により分析したところ、膜がY123構造の超電導体単相であることを確認した。次に同装置を用いたX線極点測定によりY123の面内配向性を調べたところ、単結晶基板上にエピタキシャル成長していることを確認した。さらに、この膜の超電導特性をテバ社製クライオスキャンを用いた誘導法で評価したところ、液体窒素温度での臨界電流密度(Jc)として平均4MA/cmという高い特性が得られた。また、直径5cmの円盤サイズにおける面内のJcの分布は平均値の±10%以内であり、均一性が高かった。
これらの結果を、下記の表に記載する。
In addition, when an experiment was repeated on the same substrate by repeating the spin coat coating process and the pre-baking process three times at maximum (maximum film thickness of 300 nm as a manufactured Y123 film), the film thickness increased in proportion to the number of coatings. It was confirmed. Moreover, it was confirmed that the film after repeating the process also has good smoothness.
That is, it was confirmed that the coating solution did not dissolve the base pre-baked film, and that a thick film could be formed by repeating the spin coat coating process and the pre-baking process.
The obtained film sample after film firing (film thickness 200 nm) was analyzed by an X-ray diffraction method using an X-ray diffractometer MXP3 manufactured by MacScience, and it was found that the film was a superconductor single phase having a Y123 structure. confirmed. Next, when the in-plane orientation of Y123 was examined by X-ray pole measurement using the same apparatus, it was confirmed that it was epitaxially grown on the single crystal substrate. Furthermore, when the superconducting property of this film was evaluated by an induction method using a cryoscan manufactured by Teva, a high characteristic of an average of 4 MA / cm 2 was obtained as a critical current density (Jc) at a liquid nitrogen temperature. In addition, the in-plane Jc distribution in a disk size of 5 cm in diameter was within ± 10% of the average value, and the uniformity was high.
These results are listed in the table below.

(比較例1)
実施例1で仮焼成工程の酸素分圧を、0.02atmとした他は同様にして仮焼成膜を作製した。
得られた仮焼成膜は、褐色をしており表面の平滑性がやや低下していた。
この仮焼成膜について、実施例1と同様の本焼成工程を行わせて作製した本焼成膜はY123超電導体をふくんでいたが、液体窒素温度での臨界電流密度は平均0.5MA/cmと低い特性となった。ただし、直径5cmの円盤サイズにおける面内のJcの分布は平均値の±10%以内であり、均一性は高かった。この結果を、下記の表に記載する。
(Comparative Example 1)
A pre-fired film was prepared in the same manner as in Example 1 except that the oxygen partial pressure in the pre-baking step was 0.02 atm.
The obtained pre-baked film was brown and the surface smoothness was slightly lowered.
The calcined film produced by performing the same calcining process as in Example 1 for this temporarily calcined film contained Y123 superconductor, but the critical current density at the liquid nitrogen temperature averaged 0.5 MA / cm 2. And low characteristics. However, the in-plane Jc distribution in a disk size of 5 cm in diameter was within ± 10% of the average value, and the uniformity was high. The results are listed in the table below.

(比較例2)
実施例1で仮焼成工程の酸素分圧を、それぞれ0.95atmとした他は同様にして仮焼成膜を作製した。
得られた仮焼成膜は、褐色をしており表面の平滑性が低下していた。
この仮焼成膜について、実施例1と同様の本焼成工程を行わせて作製した本焼成膜はY123超電導体をふくみ、液体窒素温度での臨界電流密度は平均2MA/cmという高い特性が得られた。ただし、直径5cmの円盤サイズにおける面内のJcの分布は平均値から20%以上異なる箇所もあり、均一性がやや低かった。
この結果を、下記の表に記載する。
(Comparative Example 2)
A pre-fired film was prepared in the same manner as in Example 1 except that the oxygen partial pressure in the pre-baking step was 0.95 atm.
The obtained pre-baked film was brown and the surface smoothness was lowered.
With respect to this temporarily fired film, the fired film produced by performing the same firing process as in Example 1 includes the Y123 superconductor, and the critical current density at the liquid nitrogen temperature has a high average characteristic of 2 MA / cm 2. It was. However, the in-plane Jc distribution in a disk size of 5 cm in diameter was slightly different from the average value in some places, and the uniformity was slightly low.
The results are listed in the table below.

(比較例3,4)
実施例2で、露点を、−10℃及び14℃の水蒸気を含んだ気流中とした他は同様にして仮焼成膜を作製した。
得られた仮焼成膜は、いずれも褐色をしており、表面の平滑性も低下していた。
これらの仮焼成膜について、実施例1と同様の本焼成工程を行わせて作製した本焼成膜はY123超電導体をふくみ、液体窒素温度での臨界電流密度は平均2MA/cmであった。直径5cmの円盤サイズにおける面内のJcの分布は平均値から30%以上異なる箇所もあり、不均一であった。
これらの結果を、下記の表に記載する。
(Comparative Examples 3 and 4)
A pre-fired film was produced in the same manner as in Example 2 except that the dew point was changed to an air stream containing water vapor at -10 ° C and 14 ° C.
The obtained pre-fired films were all brown, and the surface smoothness was also lowered.
With respect to these temporarily fired films, the fired films produced by performing the same firing process as in Example 1 included the Y123 superconductor, and the critical current density at the liquid nitrogen temperature was an average of 2 MA / cm 2 . In-plane Jc distribution in a disk size of 5 cm in diameter was non-uniform, with some differences from the average value by 30% or more.
These results are listed in the table below.

(実施例4)
原料による影響を調べるために、出発原料を市販品(和光純薬工業株式会社)のイットリウム、バリウム及び銅の酢酸塩粉末とし、ピリジンの代わりにトリメチルアミンとし、メタノールの代わりにn−ブタノールと水とした他は実施例2と同様にして仮焼成膜を作製した。この仮焼成膜は、いずれも淡褐色かつ透明で良好な平滑性を有していた。
これらの仮焼成膜を実施例2と同様の本焼成工程を行わせて作製した本焼成膜はY123構造の超電導体単相であり、単結晶基板上にエピタキシャル成長していることを確認した。液体窒素温度での臨界電流密度(Jc)として平均3.5MA/cmという高い特性が得られた。また、直径5cmの円盤サイズにおける面内のJcの分布は平均値の±10%以内であり、均一性が高かった。
この結果を、下記の表に記載する。
Example 4
In order to investigate the effects of raw materials, the starting materials were commercial products (Wako Pure Chemical Industries, Ltd.) yttrium, barium and copper acetate powder, trimethylamine instead of pyridine, n-butanol and water instead of methanol. A pre-fired film was produced in the same manner as in Example 2 except for the above. All of the temporarily fired films were light brown and transparent and had good smoothness.
It was confirmed that these temporarily fired films were produced by performing the same firing process as in Example 2 and that the fired film was a superconductor single phase having a Y123 structure and was epitaxially grown on a single crystal substrate. As a critical current density (Jc) at liquid nitrogen temperature, a high characteristic of an average of 3.5 MA / cm 2 was obtained. In addition, the in-plane Jc distribution in a disk size of 5 cm in diameter was within ± 10% of the average value, and the uniformity was high.
The results are listed in the table below.

(実施例5)
厚膜にしたときの影響を調べるために、あらかじめ酸化セリウムを表面に蒸着させた直径5cmの円盤状イットリア安定化ジルコニア単結晶基板の上に、実施例2で、溶液の濃度を、溶液1gあたり希土類金属種が0.2〜0.3ミリモル含まれる量とし、均一溶液とするために、オクチレングリコールを添加した溶液を用いて、作製されるY123超電導体膜の膜厚を550nmとした他は同様にして作製した本焼成膜はY123構造の超電導体単相であり、単結晶基板上にエピタキシャル成長していることを確認した。液体窒素温度での臨界電流密度(Jc)として平均2MA/cmであった。直径5cmの円盤サイズにおける面内のJcの分布は平均値の±10%以内であり、均一性が高かった。
この結果を、下記の表に記載する。
(Example 5)
In order to investigate the effect of thick film, on the disk-like yttria-stabilized zirconia single crystal substrate having a diameter of 5 cm, on which cerium oxide was vapor-deposited in advance, the concentration of the solution in Example 2 was adjusted per gram of solution. In order to make the amount of the rare earth metal species 0.2 to 0.3 mmol and to make a uniform solution, the thickness of the Y123 superconductor film to be produced was set to 550 nm using a solution to which octylene glycol was added. It was confirmed that the fired film produced in the same manner was a superconductor single phase having a Y123 structure and was epitaxially grown on a single crystal substrate. The critical current density (Jc) at the liquid nitrogen temperature was 2 MA / cm 2 on average. In-plane Jc distribution in a disk size of 5 cm in diameter was within ± 10% of the average value, and the uniformity was high.
The results are listed in the table below.

(比較例5)
実施例5で、仮焼成工程の酸素分圧を0.95atmとした他は同様にして仮焼成膜を作製した。
得られた仮焼成膜は濃褐色をしており、表面の平滑性も低下していた。
これらの仮焼成膜について、実施例1〜5と同様の本焼成工程を行わせて作製した本焼成膜はY123超電導体をふくみ、液体窒素温度での臨界電流密度は平均1MA/cmであった。直径5cmの円盤サイズにおける面内のJcの分布は平均値から30%以上異なる箇所もあり、不均一であった。
この結果を、下記の表に記載する。
(Comparative Example 5)
A pre-fired film was prepared in the same manner as in Example 5 except that the oxygen partial pressure in the pre-baking step was 0.95 atm.
The obtained calcined film was dark brown and the surface smoothness was also lowered.
For these temporarily fired films, the fired films produced by performing the same firing process as in Examples 1 to 5 included Y123 superconductor, and the critical current density at the liquid nitrogen temperature was 1 MA / cm 2 on average. It was. In-plane Jc distribution in a disk size of 5 cm in diameter was non-uniform, with some differences from the average value by 30% or more.
The results are listed in the table below.

Figure 0005273561
Figure 0005273561

Claims (5)

希土類元素、バリウム及び銅からなる超電導性複合金属酸化物膜を製造する方法において、少なくとも、
(i)金属有機酸塩及び金属アセチルアセトナトの中から選ばれるフッ素を含まない金属含有化合物を用い、超電導性複合金属酸化物に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を調製する工程、
(ii)該溶液を支持体上に塗布乾燥して支持体上に該金属含有化合物の膜を形成する工程、
(iii)該支持体上に形成された該金属含有化合物の膜を、酸素分圧が0.2〜0.8atmであり、露点が20℃以上の水蒸気をふくむ雰囲気中で、200〜650℃で仮焼成して含有する有機成分を除去して仮焼成膜を形成する工程、及び
(iv)該仮焼成膜を650〜900℃で本焼成して結晶化を行わせ、さらに900〜400℃で酸素を吸収させて超電導性複合金属酸化物膜とする工程
を含むことを特徴とする、超電導性複合金属酸化物膜の製造方法。
In a method for producing a superconducting composite metal oxide film comprising a rare earth element, barium and copper, at least,
(I) A metal-containing compound formulated using a metal-containing compound not containing fluorine selected from metal organic acid salts and metal acetylacetonates so as to have a metal seed composition corresponding to a superconducting composite metal oxide Preparing an organic solvent solution;
(Ii) applying and drying the solution on a support to form a film of the metal-containing compound on the support;
(Iii) The film of the metal-containing compound formed on the support is 200 to 650 ° C. in an atmosphere containing water vapor having an oxygen partial pressure of 0.2 to 0.8 atm and a dew point of 20 ° C. or higher. And (iv) subjecting the temporary fired film to main firing at 650 to 900 ° C. for crystallization, and further 900 to 400 ° C. A method for producing a superconducting composite metal oxide film, comprising the step of absorbing oxygen to form a superconducting composite metal oxide film.
前記の本焼成工程を、酸素分圧0.01〜100Paで行った後、前記の酸素を吸収させる工程を、酸素分圧0.2〜1.2atmで行わせることを特徴とする請求項1に記載の、超電導性複合金属酸化物膜の製造方法。   The main firing step is performed at an oxygen partial pressure of 0.01 to 100 Pa, and then the step of absorbing oxygen is performed at an oxygen partial pressure of 0.2 to 1.2 atm. A process for producing a superconducting composite metal oxide film as described in 1). 前記フッ素を含まない金属含有化合物の有機溶媒溶液を調製する工程が、希土類元素、バリウム及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解して均一溶液とするものであることを特徴とする請求項1又は2の、超電導性複合金属酸化物膜の製造方法。 The step of preparing the organic solvent solution of the metal-containing compound containing no fluorine is a metal carboxylate having 1 to 8 carbon atoms and / or a metal acetylacetonate powder mixture of a metal species containing rare earth elements, barium and copper. After adding pyridine and / or at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to produce a metal complex and volatilizing an excess solvent, carbon 1 is added. The method for producing a superconducting composite metal oxide film according to claim 1 or 2, wherein the solution is dissolved in a monovalent linear alcohol and / or water of 8 to 8 to form a uniform solution. 前記炭素数が1〜8の直鎖アルコールに溶解した後、多価アルコールを添加して、均一溶液とすることを特徴とする請求項3に記載の、超電導性複合金属酸化物膜の製造方法。   The method for producing a superconducting composite metal oxide film according to claim 3, wherein after dissolving in the linear alcohol having 1 to 8 carbon atoms, a polyhydric alcohol is added to obtain a uniform solution. . 前記多価アルコールが、2価のアルコール及び3価のアルコールから選ばれる少なくとも1種であることを特徴とする請求項4に記載の、超電導性複合金属酸化物膜の製造方法。   The method for producing a superconducting composite metal oxide film according to claim 4, wherein the polyhydric alcohol is at least one selected from divalent alcohols and trivalent alcohols.
JP2009279681A 2009-12-09 2009-12-09 Manufacturing method of superconducting film Active JP5273561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279681A JP5273561B2 (en) 2009-12-09 2009-12-09 Manufacturing method of superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279681A JP5273561B2 (en) 2009-12-09 2009-12-09 Manufacturing method of superconducting film

Publications (2)

Publication Number Publication Date
JP2011121804A JP2011121804A (en) 2011-06-23
JP5273561B2 true JP5273561B2 (en) 2013-08-28

Family

ID=44286087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279681A Active JP5273561B2 (en) 2009-12-09 2009-12-09 Manufacturing method of superconducting film

Country Status (1)

Country Link
JP (1) JP5273561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011230946A (en) * 2010-04-26 2011-11-17 National Institute Of Advanced Industrial Science & Technology Method for producing oxide superconductive thin film
JP5599045B2 (en) * 2010-06-30 2014-10-01 独立行政法人産業技術総合研究所 Raw material solution for producing oxide superconducting thin film and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288939A (en) * 1987-05-19 1988-11-25 Osaka Pref Gov Production of oxide superconducting material
JP2003300726A (en) * 2002-04-08 2003-10-21 Internatl Superconductivity Technology Center Tape-like oxide superconductor and manufacturing method therefor
JP3851948B2 (en) * 2002-05-10 2006-11-29 独立行政法人産業技術総合研究所 Superconductor manufacturing method
US8227019B2 (en) * 2003-12-15 2012-07-24 Superpower Inc. High-throughput ex-situ method for rare-earth-barium-copper-oxide (REBCO) film growth
JP5415696B2 (en) * 2004-10-01 2014-02-12 アメリカン・スーパーコンダクター・コーポレーション Thick film superconducting film with improved functions
JP5156188B2 (en) * 2005-12-14 2013-03-06 公益財団法人国際超電導産業技術研究センター Method for manufacturing thick film tape-shaped RE (123) superconductor
JP5270176B2 (en) * 2008-01-08 2013-08-21 公益財団法人国際超電導産業技術研究センター Re-based oxide superconducting wire and method for producing the same
JP2009289667A (en) * 2008-05-30 2009-12-10 International Superconductivity Technology Center Oxide superconductive wire rod

Also Published As

Publication number Publication date
JP2011121804A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5445982B2 (en) Rare earth superconducting film forming solution and method for producing the same
JP3548801B2 (en) A solution composition containing a metal complex in which a specific ligand is coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex coordinated with an atom, a method for producing a solution for producing a rare earth superconducting film, and a method for forming a superconducting thin film.
JP3851948B2 (en) Superconductor manufacturing method
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP2006083022A (en) Oxide superconductor and method for producing the same
JP5273561B2 (en) Manufacturing method of superconducting film
JP2011528316A (en) Compositions and methods for the production of rare earth metal-Ba2Cu3O7-δ thin films
Piperno et al. CeO2-based buffer layers via chemical solution deposition: Critical issues and latest developments
JP4592696B2 (en) Method for producing precursor solution for metalorganic vapor deposition using superconducting oxide and method for producing thin film superconductor by metalorganic vapor deposition
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
KR100807640B1 (en) Synthesizing precursor solution enabling fabricating biaxially textured buffer layers by low temperature annealing
JP5729592B2 (en) Superconducting film manufacturing method, pre-fired film obtained by the method, and superconducting film
JP5172456B2 (en) Manufacturing method of oxide superconductor
JP3548802B2 (en) A solution composition containing a metal complex having a specific ligand coordinated to a specific metal species, a solution composition for producing a rare-earth superconducting film, an amorphous solid of a specific metal complex, a specific coordination to a specific metal species A method for producing a solution containing a metal complex to which a ligand is coordinated, a method for producing a solution for producing a rare earth superconducting film, and a method for producing a superconducting thin film.
JP2011195435A (en) Method for producing superconducting film, and calcination film and firing film obtained by the method
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
JP3507887B2 (en) Method for forming epitaxial thin film on surface of single crystal substrate
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP3612556B2 (en) Superconductor comprising superconducting thin film formed on the surface of an alumina single crystal substrate, and method for forming a superconducting thin film on the surface of an alumina single crystal substrate
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
KR100998310B1 (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof
JP2007308336A (en) Method of manufacturing rare earth 123-type superconducting film orientated on yttrium aluminate single crystal
JP4861290B2 (en) Superconductor and manufacturing method thereof
JP2012003962A (en) Manufacturing method of oxide superconducting thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250