JP2012003962A - Manufacturing method of oxide superconducting thin film - Google Patents

Manufacturing method of oxide superconducting thin film Download PDF

Info

Publication number
JP2012003962A
JP2012003962A JP2010138221A JP2010138221A JP2012003962A JP 2012003962 A JP2012003962 A JP 2012003962A JP 2010138221 A JP2010138221 A JP 2010138221A JP 2010138221 A JP2010138221 A JP 2010138221A JP 2012003962 A JP2012003962 A JP 2012003962A
Authority
JP
Japan
Prior art keywords
film
heat treatment
superconducting thin
oxide superconducting
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010138221A
Other languages
Japanese (ja)
Inventor
Kenji Abiru
健志 阿比留
Tatsuoki Nagaishi
竜起 永石
Junichi Shimoyama
淳一 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010138221A priority Critical patent/JP2012003962A/en
Publication of JP2012003962A publication Critical patent/JP2012003962A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an oxide superconducting thin film with excellent superconducting characteristics obtained by a sintering heat treatment after layering and thickening a calcined film by repeating coating of MOD solution and calcination.SOLUTION: A manufacturing method of an oxide superconducting thin film comprises: a coating film making step in which a coating film is made by coating on a substrate with a solution of a metal organic compound; a calcination heat treatment step in which a calcined film is made by thermal decomposition and removal of an organic constituent contained in the metal organic compound of the coating film; a layered calcined-film making step in which a layered calcined-film is made by repeating the coating film making step and the calcination heat treatment step; and a sintering heat treatment step in which the oxide superconducting thin film is made by crystallization of the layered calcined-film. In the layered calcined-film making step, the coating film of the first layer is heated from all around in the calcination heat treatment, and the coating film of the second and subsequent layers is heated from the substrate side in the calcination heat treatment.

Description

本発明は、酸化物超電導薄膜の製造方法に関し、詳しくは、超電導線材の製造に用いられる超電導特性が優れた酸化物超電導薄膜の製造方法に関する。   The present invention relates to a method for producing an oxide superconducting thin film, and more particularly to a method for producing an oxide superconducting thin film having excellent superconducting characteristics used for producing a superconducting wire.

近年、酸化物超電導薄膜を用いた超電導線材の一層の普及のため、超電導特性をより高めた酸化物超電導薄膜の製造の研究が行われている。   In recent years, in order to further spread superconducting wires using oxide superconducting thin films, research has been conducted on the production of oxide superconducting thin films with higher superconducting properties.

このような酸化物超電導薄膜の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)と言われる方法がある(特許文献1)。   One method of manufacturing such an oxide superconducting thin film is a method called a coating organic decomposition method (abbreviation: MOD method) (Patent Document 1).

この方法は、Re(希土類元素)、Ba(バリウム)、Cu(銅)の各金属有機化合物を溶媒に溶解して製造された原料溶液(以下、「MOD溶液」とも言う)を基板に塗布した後、金属有機化合物を例えば500℃付近で熱処理(仮焼)し、含有する有機成分を熱分解させて除去して、酸化物超電導薄膜の前駆体である仮焼膜を形成し、得られた仮焼膜をさらに高温(例えば、750〜800℃)で熱処理(本焼)することにより結晶化を行って酸化物超電導薄膜を製造するものであり、主に真空中で製造される気相法(スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有しているため、広く用いられている。   In this method, a raw material solution (hereinafter, also referred to as “MOD solution”) produced by dissolving each metal organic compound of Re (rare earth element), Ba (barium), and Cu (copper) in a solvent is applied to a substrate. Thereafter, the metal organic compound was heat-treated (calcined) at, for example, around 500 ° C., and the organic components contained were thermally decomposed and removed to form a calcined film that is a precursor of the oxide superconducting thin film. A vapor phase method in which an oxide superconducting thin film is manufactured by crystallizing a calcined film by further heat treatment (main baking) at a higher temperature (for example, 750 to 800 ° C.), and mainly manufactured in a vacuum. Compared to (sputtering method, pulsed laser deposition method, etc.), manufacturing equipment is simple, and it is widely used because it has features such as easy handling of large areas and complex shapes. .

そして、このようなMOD法を用いて厚膜で超電導特性が優れた酸化物超電導薄膜を得る方法として、MOD溶液の塗布と仮焼を繰り返し行って仮焼膜を積層、厚膜化した後、本焼熱処理を行うことにより、臨界電流値Icを高めることが一般的に行われている。   And, as a method of obtaining an oxide superconducting thin film with excellent superconducting properties with a thick film using such a MOD method, after repeatedly applying and calcining the MOD solution to laminate the calcined film, Generally, the critical current value Ic is increased by performing the main heat treatment.

特開2007−165153号公報JP 2007-165153 A

しかし、従来のMOD法による酸化物超電導薄膜の製造においては、厚膜化した仮焼膜に対して本焼熱処理を行っても、結晶が充分にc軸成長せず、所望する高いIcを得ることができない場合があった。   However, in the production of the oxide superconducting thin film by the conventional MOD method, even if the calcination heat treatment is performed on the thick calcined film, the crystal does not sufficiently grow c-axis, and the desired high Ic is obtained. There was a case that could not be done.

そこで本発明は、MOD溶液の塗布と仮焼を繰り返し行って仮焼膜を積層、厚膜化した後、本焼熱処理を行った場合、結晶が充分にc軸成長して、所望する高いIcを有する超電導特性に優れた酸化物超電導薄膜を得ることができる酸化物超電導薄膜の製造方法を提供することを課題とする。   Therefore, the present invention repeatedly applies MOD solution and calcining, stacks and thickens the calcined film, and then conducts the calcining heat treatment, so that the crystal sufficiently grows c-axis, and the desired high Ic It is an object of the present invention to provide a method for producing an oxide superconducting thin film capable of obtaining an oxide superconducting thin film having excellent superconducting properties.

本発明者は、従来のMOD法において、厚膜化した仮焼膜に対して本焼熱処理を行った場合、何故に、結晶が充分にc軸成長せず、所望する高いIcを得ることができないのか、仮焼熱処理工程に着目して種々の実験を行い、以下の知見を得た。   In the conventional MOD method, the present inventor can obtain a desired high Ic because the crystal does not sufficiently grow c-axis when the calcined heat treatment is performed on the thick calcined film. The following knowledge was obtained by conducting various experiments focusing on the calcination heat treatment process.

即ち、仮焼熱処理工程における加熱方法としては、原料溶液が塗布された基板の全周から加熱を行う全周加熱と、基板の底面から加熱を行う底面加熱とがある。   That is, as a heating method in the calcining heat treatment step, there are an all-around heating in which heating is performed from the entire periphery of the substrate coated with the raw material solution, and a bottom heating in which heating is performed from the bottom surface of the substrate.

そして、全周加熱を採用した場合、基板側の成長界面ではc軸配向するが、元素の偏析が発生して膜表面では多結晶化することが分かった。即ち、全周加熱により、塗布膜表面が先に加熱されて表面の金属有機化合物の分解が先に起こる一方、底面側はゆっくり加熱されて後から分解が起こることにより、元素の偏析が発生し、膜表面では多結晶化することが分かった。   Then, it was found that when all-round heating is employed, the c-axis orientation occurs at the growth interface on the substrate side, but element segregation occurs and polycrystallizes on the film surface. That is, by heating the entire circumference, the surface of the coating film is heated first, and the organic metal compound on the surface is decomposed first, while the bottom side is heated slowly and then decomposed, resulting in segregation of elements. It was found that the film surface was polycrystallized.

また、膜表面における多結晶化は、上記元素の偏析のみが原因ではなく、本焼熱処理時における上面加熱の影響も大きいことも分かった。   It was also found that the polycrystallization on the film surface was not only caused by the segregation of the above elements, but also the influence of the upper surface heating during the main annealing heat treatment.

これに対して、底面加熱を採用した場合、所望のc軸配向を得ることが難しいが、元素の偏析の発生が低減されることが分かった。所望のc軸配向を得難い理由としては、初期成長界面付近において微妙な組成のずれが発生していることが考えられる。   On the other hand, when bottom surface heating is employed, it is difficult to obtain the desired c-axis orientation, but it has been found that the occurrence of element segregation is reduced. As a reason why it is difficult to obtain a desired c-axis orientation, it is considered that a subtle compositional deviation occurs in the vicinity of the initial growth interface.

本発明者は、以上の知見に基づき、仮焼熱処理における加熱方法として、全周加熱と底面加熱を適宜組み合わせることにより、上記の課題が解決できることを見出し、本発明を完成するに至った。以下、各請求項の発明を説明する。   Based on the above knowledge, the present inventor has found that the above problems can be solved by appropriately combining all-around heating and bottom surface heating as a heating method in the calcining heat treatment, and has completed the present invention. The invention of each claim will be described below.

請求項1に記載の発明は、
超電導線材の製造に用いる酸化物超電導薄膜を、金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記金属有機化合物の溶液を塗布して塗膜を作製する塗膜作製工程と、
前記塗膜の前記金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記塗膜作製工程と前記仮焼熱処理工程を繰り返して、積層した仮焼膜を作製する積層仮焼膜作製工程と、
前記積層した仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記積層仮焼膜作製工程において、
第1層目の塗膜の仮焼熱処理には、塗膜を全周から加熱する全周加熱を用い、
第2層目以降の塗膜の仮焼熱処理には、塗膜を基板側から加熱する底面加熱を用いる
ことを特徴とする酸化物超電導薄膜の製造方法である。
The invention described in claim 1
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound as a raw material by a coating pyrolysis method,
A coating film production step of producing a coating film by applying a solution of the metal organic compound on the substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film;
A laminated calcined film producing process for producing a laminated calcined film by repeating the coating film producing process and the calcining heat treatment process,
A calcination heat treatment step of crystallizing the laminated calcined film to produce an oxide superconducting thin film,
In the laminated calcined film production process,
For the calcining heat treatment of the first-layer coating film, all-around heating for heating the coating film from the entire circumference is used,
In the calcining heat treatment of the second and subsequent coating films, bottom surface heating in which the coating film is heated from the substrate side is used. This is a method for producing an oxide superconducting thin film.

本請求項の発明においては、第1層目の塗膜の仮焼熱処理において、全周加熱を採用している。このため、基板側の成長界面において、底面加熱の場合のような微妙な組成のずれが発生せず、c軸配向させることができる。   In the invention of this claim, all-around heating is adopted in the calcining heat treatment of the first layer coating film. For this reason, at the growth interface on the substrate side, a subtle compositional shift as in the case of bottom surface heating does not occur, and c-axis orientation can be achieved.

また、第2層目以降の塗膜の仮焼熱処理において、底面加熱を採用している。このため、全周加熱の場合に発生しやすい元素の偏析が抑制されて、膜表面での多結晶化を抑制することができる。   In addition, bottom heating is adopted in the calcining heat treatment of the second and subsequent layers. For this reason, the segregation of the element which is easy to occur in the case of all-around heating is suppressed, and polycrystallization on the film surface can be suppressed.

この結果、本焼熱処理工程において、厚膜化した仮焼膜の全体に亘って、結晶を充分にc軸成長させることができ、高いIcを有する超電導特性に優れた酸化物超電導薄膜を得ることができる。   As a result, in the main heat treatment step, a crystal can be sufficiently c-axis grown throughout the thickened calcined film, and an oxide superconducting thin film having high Ic and excellent superconducting characteristics can be obtained. Can do.

本請求項の発明における酸化物超電導薄膜を形成する酸化物超電導体は、主としてRe123系酸化物超電導体である。ここで、Reとしてはイットリウム(Y)、プラセオジウム(Pr)、ネオジウム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ホルミウム(Ho)、イッテルビウム(Yb)等を挙げることができる。   The oxide superconductor forming the oxide superconducting thin film according to the present invention is mainly a Re123 oxide superconductor. Here, Re includes yttrium (Y), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), holmium (Ho), ytterbium (Yb), and the like. it can.

上記の全周加熱および底面加熱は、450〜550℃で行われることが好ましい。   The entire circumference heating and bottom surface heating are preferably performed at 450 to 550 ° C.

請求項2に記載の発明は、
前記全周加熱における温度が、450〜550℃であることを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法である。
The invention described in claim 2
2. The method of manufacturing an oxide superconducting thin film according to claim 1, wherein a temperature in the entire circumference heating is 450 to 550 ° C. 3.

請求項3に記載の発明は、
前記底面加熱における温度が、450〜550℃であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜の製造方法である。
The invention according to claim 3
3. The method for producing an oxide superconducting thin film according to claim 1, wherein a temperature in the bottom surface heating is 450 to 550 ° C. 4.

本発明によれば、超電導特性に優れた厚膜の酸化物超電導薄膜を得ることができる。   According to the present invention, a thick oxide superconducting thin film having excellent superconducting properties can be obtained.

本発明の一実施例の酸化物超電導薄膜の製造方法における全周加熱方式による仮焼熱処理を示す断面図である。It is sectional drawing which shows the calcination heat processing by the perimeter heating system in the manufacturing method of the oxide superconducting thin film of one Example of this invention. 本発明の一実施例の酸化物超電導薄膜の製造方法における底面加熱方式による仮焼熱処理を示す断面図である。It is sectional drawing which shows the calcination heat processing by the bottom face heating system in the manufacturing method of the oxide superconducting thin film of one Example of this invention. 酸化物超電導薄膜のSEM写真である。It is a SEM photograph of an oxide superconducting thin film.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

[1]実施例
本実施例は、MOD法によりYBCO(YBaCu7−δ)からなる2層タイプの超電導薄膜を作製した例である。
[1] Example This example is an example in which a two-layer superconducting thin film made of YBCO (YBa 2 Cu 3 O 7-δ ) was produced by the MOD method.

1.仮焼膜の作製
はじめに、仮焼膜の作製について説明する。
(1)MOD溶液の作製
Y、Ba、Cuの各々のアセチルアセトナート塩から出発して、Y:Ba:Cu=1:2:3の比率で合成し、アルコールを溶媒としたMOD溶液を準備した。なお、MOD溶液のY3+、Ba2+、Cu2+を合わせた総カチオン濃度を1mol/Lとした。
1. Preparation of calcined film First, preparation of a calcined film will be described.
(1) Preparation of MOD solution Starting from each acetylacetonate salt of Y, Ba, and Cu, synthesis was performed at a ratio of Y: Ba: Cu = 1: 2: 3, and an MOD solution using alcohol as a solvent was prepared. did. The total cation concentration of Y 3+ , Ba 2+ and Cu 2+ in the MOD solution was 1 mol / L.

(2)塗布
次に、1cm角のYSZ単結晶の上に中間層としてCeOをエピタキシャルに成長させた基板1を準備し、前記MOD溶液をスピンコート法により基板上に塗布、乾燥して塗布膜を形成した。
(2) Application Next, a substrate 1 is prepared by epitaxially growing CeO 2 as an intermediate layer on a 1 cm square YSZ single crystal, and the MOD solution is applied onto the substrate by spin coating and dried to be applied. A film was formed.

(3)仮焼熱処理
次に、仮焼熱処理について、図1および図2を用いて説明する。仮焼熱処理は、全周加熱と底面加熱共に環状炉内で行い、底面加熱時は環状炉内にプレートヒータを追加挿入し、プレートヒータのみの加熱により仮焼を行った。
(3) Calcination Heat Treatment Next, the calcination heat treatment will be described with reference to FIGS. The calcining heat treatment was performed in the annular furnace for both the entire circumference heating and the bottom heating, and at the bottom heating, a plate heater was additionally inserted into the annular furnace, and the calcining was performed by heating only the plate heater.

図1は、本発明の一実施例の酸化物超電導薄膜の製造方法における全周加熱方式による仮焼熱処理を示す断面図である。図2は、本発明の一実施例の酸化物超電導薄膜の製造方法における底面加熱方式による仮焼熱処理を示す断面図である。なお、図1および図2に示すように仮焼サンプルは基板1、中間層2および塗布膜(図では仮焼膜3a、3b、3として表示されている)を積層して構成されている。   FIG. 1 is a cross-sectional view showing a calcination heat treatment by an all-around heating method in a method of manufacturing an oxide superconducting thin film according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a calcination heat treatment by a bottom surface heating method in the method of manufacturing an oxide superconducting thin film of one embodiment of the present invention. As shown in FIGS. 1 and 2, the calcined sample is formed by laminating a substrate 1, an intermediate layer 2, and a coating film (shown as calcined films 3a, 3b, and 3 in the figure).

(a)第1層目の仮焼膜
はじめに、全周加熱方式により、作製した塗膜を大気圧下、図1の白抜き矢印で示すように全周から加熱して基板表面から5mm真上における測定温度で500℃まで昇温し、その温度に120分保持して、第1層目の仮焼膜3a(厚さ0.2μm)を得た。次いで、常温近辺まで冷却した。
(A) First layer calcined film First, the prepared coating film is heated from the entire circumference under the atmospheric pressure as shown by the white arrow in FIG. The temperature was raised to 500 ° C. at the measurement temperature and maintained at that temperature for 120 minutes to obtain a first calcined film 3a (thickness 0.2 μm). Subsequently, it cooled to the normal temperature vicinity.

(b)第2層目の仮焼膜
次に、第1層目の仮焼膜の上に、スピンコート法によりMOD溶液を塗布、乾燥して第2層目の塗膜を形成した。
(B) Second layer calcined film Next, a MOD solution was applied on the first layer calcined film by a spin coating method and dried to form a second layer coated film.

具体的には、底面加熱方式により、第2層目の塗膜を大気圧下、図2の白抜き矢印で示すように基板1側から加熱して同様にプレートヒータ表面温度で500℃まで昇温し、その温度に120分保持して、第2層目の仮焼膜3b(厚さ0.2μm)を得た。次いで、常温近辺まで冷却した。   Specifically, the bottom layer heating method is used to heat the second layer coating film from the substrate 1 side under atmospheric pressure as indicated by the white arrow in FIG. Warm and hold at that temperature for 120 minutes to obtain a second layer of calcined film 3b (thickness 0.2 μm). Subsequently, it cooled to the normal temperature vicinity.

2.YBCO超電導薄膜の作製(本焼熱処理)
仮焼膜を作製した後、酸素濃度25ppmのアルゴン/酸素混合ガス雰囲気下で、770℃まで昇温後、そのまま90分間保持して本焼熱処理を実施した。本焼熱処理終了後、500℃まで降温した時点でガス雰囲気を酸素濃度100%ガスに切り替えて、室温まで炉冷し、YBCO超電導薄膜(厚さ0.3μm)を作製した。
2. Production of YBCO superconducting thin film (heat treatment for main firing)
After preparing the calcined film, the temperature was raised to 770 ° C. in an argon / oxygen mixed gas atmosphere having an oxygen concentration of 25 ppm, followed by holding for 90 minutes as it was, followed by a heat treatment for main firing. When the temperature was lowered to 500 ° C. after the main heat treatment, the gas atmosphere was switched to a gas with an oxygen concentration of 100%, and the furnace was cooled to room temperature to produce a YBCO superconducting thin film (thickness 0.3 μm).

[2]酸化物超電導薄膜の観察
得られた酸化物超電導薄膜についてSEM観察を行った。図3は、実施例の酸化物超電導薄膜のSEM写真である。その結果、均一な組成の酸化物超電導体が得られ、膜表面までc軸配向した組織が得られることが分った。
[2] Observation of oxide superconducting thin film The obtained oxide superconducting thin film was observed by SEM. FIG. 3 is a SEM photograph of the oxide superconducting thin film of the example. As a result, it was found that an oxide superconductor having a uniform composition was obtained, and a c-axis oriented structure was obtained up to the film surface.

このように本発明の加熱方式を用いることにより、厚膜でありながら、膜表面までc軸配向した組織が得られるため、優れた超電導特性を有する酸化物超電導薄膜を得ることができる。   Thus, by using the heating method of the present invention, a c-axis oriented structure is obtained up to the film surface even though it is a thick film, so that an oxide superconducting thin film having excellent superconducting properties can be obtained.

以上、本発明の実施の形態について説明したが、本発明は、前記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、前記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 基板
2 中間層
3 仮焼膜
3a 第1層目の仮焼膜
3b 第2層目の仮焼膜
1 substrate 2 intermediate layer 3 calcined film 3a first layer calcined film 3b second layer calcined film

Claims (3)

超電導線材の製造に用いる酸化物超電導薄膜を、金属有機化合物を原料とし、塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記金属有機化合物の溶液を塗布して塗膜を作製する塗膜作製工程と、
前記塗膜の前記金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記塗膜作製工程と前記仮焼熱処理工程を繰り返して、積層した仮焼膜を作製する積層仮焼膜作製工程と、
前記積層した仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記積層仮焼膜作製工程において、
第1層目の塗膜の仮焼熱処理には、塗膜を全周から加熱する全周加熱を用い、
第2層目以降の塗膜の仮焼熱処理には、塗膜を基板側から加熱する底面加熱を用いる
ことを特徴とする酸化物超電導薄膜の製造方法。
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound as a raw material by a coating pyrolysis method,
A coating film production step of producing a coating film by applying a solution of the metal organic compound on the substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film;
A laminated calcined film producing process for producing a laminated calcined film by repeating the coating film producing process and the calcining heat treatment process,
A calcination heat treatment step of crystallizing the laminated calcined film to produce an oxide superconducting thin film,
In the laminated calcined film production process,
For the calcining heat treatment of the first-layer coating film, all-around heating for heating the coating film from the entire circumference is used,
The method for producing an oxide superconducting thin film is characterized in that bottom heating for heating the coating film from the substrate side is used for the calcination heat treatment of the second and subsequent layers.
前記全周加熱における温度が、450〜550℃であることを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法。   2. The method for producing an oxide superconducting thin film according to claim 1, wherein a temperature in the entire circumference heating is 450 to 550 ° C. 3. 前記底面加熱における温度が、450〜550℃であることを特徴とする請求項1または請求項2に記載の酸化物超電導薄膜の製造方法。   The method for producing an oxide superconducting thin film according to claim 1 or 2, wherein a temperature in the bottom surface heating is 450 to 550 ° C.
JP2010138221A 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film Pending JP2012003962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138221A JP2012003962A (en) 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138221A JP2012003962A (en) 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JP2012003962A true JP2012003962A (en) 2012-01-05

Family

ID=45535735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138221A Pending JP2012003962A (en) 2010-06-17 2010-06-17 Manufacturing method of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2012003962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179445A1 (en) * 2012-05-31 2013-12-05 住友電気工業株式会社 Oxide superconducting wire material and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179445A1 (en) * 2012-05-31 2013-12-05 住友電気工業株式会社 Oxide superconducting wire material and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5838596B2 (en) Superconducting thin film material and manufacturing method thereof
WO2007069524A1 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
JP2012003962A (en) Manufacturing method of oxide superconducting thin film
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
JP2005001935A (en) Method for producing thin oxide film
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
KR100998310B1 (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof
JP5453627B2 (en) Manufacturing method of oxide superconductor film with reduced internal stress
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP5721144B2 (en) Superconducting multilayer structure thin film
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012123998A (en) Oxide superconducting thin film wire rod and manufacturing method thereof
JP2014207056A (en) Method for manufacturing an oxide superconductive wire and oxide superconductive wire
JP2011230946A (en) Method for producing oxide superconductive thin film
JP2012129085A (en) Oxide superconductive thin film wire rod and manufacturing method thereof
JP2011159453A (en) Method of manufacturing oxide superconducting thin film