JP2012221922A - Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material - Google Patents

Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material Download PDF

Info

Publication number
JP2012221922A
JP2012221922A JP2011090178A JP2011090178A JP2012221922A JP 2012221922 A JP2012221922 A JP 2012221922A JP 2011090178 A JP2011090178 A JP 2011090178A JP 2011090178 A JP2011090178 A JP 2011090178A JP 2012221922 A JP2012221922 A JP 2012221922A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
oxide superconducting
film layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011090178A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
高史 山口
Tatsuoki Nagaishi
竜起 永石
Masahiro Taneda
賢宏 種子田
Takeshi Nakanishi
毅 中西
Yasutaro Oki
康太郎 大木
Genki Honda
元気 本田
Kei Hanafusa
慶 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011090178A priority Critical patent/JP2012221922A/en
Publication of JP2012221922A publication Critical patent/JP2012221922A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconducting thin film wire material having a desired high superconducting property by producing, by Metal Organic Deposition (MOD) method, an oxide superconducting thin film without forming RE211 making a different phase.SOLUTION: The raw material solution for formation of an oxide superconducting thin film layer is used in forming, by MOD method, an oxide superconducting thin film layer on an intermediate layer formed on an oriented metal base. The raw material solution comprises: a solvent; and organic metal compounds of RE(rare earth element), Ba(barium) and Cu(copper) which are dissolved in the solvent in the ratio, RE:Ba:Cu=X:2:3(0.8≤X<1.0). The oxide superconducting thin film layer is formed on an intermediate layer formed on an oriented metal base by MOD method, and in the oxide superconducting thin film layer, no REBaCuOphase is formed. The oxide superconducting thin film wire material comprises: an oriented metal base; an intermediate layer formed on the oriented metal base; and the oxide superconducting thin film layer formed on the intermediate layer.

Description

本発明は、塗布熱分解法により高い超電導特性を有する酸化物超電導薄膜層の形成を可能とする酸化物超電導薄膜層形成用の原料溶液、前記原料溶液を用いて形成された酸化物超電導薄膜層、および前記酸化物超電導薄膜層が形成された酸化物超電導薄膜線材に関する。   The present invention relates to a raw material solution for forming an oxide superconducting thin film layer capable of forming an oxide superconducting thin film layer having high superconducting properties by a coating pyrolysis method, and an oxide superconducting thin film layer formed using the raw material solution And an oxide superconducting thin film wire on which the oxide superconducting thin film layer is formed.

液体窒素の温度で超電導性を有する高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した高温超電導線材の開発が活発に行われている。中でも、基板上に酸化物超電導層を形成させた酸化物超電導薄膜線材が注目されている(例えば、特許文献1)。   Since the discovery of high-temperature superconductors that have superconductivity at the temperature of liquid nitrogen, development of high-temperature superconducting wires aimed at application to power devices such as cables, current limiters, and magnets has been actively conducted. Among these, an oxide superconducting thin film wire in which an oxide superconducting layer is formed on a substrate has attracted attention (for example, Patent Document 1).

酸化物超電導薄膜線材の製造方法の1つに、塗布熱分解法(Metal Organic Deposition、略称:MOD法)がある(特許文献1)。   One method for producing an oxide superconducting thin film wire is a coating pyrolysis method (Metal Organic Deposition, abbreviated as MOD method) (Patent Document 1).

この方法は、Y(イットリウム)などのRE(希土類元素)およびBa(バリウム)、Cu(銅)の各有機金属化合物(金属塩)を溶媒に溶解して製造された原料溶液(MOD溶液)を基板に塗布して塗布膜を形成した後、例えば、500℃付近で仮焼熱処理して、有機金属化合物を熱分解させ、熱分解した有機成分を除去することにより酸化物超電導薄膜の前駆体である仮焼膜を作製後、作製した仮焼膜をさらに高温(例えば750〜800℃付近)で本焼熱処理することにより結晶化を行って、REBaCu7−Xで表されるRE123超電導薄膜層を形成させて酸化物超電導薄膜線材を製造するものであり、主に真空中で製造される気相法(蒸着法、スパッタ法、パルスレーザ蒸着法等)に比較して製造設備が簡単で済み、また大面積や複雑な形状への対応が容易である等の特徴を有しているため、広く用いられている。 In this method, a raw material solution (MOD solution) produced by dissolving an RE (rare earth element) such as Y (yttrium) and an organometallic compound (metal salt) of Ba (barium) and Cu (copper) in a solvent. After forming the coating film by coating on the substrate, for example, by calcining heat treatment at around 500 ° C., the organometallic compound is thermally decomposed, and the thermally decomposed organic component is removed, thereby removing the precursor of the oxide superconducting thin film. After producing a certain calcined film, the produced calcined film is crystallized by subjecting the calcined film to a heat treatment at a higher temperature (for example, around 750 to 800 ° C.) to obtain RE123 represented by REBa 2 Cu 3 O 7-X. A superconducting thin film layer is formed to produce an oxide superconducting thin film wire. Compared with vapor phase methods (evaporation, sputtering, pulsed laser deposition, etc.) that are mainly produced in a vacuum, the production facilities are Easy, Because the response to a large area or a complicated shape has a characteristic equal is easy, it is widely used.

特開2007−165153号公報JP 2007-165153 A

しかしながら、従来のMOD法を用いた酸化物超電導薄膜線材の製造においては、所定の組成で調製したMOD溶液を使用しているにも拘わらず、得られた酸化物超電導薄膜線材では所望する超電導特性に至っていないことがあった。   However, in the production of the oxide superconducting thin film wire using the conventional MOD method, the obtained oxide superconducting thin film wire has the desired superconducting properties despite using the MOD solution prepared with a predetermined composition. There were times when it was not reached.

このため、MOD法を用いながらも、所望する高い超電導特性を有する酸化物超電導薄膜線材を製造することができる技術が望まれていた。   Therefore, there has been a demand for a technique that can produce an oxide superconducting thin film wire having desired high superconducting characteristics while using the MOD method.

本発明者は、上記課題の解決について検討するに際し、先ず、従来のMOD法を用いて形成された酸化物超電導薄膜層につき、分析を行ったところ、酸化物超電導薄膜層には、RE123の他に、REBaCu(RE211)などの異相が形成されており、この異相の発生が、臨界電流密度Jcを低下させ、臨界電流値Icの伸びを制限していることが分かった。 When examining the solution of the above problems, the present inventor first analyzed an oxide superconducting thin film layer formed by using the conventional MOD method. Further, it is understood that a different phase such as RE 2 Ba 1 Cu 1 O 5 (RE211) is formed, and the occurrence of this different phase decreases the critical current density Jc and limits the elongation of the critical current value Ic. It was.

次に、本発明者は、RE211の発生原因について、種々の実験、検討を行い、その結果、MOD溶液の調製に原因があることが分かった。   Next, the present inventor conducted various experiments and studies on the cause of RE211 generation, and as a result, it was found that there was a cause in the preparation of the MOD solution.

即ち、従来のMOD法においては、所望する超電導薄膜の組成に合わせて、RE:Ba:Cu=1:2:3(モル比)の組成となるように各有機金属化合物を秤量し、溶媒に溶解することにより、原料溶液(MOD溶液)を調製した後、配向金属基材上に形成された中間層の上に塗布し、仮焼熱処理、本焼熱処理を経て、RE123超電導薄膜層を形成していた。しかし、本焼熱処理の際、原料Baの一部が中間層を構成する化合物と反応して消費されるため、RE123超電導薄膜層の形成に充分なBa量を確保することができず、原料YやCuの一部が、RE211やCuOを生成する。そして、生成されたRE211は、臨界電流密度Jcを低下させるため、臨界電流値Icの伸びが制限されていた。   That is, in the conventional MOD method, each organometallic compound is weighed so as to have a composition of RE: Ba: Cu = 1: 2: 3 (molar ratio) according to the composition of the desired superconducting thin film, and used as a solvent. After preparing the raw material solution (MOD solution) by dissolution, it is applied on the intermediate layer formed on the oriented metal base material, and after undergoing calcination heat treatment and main heat treatment, the RE123 superconducting thin film layer is formed. It was. However, since a part of the raw material Ba reacts with the compound constituting the intermediate layer and is consumed during the main heat treatment, a sufficient amount of Ba for forming the RE123 superconducting thin film layer cannot be secured, and the raw material Y And a part of Cu produces | generates RE211 and CuO. Since the generated RE 211 reduces the critical current density Jc, the elongation of the critical current value Ic is limited.

具体的な一例としては、REとしてYを用い、中間層としてCeOを用いた場合、Y123の形成と並行して、Y211、BaCeO、CuOが生成される。この内、Y211はJcを大きく低下させるため、Icの伸びが制限される。 As a specific example, when Y is used as RE and CeO 2 is used as an intermediate layer, Y211, BaCeO 3 , and CuO are generated in parallel with the formation of Y123. Of these, Y211 greatly reduces Jc, so that the elongation of Ic is limited.

そこで、本発明者は、RE211を生成する余剰のREが発生しないように、Baの消費を見込んで、REの配合比率を低く抑えたMOD溶液を調製することに思い至り、適切なRE量につき、さらに実験、検討を行った。   Accordingly, the present inventor has come up with the idea of preparing a MOD solution with a low RE blending ratio in anticipation of Ba consumption so as not to generate surplus RE that generates RE211. Further experiments and examinations were conducted.

この結果、MOD溶液の調製における各原料の適切な比が、RE:Ba:Cu=X:2:3(0.8≦X<1.0)であることが分かった。   As a result, it was found that an appropriate ratio of each raw material in the preparation of the MOD solution was RE: Ba: Cu = X: 2: 3 (0.8 ≦ X <1.0).

即ち、REの比率が0.8未満であると、RE211の形成は抑制されるものの、REの量が少なすぎるため、充分な量のRE123を形成させることができない。このため、高い超電導特性の酸化物超電導薄膜線材を得ることができない。   That is, if the RE ratio is less than 0.8, formation of RE211 is suppressed, but the amount of RE is too small, and therefore a sufficient amount of RE123 cannot be formed. For this reason, an oxide superconducting thin film wire having high superconducting characteristics cannot be obtained.

一方、1以上であると、中間層を構成する化合物との反応に消費された残りのBa量に対してREが過剰となるため、RE211の形成を抑制することができず、やはり、高い超電導特性の酸化物超電導薄膜線材を得ることができない。   On the other hand, if it is 1 or more, the RE becomes excessive with respect to the remaining amount of Ba consumed for the reaction with the compound constituting the intermediate layer, so that the formation of RE211 cannot be suppressed. A characteristic oxide superconducting thin film wire cannot be obtained.

本発明は、上記の知見に基づくものであり、請求項1に記載の発明は、
塗布熱分解法を用いて、配向金属基材上に形成された中間層の上に、酸化物超電導薄膜層を形成するに際して使用される酸化物超電導薄膜層形成用の原料溶液であって、
RE(希土類元素)およびBa(バリウム)、Cu(銅)の各有機金属化合物が、RE:Ba:Cu=X:2:3(0.8≦X<1.0)の比率で、溶媒に溶解されている
ことを特徴とする酸化物超電導薄膜層形成用の原料溶液である。
The present invention is based on the above findings, and the invention according to claim 1
A raw material solution for forming an oxide superconducting thin film layer used in forming an oxide superconducting thin film layer on an intermediate layer formed on an oriented metal substrate using a coating pyrolysis method,
RE (rare earth element) and each organometallic compound of Ba (barium) and Cu (copper) are contained in a solvent at a ratio of RE: Ba: Cu = X: 2: 3 (0.8 ≦ X <1.0). It is a raw material solution for forming an oxide superconducting thin film layer, characterized by being dissolved.

本請求項の発明において、配向金属基材としては、2軸配向した配向金属基板が好ましく用いられ、具体的には、IBAD基板、Ni−W合金基板、SUS等をベース金属としたクラッドタイプの金属基板等を挙げることができる。   In the present invention, a biaxially oriented oriented metal substrate is preferably used as the oriented metal substrate, and specifically, a clad type base metal made of IBAD substrate, Ni-W alloy substrate, SUS or the like. A metal substrate etc. can be mentioned.

中間層を形成する材料としては、酸化セリウム(CeO)、酸化イットリウム(Y)、イットリア安定化ジルコニア(YSZ)、チタン酸ストロンチウム(SrTiO)、酸化マグネシウム(MgO)や、バリウムジルコネート(BaZrO)、アルミン酸ランタン(LaAlO)等を挙げることができる。 Materials for forming the intermediate layer include cerium oxide (CeO 2 ), yttrium oxide (Y 2 O 3 ), yttria stabilized zirconia (YSZ), strontium titanate (SrTiO 3 ), magnesium oxide (MgO), barium zirco Nate (BaZrO 3 ), lanthanum aluminate (LaAlO 3 ), and the like.

また、中間層は、一般的に、配向金属基材側から順に、種層(シード層)、拡散防止層(バリア層)、格子整合層(キャップ層)の3層構造で形成され、前記したBaとの反応は、主にキャップ層で発生する。キャップ層には、格子整合性の面より、一般的に、CeOが用いられる。なお、LSMO、STOなどをキャップ層に用いてもよい。なお、これらの中間層は、一般に、スパッタ法やPLD法などの気相法を用いて形成される。 Further, the intermediate layer is generally formed in a three-layer structure of a seed layer (seed layer), a diffusion prevention layer (barrier layer), and a lattice matching layer (cap layer) in order from the oriented metal substrate side. Reaction with Ba occurs mainly in the cap layer. CeO 2 is generally used for the cap layer from the viewpoint of lattice matching. Note that LSMO, STO, or the like may be used for the cap layer. These intermediate layers are generally formed using a vapor phase method such as a sputtering method or a PLD method.

請求項2に記載の発明は、
請求項1に記載の酸化物超電導薄膜層形成用の原料溶液を用いて形成されていることを特徴とする酸化物超電導薄膜層である。
The invention described in claim 2
An oxide superconducting thin film layer formed using the raw material solution for forming an oxide superconducting thin film layer according to claim 1.

前記したように、REの配合比率を低く抑えたMOD溶液を用いて形成された酸化物超電導薄膜層は、異相の発生が抑制されている。   As described above, in the oxide superconducting thin film layer formed using the MOD solution with the RE compounding ratio kept low, the occurrence of heterogeneous phases is suppressed.

請求項3に記載の発明は、
塗布熱分解法を用いて、配向金属基材上に形成された中間層の上に形成された酸化物超電導薄膜層であって、膜内にREBaCu相が形成されていないことを特徴とする酸化物超電導薄膜層である。
The invention according to claim 3
An oxide superconducting thin film layer formed on an intermediate layer formed on an oriented metal substrate using a coating pyrolysis method, in which a RE 2 Ba 1 Cu 1 O 5 phase is formed in the film There is no oxide superconducting thin film layer.

異相であるREBaCu(RE211)が形成されていない酸化物超電導薄膜層は、臨界電流密度Jcが低下せず、臨界電流値Icの伸びを充分に得ることができる。 The oxide superconducting thin film layer in which the different phase RE 2 Ba 1 Cu 1 O 5 (RE211) is not formed does not decrease the critical current density Jc, and can sufficiently obtain the elongation of the critical current value Ic.

このような酸化物超電導薄膜層は、前記の酸化物超電導薄膜層形成用の原料溶液を用いることにより、得ることができる。   Such an oxide superconducting thin film layer can be obtained by using the raw material solution for forming the oxide superconducting thin film layer.

請求項4に記載の発明は、
配向金属基材上に形成された中間層の上に、請求項2または請求項3に記載の酸化物超電導薄膜層が形成されていることを特徴とする酸化物超電導薄膜線材である。
The invention according to claim 4
An oxide superconducting thin film wire comprising the oxide superconducting thin film layer according to claim 2 or 3 formed on an intermediate layer formed on an oriented metal substrate.

異相であるRE211の形成がない酸化物超電導薄膜層が形成された酸化物超電導薄膜線材は、臨界電流密度Jcが低下しないため、高いIcの酸化物超電導薄膜線材を提供することができる。   Since the oxide superconducting thin film wire formed with the oxide superconducting thin film layer without the formation of RE211 which is a different phase does not decrease the critical current density Jc, it can provide a high Ic oxide superconducting thin film wire.

本発明によれば、MOD法を用いて、異相であるRE211の形成がない酸化物超電導薄膜層を得て、所望する高い超電導特性を有する酸化物超電導薄膜線材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the oxide superconducting thin film layer which does not form RE211 which is a different phase can be obtained using the MOD method, and the oxide superconducting thin film wire which has the desired high superconducting characteristic can be provided.

本発明の実施の形態における酸化物超電導薄膜線材の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the oxide superconducting thin film wire in embodiment of this invention. 本発明の実施の形態における酸化物超電導薄膜線材の異相の発生率と、MOD溶液中のYの組成比との関係を示す図である。It is a figure which shows the relationship between the incidence rate of the different phase of the oxide superconducting thin film wire in embodiment of this invention, and the composition ratio of Y in a MOD solution. 本発明の実施例および比較例における酸化物超電導薄膜層の表面の異相の発生状況を示すSEM写真である。It is a SEM photograph which shows the generation | occurrence | production state of the different phase of the surface of the oxide superconducting thin film layer in the Example and comparative example of this invention.

以下、本発明を実施例に基づいて説明する。   Hereinafter, the present invention will be described based on examples.

以下に、有機金属化合物の組成を変えたMOD溶液を用いて、配向金属基材上に中間層を設けた配向金属基板の上に、MOD法により、Y123酸化物超電導薄膜層を形成させたY123酸化物超電導薄膜線材を例に挙げ、本発明をより具体的に説明する。   Y123 oxide superconducting thin film layer was formed by the MOD method on an oriented metal substrate having an intermediate layer provided on an oriented metal substrate using a MOD solution having a different composition of the organometallic compound. The present invention will be described more specifically by taking an oxide superconducting thin film wire as an example.

1.Y123酸化物超電導薄膜線材の構成
図1は、Y123酸化物超電導薄膜線材の構成を模式的に示す断面図である。図1に示すように、配向金属基板3は、配向金属基材1上に、21、22、23の3層からなる中間層2を設けて構成されている。そして、配向金属基板3の上に、Y123酸化物超電導薄膜層4が形成されて、Y123酸化物超電導薄膜線材が構成されている。
1. Configuration of Y123 Oxide Superconducting Thin Film Wire FIG. 1 is a cross-sectional view schematically showing a configuration of a Y123 oxide superconducting thin film wire. As shown in FIG. 1, the alignment metal substrate 3 is configured by providing an intermediate layer 2 composed of three layers 21, 22, and 23 on an alignment metal substrate 1. And the Y123 oxide superconducting thin film layer 4 is formed on the oriented metal substrate 3, and the Y123 oxide superconducting thin film wire is comprised.

2.Y123酸化物超電導薄膜線材の作製
以下の手順により、実施例および比較例のY123酸化物超電導薄膜線材を作製した。
2. Production of Y123 oxide superconducting thin film wire Y123 oxide superconducting thin film wires of Examples and Comparative Examples were produced by the following procedure.

(1)配向金属基材の準備
配向金属基材1としては、2軸配向したNi合金基板を用いた。
(1) Preparation of Oriented Metal Base Material As the oriented metal base material 1, a biaxially oriented Ni alloy substrate was used.

(2)中間層の作製
前記配向金属基材1の上に、スパッタ法を用いて、配向金属基板1側から、Y/YSZ/CeOの順で、3層からなる中間層2を形成して、配向金属基板3とした。なお、第1層目21のYは120nm、第2層目22のYSZは440nm、第3層目(キャップ層)23のCeOは60nmの厚さで成膜した。
(2) Production of intermediate layer Intermediate layer 2 consisting of three layers in the order of Y 2 O 3 / YSZ / CeO 2 on the oriented metal substrate 1 from the oriented metal substrate 1 side using the sputtering method. The alignment metal substrate 3 was formed. The Y 2 O 3 of the first layer 21 was 120 nm, the YSZ of the second layer 22 was 440 nm, and the CeO 2 of the third layer (cap layer) 23 was 60 nm.

(3)酸化物超電導薄膜層の作製
次に、中間層2の上に、MOD法を用いて、以下の要領で、1200nm厚の酸化物超電導薄膜層を作製した。
(3) Production of oxide superconducting thin film layer Next, an oxide superconducting thin film layer having a thickness of 1200 nm was produced on the intermediate layer 2 using the MOD method in the following manner.

(イ)MOD溶液の作製
Y、Ba、Cuの各アセチルアセトナート塩から出発してY:Ba:Cu=X:2:3の比率(モル比)で合成し、アルコールを溶媒としたMOD溶液を作製した。なお、Xは、表1の各実施例および比較例に示すYの組成比である。
(A) Preparation of MOD Solution Starting from each acetylacetonate salt of Y, Ba, and Cu, the MOD solution was synthesized at a ratio (molar ratio) of Y: Ba: Cu = X: 2: 3 using alcohol as a solvent. Was made. X is a composition ratio of Y shown in each example and comparative example of Table 1.

(ロ)塗膜作製工程
形成された中間層2の上に、前記MOD溶液を塗布し、乾燥させて塗膜を作製した。
(B) Coating film preparation process The MOD solution was applied onto the formed intermediate layer 2 and dried to prepare a coating film.

(ハ)仮焼熱処理工程
塗膜が形成された基板を、大気圧の空気雰囲気下、500℃、120分間の仮焼熱処理を行い、Y123仮焼膜を作製した。
(C) Calcination Heat Treatment Step The substrate on which the coating film was formed was subjected to calcination heat treatment at 500 ° C. for 120 minutes in an air atmosphere at atmospheric pressure to produce a Y123 calcination film.

前記塗膜作製工程と仮焼熱処理工程とを8回繰り返し、1200nm厚のY123仮焼膜を作製した。   The coating film preparation step and the calcining heat treatment step were repeated 8 times to produce a 1200 nm thick Y123 calcined film.

(ニ)本焼熱処理工程
作製されたY123仮焼膜に対し、アルゴン・酸素混合ガス(酸素濃度100ppm)雰囲気下で、800℃、90分間の本焼熱処理を行い、1200nm厚のY123超電導薄膜層4を作製し、各実施例および比較例のY123酸化物超電導薄膜線材を得た。
(D) Main heat treatment step The produced Y123 calcined film is subjected to a main heat treatment at 800 ° C. for 90 minutes in an argon / oxygen mixed gas (oxygen concentration: 100 ppm) atmosphere, and a Y123 superconducting thin film layer having a thickness of 1200 nm. 4 was obtained, and the Y123 oxide superconducting thin film wire of each Example and Comparative Example was obtained.

3.Y123酸化物超電導薄膜線材の評価
得られた各実施例および比較例のY123酸化物超電導薄膜線材について、以下の評価を行った。
3. Evaluation of Y123 oxide superconducting thin film wire The following evaluations were performed on the obtained Y123 oxide superconducting thin film wires of Examples and Comparative Examples.

(1)Y211相の発生率
各実施例および比較例のY123酸化物超電導薄膜線材(各10個)について、それぞれ、Y123酸化物超電導薄膜層の表面をSEMにより観察して、Y211相の発生状況を確認し、Y211相が発生しているY123酸化物超電導薄膜線材の割合(Y211発生率)を求めた。結果を表1に示す。
(1) Occurrence rate of Y211 phase About the Y123 oxide superconducting thin film wire (each 10 pieces) of each example and comparative example, the surface of the Y123 oxide superconducting thin film layer was observed by SEM, respectively, and the occurrence state of Y211 phase The Y123 oxide superconducting thin film wire ratio (Y211 generation rate) in which the Y211 phase was generated was determined. The results are shown in Table 1.

また、Yの組成比とY211発生率との関係を図2に示す。   FIG. 2 shows the relationship between the Y composition ratio and the Y211 generation rate.

(2)超電導特性(Jc)
実施例および比較例で得られたY123酸化物超電導薄膜線材の超電導特性として、77K、自己磁場下におけるJcを測定した。結果を表1に示す。
(2) Superconducting properties (Jc)
As the superconducting properties of the Y123 oxide superconducting thin film wires obtained in the examples and comparative examples, 77 K, Jc under a self-magnetic field was measured. The results are shown in Table 1.

(3)考察
表1、図2より、Yの組成比が1.0以上であるか否かによって、Y123酸化物超電導薄膜線材におけるY211発生率が大きく相違していることが分かる。即ち、Yの組成比が1.0未満の実施例1〜3の場合、全てのY123酸化物超電導薄膜線材にY211が発生せず、一方、Yの組成比が1.0以上の比較例1〜3の場合、全てのY123酸化物超電導薄膜線材にY211が発生している。そして、これに伴い、Jcも大きく相違している。
(3) Consideration From Table 1 and FIG. 2, it can be seen that the Y211 generation rate in the Y123 oxide superconducting thin film wire is greatly different depending on whether or not the composition ratio of Y is 1.0 or more. That is, in Examples 1 to 3 in which the Y composition ratio is less than 1.0, Y211 does not occur in all Y123 oxide superconducting thin film wires, while the Y composition ratio is 1.0 or more. In the case of? 3, Y211 is generated in all the Y123 oxide superconducting thin film wires. Along with this, Jc is also greatly different.

なお、表1には示していないが、本発明者は、Yの組成比が0.8未満、例えば0.75の場合、全てのY123酸化物超電導薄膜線材にY211の発生は見られないものの、Jcは0.0MA/cmとなり、実施例1〜3に比べ、低下していることを確認している。これは、Yの組成比が低すぎ、生成されるY123結晶自体が少なくなったものと思われる。 Although not shown in Table 1, when the Y composition ratio is less than 0.8, for example, 0.75, the generation of Y211 is not observed in all Y123 oxide superconducting thin film wires. , Jc is 0.0 MA / cm 2 , which is confirmed to be lower than Examples 1-3. This is presumably because the Y composition ratio was too low and the produced Y123 crystal itself was reduced.

次に、実施例1および比較例1で得られたY123酸化物超電導薄膜層の表面のSEM写真を図3に示す。図3において、(a)は実施例1、(b)は比較例1である。図3より、Yの組成比が適切なMOD溶液を用いて形成された実施例1のY123酸化物超電導薄膜層では、Y211相が形成されていなく、一方、Yの組成比が過剰なMOD溶液を用いて形成された比較例1のY123酸化物超電導薄膜層では、細長い形状のY211が多数形成されていることが分かる。   Next, the SEM photograph of the surface of the Y123 oxide superconducting thin film layer obtained in Example 1 and Comparative Example 1 is shown in FIG. In FIG. 3, (a) is Example 1, and (b) is Comparative Example 1. From FIG. 3, in the Y123 oxide superconducting thin film layer of Example 1 formed using a MOD solution with an appropriate Y composition ratio, the Y211 phase was not formed, while the Y composition ratio was excessive. It can be seen that in the Y123 oxide superconducting thin film layer of Comparative Example 1 formed using, a large number of elongated Y211 are formed.

以上より、Yの組成比Xが、0.8≦X<1.0であるMOD溶液を用いることにより、異相であるY211の発生が抑制されて、Jcが向上したY123酸化物超電導薄膜線材を作製できることが分かる。   As described above, by using a MOD solution in which the Y composition ratio X is 0.8 ≦ X <1.0, the generation of Y211 which is a different phase is suppressed, and the Y123 oxide superconducting thin film wire with improved Jc is obtained. It can be seen that it can be produced.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 配向金属基材
2 中間層
21 第1層目中間層
22 第2層目中間層
23 第3層目中間層
3 配向金属基板
4 Y123酸化物超電導薄膜層
DESCRIPTION OF SYMBOLS 1 Oriented metal base material 2 Intermediate layer 21 1st layer intermediate layer 22 2nd layer intermediate layer 23 3rd layer intermediate layer 3 Oriented metal substrate 4 Y123 oxide superconducting thin film layer

Claims (4)

塗布熱分解法を用いて、配向金属基材上に形成された中間層の上に、酸化物超電導薄膜層を形成するに際して使用される酸化物超電導薄膜層形成用の原料溶液であって、
RE(希土類元素)およびBa(バリウム)、Cu(銅)の各有機金属化合物が、RE:Ba:Cu=X:2:3(0.8≦X<1.0)の比率で、溶媒に溶解されている
ことを特徴とする酸化物超電導薄膜層形成用の原料溶液。
A raw material solution for forming an oxide superconducting thin film layer used in forming an oxide superconducting thin film layer on an intermediate layer formed on an oriented metal substrate using a coating pyrolysis method,
RE (rare earth element) and each organometallic compound of Ba (barium) and Cu (copper) are contained in a solvent at a ratio of RE: Ba: Cu = X: 2: 3 (0.8 ≦ X <1.0). A raw material solution for forming an oxide superconducting thin film layer, characterized by being dissolved.
請求項1に記載の酸化物超電導薄膜層形成用の原料溶液を用いて形成されていることを特徴とする酸化物超電導薄膜層。   An oxide superconducting thin film layer formed using the raw material solution for forming an oxide superconducting thin film layer according to claim 1. 塗布熱分解法を用いて、配向金属基材上に形成された中間層の上に形成された酸化物超電導薄膜層であって、膜内にREBaCu相が形成されていないことを特徴とする酸化物超電導薄膜層。 An oxide superconducting thin film layer formed on an intermediate layer formed on an oriented metal substrate using a coating pyrolysis method, in which a RE 2 Ba 1 Cu 1 O 5 phase is formed in the film There is no oxide superconducting thin film layer. 配向金属基材上に形成された中間層の上に、請求項2または請求項3に記載の酸化物超電導薄膜層が形成されていることを特徴とする酸化物超電導薄膜線材。   An oxide superconducting thin film wire according to claim 2 or 3, wherein the oxide superconducting thin film layer according to claim 2 or 3 is formed on an intermediate layer formed on an oriented metal substrate.
JP2011090178A 2011-04-14 2011-04-14 Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material Pending JP2012221922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090178A JP2012221922A (en) 2011-04-14 2011-04-14 Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090178A JP2012221922A (en) 2011-04-14 2011-04-14 Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material

Publications (1)

Publication Number Publication Date
JP2012221922A true JP2012221922A (en) 2012-11-12

Family

ID=47273172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090178A Pending JP2012221922A (en) 2011-04-14 2011-04-14 Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material

Country Status (1)

Country Link
JP (1) JP2012221922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429553B1 (en) 2012-01-17 2014-09-22 주식회사 서남 Superconducting wire and method of forming the same
WO2019098417A1 (en) * 2017-11-16 2019-05-23 주식회사 서남 Ceramic wire manufacturing method and manufacturing equipment therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208898A (en) * 1991-06-14 1993-08-20 Siemens Ag Production of high-temperature superconductive component
WO2004038816A1 (en) * 2002-10-23 2004-05-06 Hamamatsu Foundation For Science And Technology Promotion Oxide superconductor thin film element
JP2007115562A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007115561A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007188756A (en) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center Rare earth based tape shape oxide superconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208898A (en) * 1991-06-14 1993-08-20 Siemens Ag Production of high-temperature superconductive component
WO2004038816A1 (en) * 2002-10-23 2004-05-06 Hamamatsu Foundation For Science And Technology Promotion Oxide superconductor thin film element
JP2007115562A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007115561A (en) * 2005-10-21 2007-05-10 Internatl Superconductivity Technology Center Tape-shaped rare-earth group oxide superconductor and its manufacturing method
JP2007188756A (en) * 2006-01-13 2007-07-26 Internatl Superconductivity Technology Center Rare earth based tape shape oxide superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429553B1 (en) 2012-01-17 2014-09-22 주식회사 서남 Superconducting wire and method of forming the same
WO2019098417A1 (en) * 2017-11-16 2019-05-23 주식회사 서남 Ceramic wire manufacturing method and manufacturing equipment therefor

Similar Documents

Publication Publication Date Title
JP2007165153A (en) Manufacturing method of thick-film tape-like re-based (123) superconductor
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP5096422B2 (en) Substrate and superconducting wire manufacturing method
JP5688804B2 (en) Intermediate layer for forming oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire
US20150105261A1 (en) Oxide superconducting thin film and method of manufacturing the same
JP5380250B2 (en) Rare earth oxide superconducting wire and method for producing the same
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012174564A (en) Oxide superconducting thin film and method for producing the same
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2012174565A (en) Raw material solution for forming oxide superconductor
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP5477395B2 (en) Oxide superconducting thin film, manufacturing method thereof, and oxide superconducting thin film wire
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JPWO2012111678A1 (en) Superconducting wire and method of manufacturing superconducting wire
JP2010135134A (en) Manufacturing method for re123 superconductive thin-film wire rod, and re123 superconductive thin-film wire rod
JP2010123433A (en) Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod
JP2012129085A (en) Oxide superconductive thin film wire rod and manufacturing method thereof
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
CN108140457A (en) Oxide superconducting wire rod
JP5464194B2 (en) Oxide superconducting thin film wire
WO2013153651A1 (en) Oxide superconductor thin-film wiring material, and production method therefor
US20150162518A1 (en) Source material solution for forming oxide superconductor
JP2023076209A (en) Multifilamentary thin-film superconducting wire and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130805