JP5556410B2 - Method for manufacturing oxide superconducting thin film - Google Patents

Method for manufacturing oxide superconducting thin film Download PDF

Info

Publication number
JP5556410B2
JP5556410B2 JP2010138240A JP2010138240A JP5556410B2 JP 5556410 B2 JP5556410 B2 JP 5556410B2 JP 2010138240 A JP2010138240 A JP 2010138240A JP 2010138240 A JP2010138240 A JP 2010138240A JP 5556410 B2 JP5556410 B2 JP 5556410B2
Authority
JP
Japan
Prior art keywords
heat treatment
film
treatment step
superconducting thin
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010138240A
Other languages
Japanese (ja)
Other versions
JP2012003965A (en
Inventor
毅 中西
竜起 永石
元気 本田
慶 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010138240A priority Critical patent/JP5556410B2/en
Publication of JP2012003965A publication Critical patent/JP2012003965A/en
Application granted granted Critical
Publication of JP5556410B2 publication Critical patent/JP5556410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、酸化物超電導薄膜の製造方法に関し、詳しくは、塗布熱分解法により、超電導特性に優れた酸化物超電導薄膜を製造することができる酸化物超電導薄膜の製造方法に関する。   The present invention relates to a method for producing an oxide superconducting thin film, and more particularly to a method for producing an oxide superconducting thin film capable of producing an oxide superconducting thin film having excellent superconducting properties by a coating pyrolysis method.

酸化物超電導薄膜を用いた超電導線材の一層の普及のため、超電導特性に優れた酸化物超電導薄膜の製造の研究が行われている。   In order to further spread superconducting wires using oxide superconducting thin films, research on the production of oxide superconducting thin films with excellent superconducting properties has been conducted.

酸化物超電導体の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)と言われる方法がある(特許文献1)。この方法は、例えば、希土類元素(Re)、バリウム(Ba)および銅(Cu)の各金属有機化合物を溶解した溶液を基板に塗布した後、500℃付近で仮焼成して各金属有機化合物の有機成分を熱分解させ、得られた熱分解物(MOD仮焼膜)をさらに高温(例えば800℃付近)で熱処理(本焼成)することにより結晶化を行って超電導体とするものであり、主に真空中で製造される気相法(蒸着法、スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有している。   One method for manufacturing an oxide superconductor is a method called a coating organic decomposition method (abbreviation: MOD method) (Patent Document 1). In this method, for example, a solution in which each metal organic compound of rare earth elements (Re), barium (Ba) and copper (Cu) is dissolved is applied to a substrate, and then pre-baked at around 500 ° C. The organic component is thermally decomposed, and the resulting pyrolyzed product (MOD calcined film) is crystallized by heat treatment (main firing) at a higher temperature (for example, around 800 ° C.) to obtain a superconductor. Compared with vapor phase methods (evaporation method, sputtering method, pulsed laser deposition method, etc.) that are mainly manufactured in vacuum, manufacturing facilities are simple, and it is easy to handle large areas and complex shapes. It has the characteristics.

上記塗布熱分解法としては、原料としてフッ素を含む有機酸塩を用いるTFA−MOD法(Metal Organic Deposition using TriFluoroAcetates)とフッ素を含まない金属有機化合物を用いるフッ素フリーMOD法(FF−MOD法)とがある(非特許文献1)。   As the coating pyrolysis method, a TFA-MOD method (Metal Organic Deposition using TriFluoroacetates) using an organic acid salt containing fluorine as a raw material, and a fluorine-free MOD method (FF-MOD method) using a metal organic compound not containing fluorine, (Non-Patent Document 1).

TFA−MOD法を用いると、面内配向性に優れた酸化物超電導薄膜を得ることができる(特許文献1)。しかし、このTFA−MOD法では、仮焼成時にフッ化物であるBaF(フッ化バリウム)が生成され、このBaFが本焼成時に熱分解して危険なフッ化水素ガスが発生する。そのため、フッ化水素ガスを処理する装置、設備が必要となる。 When the TFA-MOD method is used, an oxide superconducting thin film excellent in in-plane orientation can be obtained (Patent Document 1). However, in this TFA-MOD method, BaF 2 (barium fluoride), which is a fluoride, is generated at the time of temporary baking, and this BaF 2 is thermally decomposed at the time of main baking to generate dangerous hydrogen fluoride gas. Therefore, an apparatus and equipment for processing hydrogen fluoride gas are required.

これに対して、FF−MOD法は、フッ化水素ガスのような危険なガスが発生することがないため、特殊な処理設備が不要であり、製造設備は汎用品で対応することが可能となり、線材の低コスト化を図ることができるという利点を有している。   In contrast, the FF-MOD method does not generate a dangerous gas such as hydrogen fluoride gas, so no special processing equipment is required, and the manufacturing equipment can be used with general-purpose products. And, it has an advantage that the cost of the wire can be reduced.

しかしながら、従来のFF−MOD法では、仮焼成時、アルカリ土類金属の炭酸塩であるBaCO(炭酸バリウム)が生成され、このBaCOが本焼成過程までに充分に熱分解されていないと、BaCOの分解に伴い発生するCOガスが超電導層膜内に空隙を形成して、基板から膜表面へ向けての結晶の配向成長を阻害し、高いIcを得ることができないという問題があった。 However, in the conventional FF-MOD method, BaCO 3 (barium carbonate), which is an alkaline earth metal carbonate, is generated at the time of temporary firing, and this BaCO 3 is not thermally decomposed sufficiently until the main firing process. The problem is that the CO 2 gas generated by the decomposition of BaCO 3 forms voids in the superconducting layer film, hinders crystal orientation growth from the substrate to the film surface, and cannot obtain high Ic. there were.

そこで、仮焼熱処理工程と本焼熱処理工程の間に、BaCOの分解温度で一定時間保持を行うことにより、BaCOを分解すると共に、発生したCOガスを膜内から除去する中間熱処理工程を設けることが提案されている(特許文献2)。 Therefore, an intermediate heat treatment step of decomposing BaCO 3 and removing the generated CO 2 gas from the film by holding it at a decomposition temperature of BaCO 3 for a certain time between the calcining heat treatment step and the main heat treatment step. Has been proposed (Patent Document 2).

特開2007−165153号公報JP 2007-165153 A 特開2010−49891号公報JP 2010-49891 A

熊谷俊弥、他2名著「塗布熱分解法による超伝導膜の作製」、表面技術、社団法人表面技術協会、1991年、Vol.42、No.5、P500〜507Toshiya Kumagai and two other authors, “Preparation of Superconducting Films by Coating Pyrolysis”, Surface Technology, Japan Surface Technology Association, 1991, Vol. 42, no. 5, P500-507

しかしながら、このような中間熱処理工程を設けて、BaCOを充分に分解すると共に、分解に伴い発生したCOガスによる空隙の発生を抑制しているにも拘わらず、基板から膜表面へ向けて結晶を充分に配向成長させることができず、高いIcが得られない場合があった。 However, although such an intermediate heat treatment step is provided to sufficiently decompose BaCO 3 and suppress the generation of voids due to the CO 2 gas generated along with the decomposition, the substrate faces the film surface. In some cases, the crystals could not be grown sufficiently and high Ic could not be obtained.

そこで、本発明は、BaCOを充分に分解すると共に、COガスによる空隙の発生を抑制し、さらに、基板から膜表面へ向けて結晶を充分に配向成長させることができ、高いIcの酸化物超電導薄膜を得ることができる酸化物超電導薄膜の製造方法を提供することを課題とする。 Therefore, the present invention sufficiently decomposes BaCO 3 , suppresses the generation of voids due to CO 2 gas, and further allows crystals to be sufficiently oriented and grown from the substrate to the film surface. It is an object of the present invention to provide a method for producing an oxide superconducting thin film capable of obtaining an oxide superconducting thin film.

本発明者は、鋭意研究を行った結果、以下に示す各技術により、上記の課題が解決できることを見出し、本発明を完成するに至った。以下、各技術毎に説明する。 The present inventor has conducted extensive studies, by the technique shown in below, it found that the above problems can be solved, and have completed the present invention. Hereinafter, each technology will be described.

第1の技術は、
超電導線材の製造に用いる酸化物超電導薄膜を、フッ素を含まない金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、
前記塗布膜の前記金属有機化合物に含有される有機成分を熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記仮焼熱処理工程と前記本焼熱処理工程の間に、前記仮焼膜に含まれる炭酸塩を分解する中間熱処理工程が設けられており、
前記中間熱処理工程が、酸化物超電導薄膜の結晶相を生成しない酸素雰囲気下で、仮焼膜を加熱して仮焼膜に含まれる炭酸塩を分解する中間熱処理工程である
ことを特徴とする酸化物超電導薄膜の製造方法である。
The first technology is
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound containing no fluorine by a coating pyrolysis method using an atmosphere furnace,
A coating film preparation step of preparing a coating film by applying a solution of the metal organic compound on a substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
An intermediate heat treatment step for decomposing carbonate contained in the calcined film is provided between the calcining heat treatment step and the main heat treatment step,
The intermediate heat treatment step is an intermediate heat treatment step in which the calcined film is heated to decompose the carbonate contained in the calcined film in an oxygen atmosphere that does not generate a crystalline phase of the oxide superconducting thin film. This is a manufacturing method of a superconducting thin film.

本発明者は、従来の中間熱処理工程において、BaCOを充分に分解し、COガスによる空隙の発生を抑制しているにも拘わらず、基板から膜表面へ向けて結晶を充分に配向成長させることができない原因につき、種々の実験を行い、検討を行った。その結果、従来の中間熱処理工程が、酸素濃度1vol%以下の低酸素雰囲気で行われていたことに起因していることが分かった。 In the conventional intermediate heat treatment process, the present inventor has sufficiently decomposed BaCO 3 and suppressed the generation of voids due to CO 2 gas, but sufficiently oriented growth of crystals from the substrate to the film surface. Various experiments were conducted to investigate the cause of the failure. As a result, it was found that the conventional intermediate heat treatment process was performed in a low oxygen atmosphere having an oxygen concentration of 1 vol% or less.

これを、図4を用いて説明する。図4は、従来のFF−MOD法における膜の状態を模式的に示す図であり、(a)は仮焼熱処理後の膜、(b)は中間熱処理後の膜、(c)は本焼熱処理後の膜である。   This will be described with reference to FIG. FIG. 4 is a diagram schematically showing the state of the film in the conventional FF-MOD method, in which (a) is a film after calcining heat treatment, (b) is a film after intermediate heat treatment, and (c) is main firing. It is a film after heat treatment.

図4(a)に示すように、500℃程度の温度で仮焼熱処理が行われることにより、BaCO(炭酸塩)を含む仮焼膜2(前駆体膜)が基板1上に形成されている。 As shown in FIG. 4A, a calcination heat treatment is performed at a temperature of about 500 ° C., whereby a calcination film 2 (precursor film) containing BaCO 3 (carbonate) is formed on the substrate 1. Yes.

従来のFF−MOD法においては、この仮焼膜を用いて、例えば、100ppmの低酸素雰囲気下、650℃程度の温度で中間熱処理していた。この中間熱処理により、BaCOが熱分解され、発生したCOガスが膜表面から抜け出して行くため、COガスによる空隙の発生が抑制される。 In the conventional FF-MOD method, this calcined film is subjected to intermediate heat treatment at a temperature of about 650 ° C. in a low oxygen atmosphere of 100 ppm, for example. By this intermediate heat treatment, BaCO 3 is thermally decomposed, and the generated CO 2 gas escapes from the film surface, so that the generation of voids due to the CO 2 gas is suppressed.

しかし、この中間熱処理は低酸素雰囲気下で行っているため、BaCOの熱分解と同時に、一部、RE123の結晶化も起こり、基板1近傍ではc軸配向したRE123相4が形成されるが、基板1近傍以外の部分では微少な無配向のRE123結晶相5が形成される。これを図4(b)に示す。 However, since this intermediate heat treatment is performed in a low-oxygen atmosphere, the RE123 phase 4 with c-axis orientation is formed in the vicinity of the substrate 1, although part of the RE123 is crystallized simultaneously with the thermal decomposition of BaCO 3. In a portion other than the vicinity of the substrate 1, a minute non-oriented RE123 crystal phase 5 is formed. This is shown in FIG.

このような中間熱処理後の膜を、同じ低酸素雰囲気下、800℃程度の温度で本焼熱処理した場合、c軸配向したRE123結晶相4と共に無配向のRE123結晶相5も成長し、c軸配向した結晶の成長が阻害された本焼膜3が形成される。この結果、高いIcの酸化物超電導薄膜を得ることが困難となる。   When such a film after the intermediate heat treatment is subjected to a heat treatment in the same low oxygen atmosphere at a temperature of about 800 ° C., the non-oriented RE123 crystal phase 5 grows together with the c-axis oriented RE123 crystal phase 4, and the c-axis The fired film 3 in which the growth of oriented crystals is inhibited is formed. As a result, it becomes difficult to obtain a high Ic oxide superconducting thin film.

これに対して、本技術においては、RE123の結晶相を生成しない酸素雰囲気下で中間熱処理を行っている。これを、図1を用いて説明する。図1は、本技術における膜の状態を模式的に示す図であり、前記した図4の場合と同様に、(a)は仮焼熱処理後の膜、(b)は中間熱処理後の膜、(c)は本焼熱処理後の膜である。 In contrast, in the present technology , the intermediate heat treatment is performed in an oxygen atmosphere that does not generate the crystal phase of RE123. This will be described with reference to FIG. FIG. 1 is a diagram schematically showing the state of a film in the present technology . As in the case of FIG. 4 described above, (a) is a film after a calcination heat treatment, (b) is a film after an intermediate heat treatment, (C) is the film after the main annealing heat treatment.

図1(a)では、図4(a)と同様に、BaCO(炭酸塩)を含む仮焼膜2(前駆体膜)が基板1上に形成されている。 In FIG. 1A, a calcined film 2 (precursor film) containing BaCO 3 (carbonate) is formed on the substrate 1 as in FIG.

この仮焼膜を用いて、RE123結晶相を生成しない酸素雰囲気下で中間熱処理した場合、BaCOが充分に分解され、COガスによる空隙の発生が抑制されると共に、図1(b)に示すように、RE123結晶相が生成されず、REの酸化物相の中に、CuやBaの酸化物相6が散在した仮焼膜2が形成される。 When this calcined film is subjected to an intermediate heat treatment in an oxygen atmosphere that does not generate the RE123 crystal phase, BaCO 3 is sufficiently decomposed, the generation of voids due to CO 2 gas is suppressed, and FIG. As shown, the RE123 crystal phase is not generated, and the calcined film 2 in which the oxide phase 6 of Cu or Ba is scattered in the oxide phase of RE is formed.

このような中間熱処理が行われた仮焼膜2を本焼熱処理した場合、図1(c)に示すように、表面層近傍では無配向のRE123結晶相5が形成されるものの、その他の部分では、c軸配向したRE123結晶相4が成長した本焼膜3が形成される。   When the calcined film 2 subjected to such an intermediate heat treatment is subjected to the main heat treatment, as shown in FIG. 1C, the non-oriented RE123 crystal phase 5 is formed in the vicinity of the surface layer. Then, the burned film 3 on which the c-axis oriented RE123 crystal phase 4 is grown is formed.

このように、本技術によれば、BaCOを充分に分解し、COガスによる空隙の発生を抑制すると共に、c軸配向した結晶を、基板から膜表面へ向けて充分な厚さに成長させることができるため、高いIcの酸化物超電導薄膜を得ることができる。 As described above, according to the present technology , BaCO 3 is sufficiently decomposed to suppress generation of voids due to CO 2 gas, and a c-axis oriented crystal is grown to a sufficient thickness from the substrate toward the film surface. Therefore, a high Ic oxide superconducting thin film can be obtained.

なお、本技術に言う「酸化物超電導薄膜の結晶相を生成しない酸素雰囲気」には、酸化物超電導薄膜の結晶相が全く生成しない酸素雰囲気だけでなく、c軸配向した結晶を充分な厚さに成長させることができる限り、若干の結晶相が生成される酸素雰囲気も含まれる。 The “oxygen atmosphere in which the crystal phase of the oxide superconducting thin film is not generated” referred to in the present technology includes not only an oxygen atmosphere in which the crystal phase of the oxide superconducting thin film is not generated at all, but also a c-axis oriented crystal having a sufficient thickness. As long as it can be grown, an oxygen atmosphere in which some crystal phase is generated is also included.

第2の技術は、
前記中間熱処理工程が、酸素濃度1vol%を超える酸素雰囲気下で行われる中間熱処理工程であることを特徴とする第1の技術に記載の酸化物超電導薄膜の製造方法である。
The second technology is
The method for producing an oxide superconducting thin film according to the first technique , wherein the intermediate heat treatment step is an intermediate heat treatment step performed in an oxygen atmosphere exceeding an oxygen concentration of 1 vol%.

酸素濃度1vol%を超える酸素雰囲気下で中間熱処理工程を行うことにより、本焼熱処理に先だって、酸化物超電導薄膜の結晶相が生成されていない仮焼膜を確実に作製することができる。10vol%以上であるとより好ましい。   By performing the intermediate heat treatment step in an oxygen atmosphere exceeding the oxygen concentration of 1 vol%, it is possible to reliably produce a calcined film in which the crystal phase of the oxide superconducting thin film is not generated prior to the main heat treatment. More preferably, it is 10 vol% or more.

第3の技術は、
前記中間熱処理工程が、加熱された前記基板から伝えられる熱により処理される中間熱処理工程であることを特徴とする第1の技術または第2の技術に記載の酸化物超電導薄膜の製造方法である。
The third technology is
The method for producing an oxide superconducting thin film according to the first technique or the second technique , wherein the intermediate heat treatment process is an intermediate heat treatment process performed by heat transmitted from the heated substrate. .

基板側から加熱(底面加熱)して中間熱処理工程を行った場合、BaCOの熱分解により発生したCOガスを、膜表面からスムーズに抜け出させることができる。 When the intermediate heat treatment step is performed by heating from the substrate side (bottom surface heating), the CO 2 gas generated by the thermal decomposition of BaCO 3 can be smoothly escaped from the film surface.

本発明は、以上の技術に基づくものであり、請求項1に記載の発明は、The present invention is based on the above technique, and the invention according to claim 1
超電導線材の製造に用いる酸化物超電導薄膜を、フッ素を含まない金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、  An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound containing no fluorine by a coating pyrolysis method using an atmosphere furnace,
基板上に前記金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、  A coating film preparation step of preparing a coating film by applying a solution of the metal organic compound on a substrate;
前記塗布膜の前記金属有機化合物に含有される有機成分を大気雰囲気の下で、熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、  A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film under an air atmosphere;
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と  A main heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film;
を備えており、With
前記仮焼熱処理工程と前記本焼熱処理工程の間に、前記仮焼膜に含まれる炭酸塩を分解する中間熱処理工程が設けられており、  An intermediate heat treatment step for decomposing carbonate contained in the calcined film is provided between the calcining heat treatment step and the main heat treatment step,
前記中間熱処理工程が、酸化物超電導薄膜の結晶相を生成しない酸素濃度1vol%を超える酸素雰囲気下で、仮焼膜を加熱して仮焼膜に含まれる炭酸塩を分解する中間熱処理工程である  The intermediate heat treatment step is an intermediate heat treatment step of heating the calcined film and decomposing carbonate contained in the calcined film in an oxygen atmosphere exceeding an oxygen concentration of 1 vol% that does not generate a crystal phase of the oxide superconducting thin film.
ことを特徴とする酸化物超電導薄膜の製造方法である。This is a method for producing an oxide superconducting thin film.

そして、請求項2に記載の発明は、And the invention of Claim 2 is
前記中間熱処理工程が、加熱された前記基板から伝えられる熱により処理される中間熱処理工程であることを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法である。  2. The method of manufacturing an oxide superconducting thin film according to claim 1, wherein the intermediate heat treatment step is an intermediate heat treatment step that is performed by heat transmitted from the heated substrate.

本発明によれば、BaCOを充分に分解し、COガスによる空隙の発生を抑制すると共に、基板から膜表面へ向けて結晶を充分に配向成長させることができ、高いIcの酸化物超電導薄膜を得ることができる酸化物超電導薄膜の製造方法を提供することができる。 According to the present invention, BaCO 3 can be sufficiently decomposed to suppress the generation of voids due to CO 2 gas, and the crystal can be sufficiently oriented and grown from the substrate to the film surface. The manufacturing method of the oxide superconducting thin film which can obtain a thin film can be provided.

本発明の熱処理における結晶化の様子を模式的に示す図である。It is a figure which shows typically the mode of crystallization in the heat processing of this invention. 本発明の中間熱処理に用いる底面加熱方式の雰囲気炉の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the bottom furnace heating atmosphere furnace used for the intermediate heat treatment of this invention. 本発明の中間熱処理の方法を模式的に示す拡大断面図である。It is an expanded sectional view showing typically the method of intermediate heat treatment of the present invention. 従来の熱処理における結晶化の様子を模式的に示す図である。It is a figure which shows typically the mode of crystallization in the conventional heat processing.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

1.雰囲気炉
まず、本発明の酸化物超電導薄膜の製造方法において、中間熱処理工程に用いられる雰囲気炉について説明する。
1. Atmosphere furnace First, the atmosphere furnace used in the intermediate heat treatment step in the method for producing an oxide superconducting thin film of the present invention will be described.

図2は、本発明の中間熱処理に用いる底面加熱方式の雰囲気炉の構成を模式的に示す断面図である。図2に示すように、雰囲気炉Aは管状の炉体A1を備えており、炉体A1内には、仮焼膜が形成されたサンプルB1を所定の温度で底面加熱するためのセラミックヒータ7が配置されている。   FIG. 2 is a cross-sectional view schematically showing a configuration of a bottom surface heating type atmospheric furnace used in the intermediate heat treatment of the present invention. As shown in FIG. 2, the atmospheric furnace A includes a tubular furnace body A1, and a ceramic heater 7 for heating the bottom surface of the sample B1 on which the calcined film is formed in the furnace body A1 at a predetermined temperature. Is arranged.

2.中間熱処理方法
次に、本発明による中間熱処理方法について説明する。図3は、本発明の中間熱処理の方法を模式的に示す拡大断面図である。図3において、1は基板、2は仮焼膜である。また、図3に示すように、サンプルB1は基板1上に仮焼膜2を形成して構成されている。
2. Intermediate heat treatment method Next, an intermediate heat treatment method according to the present invention will be described. FIG. 3 is an enlarged sectional view schematically showing the intermediate heat treatment method of the present invention. In FIG. 3, 1 is a substrate and 2 is a calcined film. As shown in FIG. 3, the sample B <b> 1 is configured by forming a calcined film 2 on the substrate 1.

中間熱処理においては、1vol%を超える酸素濃度の下で行われる。このため、RE123が生成されることがない。   The intermediate heat treatment is performed under an oxygen concentration exceeding 1 vol%. For this reason, RE123 is not generated.

また、図3に示すように、セラミックヒータ7がサンプルB1の基板1を白抜矢印8で示すように加熱することにより、基板1側から仮焼膜2に向けて熱が伝わる。このため、仮焼膜2の基板側から表層部に向けて、仮焼膜中のBaCOの分解が進行する Further, as shown in FIG. 3, the ceramic heater 7 heats the substrate 1 of the sample B1 as indicated by the white arrow 8, whereby heat is transmitted from the substrate 1 side toward the calcined film 2. For this reason, the decomposition of BaCO 3 in the calcined film proceeds from the substrate side of the calcined film 2 to the surface layer portion.

3.実施例
次に実施例により、本発明を具体的に説明する。
3. EXAMPLES Next, the present invention will be described specifically by way of examples.

(1)MOD溶液の作製
まず、Y、Ba、Cuの各アセチルアセトナート塩から出発してY:Ba:Cu=1:2:3の比率(モル比)で合成し、アルコールを溶媒としたMOD溶液を作製した。なおMOD溶液のY3+、Ba2+、Cu2+を合わせた総カチオン濃度を1mol/Lとした。
(1) Preparation of MOD Solution First, starting from each acetylacetonate salt of Y, Ba, and Cu, synthesis was performed at a ratio (molar ratio) of Y: Ba: Cu = 1: 2: 3, and alcohol was used as a solvent. A MOD solution was prepared. The total cation concentration of Y 3+ , Ba 2+ and Cu 2+ in the MOD solution was 1 mol / L.

(2)塗布および仮焼熱処理
次に、2cm角のYSZ単結晶製の基板1上にエピタキシャル成長させたCeO製の中間層2上に、前記MOD溶液をスピンコート法で塗布して厚さ1μmの塗布膜を形成した後、作製した塗布膜を大気圧雰囲気の下で、500℃で120分間加熱し、仮焼膜を作製した。この塗布と仮焼熱処理を2回繰り返し行い、厚さ400nmの仮焼膜を作製した。
(2) Coating and calcination heat treatment Next, the MOD solution is applied by spin coating on the CeO 2 intermediate layer 2 epitaxially grown on a 2 cm square YSZ single crystal substrate 1 to a thickness of 1 μm. After the coating film was formed, the prepared coating film was heated at 500 ° C. for 120 minutes under an atmospheric pressure atmosphere to prepare a calcined film. This application and calcination heat treatment were repeated twice to produce a calcination film having a thickness of 400 nm.

(3)中間熱処理
作成した仮焼膜を、高酸素濃度の雰囲気下で行った。具体的には、図3に示した底面加熱の雰囲気炉を用いて、アルゴン/酸素混合ガス(酸素濃度:10vol%、CO濃度:1ppm以下)雰囲気の下、20℃/分の昇温速度で680℃まで昇温し、その温度で90分保持後、炉中で室温まで冷却して中間熱処理を行った。
(3) Intermediate heat treatment The prepared calcined film was performed in an atmosphere having a high oxygen concentration. Specifically, using the bottom surface heating atmosphere furnace shown in FIG. 3, the heating rate is 20 ° C./min in an argon / oxygen mixed gas (oxygen concentration: 10 vol%, CO 2 concentration: 1 ppm or less) atmosphere. The temperature was raised to 680 ° C. and maintained at that temperature for 90 minutes, and then cooled to room temperature in a furnace to carry out an intermediate heat treatment.

(4)本焼熱処理
仮焼膜を、図3に示した底面加熱の雰囲気炉で本焼熱処理を行った。具体的には、酸素濃度10ppmのアルゴン/酸素混合ガス雰囲気下で、770℃まで10℃/分の昇温スピードで昇温後、そのまま60分間保持して本焼熱処理を実施した。本焼熱処理を実施後、520℃まで約3時間で降温した時点で、ガス雰囲気を酸素濃度100vol%ガスに切り替えて、さらに5時間かけて室温まで炉冷し、厚さ300nmの本焼膜、即ちYBCO超電導薄膜を作製した。
(4) Main baking heat treatment The calcined film was subjected to a main baking heat treatment in a bottom heating atmosphere furnace shown in FIG. Specifically, in an argon / oxygen mixed gas atmosphere with an oxygen concentration of 10 ppm, the temperature was increased to 770 ° C. at a temperature increase rate of 10 ° C./min, and then held for 60 minutes to perform the main heat treatment. After performing the main heat treatment, when the temperature is lowered to 520 ° C. in about 3 hours, the gas atmosphere is switched to an oxygen concentration of 100 vol% gas, and the furnace is cooled to room temperature over another 5 hours. That is, a YBCO superconducting thin film was produced.

4.比較例
中間熱処理を酸素濃度140ppmの下で行ったこと以外は、実施例と同じ方法で本焼膜を作製した。
4). Comparative Example A fired film was produced in the same manner as in the example except that the intermediate heat treatment was performed under an oxygen concentration of 140 ppm.

5.YBCO超電導薄膜の評価
(1)断面の観察
実施例および比較例の本焼膜の断面をS−TEMにより観察したところ、比較例では、無配向部分が厚く、c軸配向している層が薄いことが確認されたのに対して、実施例では、無配向部分が薄く、c軸配向している層が厚いことが確認された。
5. Evaluation of YBCO superconducting thin film (1) Observation of cross section The cross section of the fired film of the example and the comparative example was observed by S-TEM. In the comparative example, the non-oriented portion was thick and the c-axis oriented layer was thin. On the other hand, in the examples, it was confirmed that the non-oriented portion was thin and the c-axis oriented layer was thick.

(2)超電導特性の評価
イ.Icの測定
実施例および比較例で得られたYBCO超電導薄膜の超電導特性(Ic)を、77K、自己磁場下において測定し、単位幅(1cm)当たりのIc(A/cm)を求めた。表1に測定結果を示す。
(2) Evaluation of superconducting properties a. Measurement of Ic The superconducting properties (Ic) of the YBCO superconducting thin films obtained in Examples and Comparative Examples were measured under a self magnetic field of 77 K, and Ic (A / cm) per unit width (1 cm) was obtained. Table 1 shows the measurement results.

ロ.X線回折(XRD)によるYBCO(005)ピーク強度の測定
同様に、実施例および比較例で得られたYBCO超電導薄膜のX線回折(XRD)によるYBCO(005)ピーク強度を、77K、自己磁場下において測定した。同じく表1に測定結果を示す。
B. Measurement of YBCO (005) peak intensity by X-ray diffraction (XRD) Similarly, the YBCO (005) peak intensity by X-ray diffraction (XRD) of the YBCO superconducting thin films obtained in Examples and Comparative Examples is 77 K, self-magnetic field. Measured below. Similarly, Table 1 shows the measurement results.

Figure 0005556410
Figure 0005556410

表1より、実施例では、Icが高く、YBCO(005)ピーク強度も高いため、結晶が充分にc軸成長していることが分かる。これに対して、比較例では、Icが低く、YBCO(005)ピーク強度も低いため、結晶が充分にc軸成長していないことが分かる。   From Table 1, it can be seen that in the examples, since Ic is high and the YBCO (005) peak intensity is also high, the crystal is sufficiently c-axis grown. On the other hand, in the comparative example, since Ic is low and the YBCO (005) peak intensity is low, it can be seen that the crystal is not sufficiently c-axis grown.

以上より、本実施の形態によれば、FF−MOD法により、結晶が充分にc軸成長した、高いIcを有する酸化物超電導薄膜を作製できることが分かる。   From the above, it can be seen that according to this embodiment, an oxide superconducting thin film having a high Ic in which crystals are sufficiently c-axis grown can be manufactured by the FF-MOD method.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 基板
2 仮焼膜(前駆体膜)
3 本焼膜
4 c軸配向したRE123結晶相
5 無配向のRE123結晶相
6 CuやBaの酸化物相
7 セラミックヒータ
8 加熱方向を示す矢印
A 雰囲気炉
A1 炉体
B1 サンプル
1 substrate 2 calcined film (precursor film)
3 Burned film 4 c-axis oriented RE123 crystal phase 5 Non-oriented RE123 crystal phase 6 Cu or Ba oxide phase 7 Ceramic heater 8 Arrow indicating heating direction A Atmosphere furnace A1 Furnace B1 Sample

Claims (2)

超電導線材の製造に用いる酸化物超電導薄膜を、フッ素を含まない金属有機化合物を原料とし、雰囲気炉を用いて塗布熱分解法により製造する酸化物超電導薄膜の製造方法であって、
基板上に前記金属有機化合物の溶液を塗布して塗布膜を作製する塗布膜作製工程と、
前記塗布膜の前記金属有機化合物に含有される有機成分を大気雰囲気の下で、熱分解、除去して、仮焼膜を作製する仮焼熱処理工程と、
前記仮焼膜を結晶化させて、酸化物超電導薄膜を作製する本焼熱処理工程と
を備えており、
前記仮焼熱処理工程と前記本焼熱処理工程の間に、前記仮焼膜に含まれる炭酸塩を分解する中間熱処理工程が設けられており、
前記中間熱処理工程が、酸化物超電導薄膜の結晶相を生成しない酸素濃度1vol%を超える酸素雰囲気下で、仮焼膜を加熱して仮焼膜に含まれる炭酸塩を分解する中間熱処理工程である
ことを特徴とする酸化物超電導薄膜の製造方法。
An oxide superconducting thin film used for the production of a superconducting wire is a method for producing an oxide superconducting thin film produced from a metal organic compound containing no fluorine by a coating pyrolysis method using an atmosphere furnace,
A coating film preparation step of preparing a coating film by applying a solution of the metal organic compound on a substrate;
A calcining heat treatment step for producing a calcined film by thermally decomposing and removing an organic component contained in the metal organic compound of the coating film under an air atmosphere ;
A calcination heat treatment step of crystallizing the calcined film to produce an oxide superconducting thin film,
An intermediate heat treatment step for decomposing carbonate contained in the calcined film is provided between the calcining heat treatment step and the main heat treatment step,
The intermediate heat treatment step is an intermediate heat treatment step of heating the calcined film and decomposing carbonate contained in the calcined film in an oxygen atmosphere exceeding an oxygen concentration of 1 vol% that does not generate a crystal phase of the oxide superconducting thin film. A method for producing an oxide superconducting thin film.
前記中間熱処理工程が、加熱された前記基板から伝えられる熱により処理される中間熱処理工程であることを特徴とする請求項1に記載の酸化物超電導薄膜の製造方法。 2. The method of manufacturing an oxide superconducting thin film according to claim 1, wherein the intermediate heat treatment step is an intermediate heat treatment step that is performed by heat transmitted from the heated substrate.
JP2010138240A 2010-06-17 2010-06-17 Method for manufacturing oxide superconducting thin film Active JP5556410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010138240A JP5556410B2 (en) 2010-06-17 2010-06-17 Method for manufacturing oxide superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138240A JP5556410B2 (en) 2010-06-17 2010-06-17 Method for manufacturing oxide superconducting thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014115556A Division JP2014167941A (en) 2014-06-04 2014-06-04 Manufacturing method of oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JP2012003965A JP2012003965A (en) 2012-01-05
JP5556410B2 true JP5556410B2 (en) 2014-07-23

Family

ID=45535737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138240A Active JP5556410B2 (en) 2010-06-17 2010-06-17 Method for manufacturing oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP5556410B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505867B2 (en) * 2010-06-17 2014-05-28 住友電気工業株式会社 Method for manufacturing oxide superconducting thin film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109204A (en) * 1989-03-31 1991-05-09 Kokusai Chiyoudendou Sangyo Gijutsu Kenkyu Center Production of superconducting thin film
JPH07106905B2 (en) * 1989-12-27 1995-11-15 工業技術院長 Method for manufacturing superconductor and superconductor

Also Published As

Publication number Publication date
JP2012003965A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5838596B2 (en) Superconducting thin film material and manufacturing method thereof
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP5505867B2 (en) Method for manufacturing oxide superconducting thin film
JP2014167941A (en) Manufacturing method of oxide superconducting thin film
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP5453627B2 (en) Manufacturing method of oxide superconductor film with reduced internal stress
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP5688804B2 (en) Intermediate layer for forming oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire
JP2012003962A (en) Manufacturing method of oxide superconducting thin film
JP2011230946A (en) Method for producing oxide superconductive thin film
WO2013153651A1 (en) Oxide superconductor thin-film wiring material, and production method therefor
JP2012003961A (en) Manufacturing method of oxide superconducting thin film
JP2012003966A (en) Manufacturing method of oxide superconducting thin film
JP2011141984A (en) Manufacturing method of oxide superconducting thin film
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012123998A (en) Oxide superconducting thin film wire rod and manufacturing method thereof
JP2011159453A (en) Method of manufacturing oxide superconducting thin film
JP2012113860A (en) Superconducting oxide thin film wire rod, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250