WO2004038816A1 - Oxide superconductor thin film element - Google Patents

Oxide superconductor thin film element Download PDF

Info

Publication number
WO2004038816A1
WO2004038816A1 PCT/JP2003/011954 JP0311954W WO2004038816A1 WO 2004038816 A1 WO2004038816 A1 WO 2004038816A1 JP 0311954 W JP0311954 W JP 0311954W WO 2004038816 A1 WO2004038816 A1 WO 2004038816A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
oxide superconductor
superconductor thin
substrate
current density
Prior art date
Application number
PCT/JP2003/011954
Other languages
French (fr)
Japanese (ja)
Inventor
Ryusuke Kita
Yutaka Yoshida
Original Assignee
Hamamatsu Foundation For Science And Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation For Science And Technology Promotion filed Critical Hamamatsu Foundation For Science And Technology Promotion
Priority to AU2003268648A priority Critical patent/AU2003268648A1/en
Priority to JP2004546397A priority patent/JPWO2004038816A1/en
Publication of WO2004038816A1 publication Critical patent/WO2004038816A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Definitions

  • the present invention relates to a thin film device using an oxide superconductor. More specifically,
  • the present invention relates to a thin-film device using an oxide superconductor containing Yb and Nd.
  • Oxide superconductor (RB a 2 Cu 3 0 7 _ y ; where R is Y, Gd, Eu, Nd, Ho, Yb, Tb, Sm, Pr, Dy, Lu, Er and Tm (One or more elements selected from the group) has a high critical temperature and can use inexpensive liquid nitrogen refrigerants instead of the conventionally used expensive liquid nitrogen refrigerants. It is expected to be applied to transportation wires and ultra-high-speed computing elements. However, in order to exhibit excellent properties (high critical temperature, high critical current density) even when the oxide superconductor is thinned, the crystal grains of these oxide superconductor materials having an orthorhombic structure must be used. It is necessary that the c-axis is oriented perpendicular to the substrate (hereinafter referred to as c-axis orientation).
  • oxide superconductors it has not been possible to simultaneously achieve the two tasks of (1) aligning the crystal grains along the C axis and (2) keeping the substrate temperature at the time of thin film production as low as possible.
  • the crystal grains may become the a-axis orientation, or the a-axis Since a considerable amount of oriented crystal grains coexist, c-axis orientation cannot be fully achieved.
  • the c-axis orientation is more easily performed as the substrate temperature is higher, when the temperature exceeds 750 ° C, diffusion of Ba into the underlying buffer layer becomes remarkable, and there is a problem that the properties of the underlying buffer layer deteriorate.
  • An object of the present invention is to solve the above-mentioned conventional problems and to provide an oxide superconductor thin film element in which an oxide superconductor exhibiting excellent performance is formed at a low substrate temperature.
  • the present invention is composed of at least a substrate and an oxide superconductor thin film, the oxide superconductor thin film, ⁇ ⁇ _ ⁇ ⁇ 1 ⁇ ⁇ & 2 ( a Iotaiota 3 ⁇ 7 y, X is 0
  • An oxide superconductor thin film element having a composition of 0.01 to 0.30 and y of 0.00 to 20 and having a crystal grain c-axis oriented perpendicular to the substrate. 0.15 m to: preferably 10.0 m
  • the film thickness of the thin film is more preferably 0.15 m to 1.0 // m. More preferably, the thin film has a thickness of 0.25 / m to 1.0 m.
  • X is 0.01 to 0.30
  • y is 0.00 to 0.20.
  • the temperature of the substrate is preferably 750 ° C to 850 ° C.
  • the present invention provides an oxide superconductor comprising at least a substrate and an oxide superconductor thin film, wherein the oxide superconductor thin film contains two kinds of rare earth elements, and each of the rare earth elements alone.
  • the difference in melting point is 10 ° C.
  • the present invention relates to an oxide superconductor thin film element whose axis is oriented perpendicular to a substrate.
  • FIG. 1 is a diagram showing a configuration of an oxide superconducting thin film element of the present invention.
  • FIG. 2 shows (Yb ⁇ xNdx) B a 2 Cu 3 ⁇ 7 _ y in the embodiment of the present invention.
  • 5 is a graph showing the mixture ratio of impurity phases in a pulse laser vapor deposition system.
  • FIG 3 in an embodiment of the present invention, is a graph illustrating the (Yb -xNdx) B a 2 Cu 3 0 7 _ y system, the superconducting transition in the pulsed laser deposition target temperature (Tc).
  • Figure 4 is a graph showing the film thickness dependency of the (Yb Ndu) the critical current density at B a 2 Cu 3 0 7 in the y thin film, the temperature 77 ° K (J c).
  • Figure 5 is a graph showing the film thickness dependency of the (YbQ.gNdo ⁇ ) the critical current density at B a 2 Cu 3 0 7 in the y thin film, the temperature 77 ° K (J c).
  • the present invention is composed of at least a substrate and an oxide superconductor thin film, oxide superconductor thin film, a Ybi- x Nd x B a 2 Cu 3 0 7 y, x is from 0.01 to 0 30.
  • An oxide superconductor thin film element having a composition in which y is 0.00 to 0.20 and the c-axis of crystal grains is oriented perpendicular to the substrate.
  • X is preferably from 0.05 to 0.25, more preferably from 0.1 to 0.2. Further, y is preferably from 0.00 to 0.05, more preferably from 0.00 to 0.03. X is from 0.01 to 0.30, y is out of the range of 0.00 to 0.20, the proportion of an impurity phase BaCu_ ⁇ 2 and Yb 2 B ACu_ ⁇ 5 (hereinafter 21 1 phase) Increase or decrease the superconducting transition temperature.
  • the thin film has a thickness of 0.15 m to 10.0 m.
  • the film thickness is preferably 0.15 to 1.0 im, more preferably 0.25 to 1.0 m. If the thickness of the thin film is smaller than 0.15 m, it is easily affected by the substrate and the buffer layer, and a sufficient critical current density can be obtained by forming a reaction layer. Tend not to be.
  • the C axis of the crystal grains is oriented perpendicular to the substrate means that the c axis is perpendicular to the substrate in most (90% or more) of the crystal grains constituting the thin film. It means that.
  • X is 0. from 01 to 0 30
  • y is 0. 00-0 20 Yb Bok x Nd x B a 2 Cu 3 0 7 -..
  • a composition of y sintered body The present invention relates to a method for producing an oxide superconductor thin film element in which the temperature of the substrate is 650 ° C to 850 ° C in the step of vapor-depositing the target on a substrate.
  • the temperature of the substrate is preferably from 750 to 850 ° C, more preferably from 750 to 800 ° C. If the temperature of the substrate is lower than 650 ° C, the crystallinity of the superconductor thin film decreases, and the c-axis of the force and the crystal grains becomes difficult to be oriented perpendicular to the substrate. Since the reaction between the thin film and the substrate or the buffer layer proceeds, the orientation of crystal grains is disturbed.
  • the oxide superconductor thin film contains two kinds of rare earth elements, and the difference in melting point between the oxide superconductors containing each rare earth element alone is A critical current density of 5 ⁇ 10 5 to 13 ⁇ 10 5 A / cm 2 when the temperature is 10 ° C. or more and the thickness of the oxide superconductor thin film is in a range of 0.25 to 0.75 m, or When the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 m, a critical current density of 2 ⁇ 10 5 to 4 ⁇ 10 5 A / cm 2 is exhibited, and the c-axis of the crystal grains is perpendicular to the substrate.
  • the present invention relates to an oxide superconductor thin film element which is oriented in a direction.
  • the difference in melting point between oxide superconductors containing each rare earth element alone is preferably 10 to 160 ° C, more preferably 40 ° (: to 160.C.
  • the melting point difference is 10 °. If it is less than C, a sufficient critical current density cannot be obtained because the pinning center is not introduced.
  • the thickness of the oxide superconductor thin film is in the range of 0.25 to 75 ⁇ .
  • the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 m, it is preferable to exhibit a critical current density of 2 ⁇ 10 5 A / cm 2 or more.
  • the critical current density is 2 XI 0 5 A / cm 2 less than, not enough power transportation characteristics.
  • FIG. 1 is a cross-sectional view of the oxide superconductor thin film element of the present invention
  • FIG. 2 shows the Nd concentration dependency of the impurity phase mixture ratio in the target sintered body for forming an oxide superconductor thin film of the present invention
  • FIG. 3 is a graph showing the dependence of the critical temperature on the Nd concentration in the target sintered body for forming an oxide superconductor thin film of the present invention.
  • FIGS. 4 and 5 are graphs showing the oxide superconductivity of the present invention and the comparative example. 4 is a graph showing the film thickness dependence of the critical current density in a body thin film.
  • An oxide superconductor thin film 2 is provided on a substrate 1 (see (a) of FIG. 1).
  • the substrate 1 is made of a Ni-based alloy such as Hastelloy, and MgO single crystal is also used.
  • the substrate is N i based alloy, there to prevent reaction of the substrate 1 and the oxide superconductor thin film 2, also inserted child oxide buffer layer 3, such as C e 0 2 (shown in FIG. 1 (b) See).
  • the reaction between the substrate and the oxide superconductor thin film, or the reaction between the oxide buffer layer and the oxide superconductor thin film becomes more remarkable as the substrate temperature increases, and in many cases, the reaction between the oxide superconductor and the oxide superconductor thin film. Due to the diffusion of Ba, the characteristics of the oxide buffer layer deteriorate.
  • the oxide superconductor thin film 2 is formed by using a pulse laser deposition method or the like.
  • an oxide superconductor target for pulsed laser deposition is fabricated as follows.
  • Oxide, carbonate, etc. of each metal element is used as a starting material and ground and mixed.
  • step A The powder obtained in step A is sintered in air or oxygen atmosphere at 880 to 910 ° C for 12 to 48 hours. In some cases, this process is repeated several times (process B).
  • the sintered body obtained in step B is pulverized, mixed, formed into a predetermined shape, and then further heated to a temperature of about 900 to 930 ° C in an air or oxygen atmosphere and sintered for 12 to 96 hours ( Step C).
  • step C The sintered body obtained in step C is further pulverized, mixed and formed into a predetermined shape, and then heated in an oxygen gas flow at 880 to 910 ° C for 12 to 96 hours to perform oxygen annealing. Thereafter, it is cooled under predetermined conditions (step D).
  • This sintered body is used as a target during pulsed laser deposition to produce a superconductor thin film.
  • the laser is formed using an excimer laser such as ArF, KrF, and XeC1.
  • a thin film is formed by a pulsed laser deposition method.
  • the substrate temperature is 650 ° C to 850 ° C.
  • Fig. 4 shows the critical current density of the oxide superconductor thin film when the substrate temperature was set at 750 to 85 Ot
  • Fig. 5 shows the critical current density when the substrate temperature was set at 650 to 750. ing.
  • the example shows an example containing Nd
  • the comparative example shows an example containing no Nd.
  • oxide superconductor containing a rare earth element R _ X R! 'X B a 2 Cu 3 ⁇ 7 one y; where R and R' are Y, Gd, Eu, Nd, Ho, Yb, Tb, Sm, Pr, Dy, Lu, Er, and Tm), and the melting point of the oxide superconductor containing each rare earth element alone.
  • the difference is 1 o ° c or more.
  • the portion of the oxide superconductor phase on the high melting point side acts as an effective pinning center, and the superconducting state can be maintained up to a high magnetic field.
  • Conceivable For example, NdB a 2 Cu 3 ⁇ 7 y system melting point of about 100 higher than that of Yb B a 2 Cu 3 ⁇ 7 _ y system melting point.
  • the Nd side which is mixed in a small amount, acts as the pinning center.
  • the difference in melting point is about 10 o ° c.However, from the viewpoint of forming a pinning center, it is only necessary to form a region in which the orientation is different. Should be 1 o ° c or more.
  • step A The powder obtained in step A was fired in an electric furnace at 900 ° C for 12 hours in air. The powder thus obtained was sufficiently pulverized and mixed. This step was repeated twice (step B).
  • step B The powder obtained in step B was sufficiently ground and mixed, then pelletized by applying pressure, and calcined in air at 910 ° C for 48 hours (step C).
  • Step D After the pellet obtained in Step C is sufficiently ground and mixed, it is again pelletized, the pellet is heated to 910 ° C in an oxygen gas flow, held for 12 hours, and then cooled to 500. After holding for a while, oxygen annealing was performed by cooling the furnace (Step D).
  • the sintered body sample obtained through the above steps A, B, C and D was examined for impurity phases contained in the sample by powder X-ray diffraction method. The results are shown in FIG. 2.
  • the vertical axis of the figure shows the relative intensity of the 211 phase to the 123 phase.
  • the sintered body obtained through the steps A, B, C and D was used as a target, and a thin film was formed by a pulsed laser deposition method.
  • the laser used was an ArF excimer laser and the substrate used was MgO (100) single crystal.
  • Substrate temperatures of 600 to 850 ° C and film thicknesses of 0.2 m to 1 m were obtained, and the crystal grains were c-axis oriented in each case.
  • the critical current densities of these thin films at 77 ° K were measured.When the substrate temperature was 750 to 850 ° C, 5 X 10 5 to 13 X in the 0.25 to 0.75 m film thickness region A high critical current density of 10 5 AZcm 2 was obtained, and the critical current density hardly decreased even when the force and the film thickness increased. As a result, even when the film thickness was increased to 1 / m, the critical current density was still as high as 2 to 4 ⁇ 10 5 A / cm 2 (see Fig. 4).
  • the critical current density the film thickness that also is by 2 m in 10 5 ⁇ 10 6 AZcm 2 about 0.1
  • the film thickness increases With a film thickness of 0.25 m or more, it decreases to 10 4 AZcm 2 or less. Therefore, in the comparative example, At a film thickness of 0.5 to 0.75 zm, only the critical current density of about 1Z50 of the example could be obtained.
  • the cooling efficiency is increased by several hundred times because a liquid vapor refrigerant is not required.
  • a power transmission capacity 10 times or more even with the same size as conventional power cable lines using copper wires, it is possible to achieve a power transmission capacity 10 times or more.
  • this oxide superconducting thin film element is applied to a magnet, for example, in the case of a Bi-based oxide high-temperature superconductor, due to the inherent properties of the material, the critical current density drops sharply in a magnetic field, the temperature rises at 77 ° K. Although a magnetic field of only about 1T can be generated, a magnetic field several times larger than that can be generated, and it is expected that an ultra-strong magnet will be obtained.
  • the separation efficiency of the magnetic separation device can be increased by a factor of 10 or more.
  • the increase in critical current density not only reduces the size of the superconducting generator to less than 1/2, but also increases the stability against load fluctuations, so that the transmission capacity can be increased by 50% even with the existing transmission equipment.
  • the signal intensity of a magnetic resonance imaging device (MRI) is expected to increase by a factor of 40, resulting in higher resolution.
  • the critical current density of 5 ⁇ 10 5 to L 3 ⁇ 10 5 A / cm 2 in the range of 0.25 to 0.75 m Even when the film thickness was increased to 1, a critical current density of 2 ⁇ 10 5 to 4 ⁇ 10 5 AZ cm 2 was obtained.
  • an oxide superconductor thin film element of the present invention (Yb ⁇ Nd ⁇ in B a 2 Cu 3 0 7 y system, X is from 0.01 to 0.30, and is 0. 00 0.20, and the c-axis of the crystal grains of the thin film was oriented perpendicular to the substrate, and the other elements of the element reacted because the film was formed at a substrate temperature of 650 to 850 ° C during film formation. without degradation, and a wide range of film thickness, an oxide superconductor thin film element exhibiting the critical current density and excellent 5X 10 5 ⁇ 13 X 10 5 AZ cm 2 is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

An oxide superconductor thin film element which comprises a substrate and an oxide superconductor thin film, wherein the oxide superconductor thin film has a composition represented by Yb1-xNdxBa2Cu3O7-y where x is 0.01 to 0.30 and y is 0.00 to 0.20, and c axes of crystal grains thereof are oriented in a direction perpendicular to the substrate. The oxide superconductor thin film element has allowed the preparation of a thin film element which is free from problems associated with conventional superconductor thin film elements, mentioned in the specification, and exhibits excellent performance capabilities, with a low temperature of a substrate.

Description

明 糸田 書 酸化物超伝導体薄膜素子 技術分野  Akira Itoda Oxide superconductor thin film device Technical field
本発明は、 酸化物超伝導体を用いた薄膜素子に関する。 より詳しくは、 The present invention relates to a thin film device using an oxide superconductor. More specifically,
Y bおよび N dを含む酸化物超伝導体を用いた薄膜素子に関する。 背景技術 The present invention relates to a thin-film device using an oxide superconductor containing Yb and Nd. Background art
酸化物超伝導体 (RB a2C u307_y; ここで Rは Y、 Gd、 Eu、 N d、 Ho、 Yb、 Tb、 Sm、 P r、 Dy、 Lu、 E rおよび Tmの群か ら選ばれた 1種以上の元素) は、 臨界温度が高く、 従来用いられていた高 価な液体ヘリゥム冷媒に代わり安価な液体チッ素冷媒が利用できるため、 これら材料を薄膜化して電力輸送用線材や、 超高速演算素子などへの応用 が期待されている。 しかし、 酸化物超伝導体が薄膜化されたときにも優れ た特性 (高い臨界温度、 高い臨界電流密度) を示すためには、 斜方晶をと るこれら酸化物超伝導体材料結晶粒の c軸が基板に対して垂直に配向 (以 下、 c軸配向という) することが必要である。 Oxide superconductor (RB a 2 Cu 3 0 7 _ y ; where R is Y, Gd, Eu, Nd, Ho, Yb, Tb, Sm, Pr, Dy, Lu, Er and Tm (One or more elements selected from the group) has a high critical temperature and can use inexpensive liquid nitrogen refrigerants instead of the conventionally used expensive liquid nitrogen refrigerants. It is expected to be applied to transportation wires and ultra-high-speed computing elements. However, in order to exhibit excellent properties (high critical temperature, high critical current density) even when the oxide superconductor is thinned, the crystal grains of these oxide superconductor materials having an orthorhombic structure must be used. It is necessary that the c-axis is oriented perpendicular to the substrate (hereinafter referred to as c-axis orientation).
たとえば、 大電流素子に
Figure imgf000003_0001
a2Cu 307y系材料の使用 が検討されている (たとえば、 特開平 9一 87094号公報参照。 ) 。 し かし、 特開平 9一 87094号公報の場合、 溶融加工法を用いて線材が作 製されており、 結晶粒が電流伝送方向に対してランダムに配向されている。 このため、 特開平 9一 8 7094号公報に記載の酸化物超伝導材料におい ては、 充分な電流密度が得られない。
For example, for high current devices
Figure imgf000003_0001
a 2 Cu 3 0 7 - Use of the y-based materials have been studied (for example, see JP Hei 9 one 03/87094.). However, in the case of Japanese Patent Application Laid-Open No. Hei 9-187094, the wire is manufactured by using a melt processing method, and the crystal grains are randomly oriented in the current transmission direction. Therefore, a sufficient current density cannot be obtained in the oxide superconducting material described in JP-A-9-187094.
加えて従来これら酸化物超伝導材料を薄膜素子に応用するためには多層 にわたる積層化プロセスが必要で、 このためには、 薄膜作製時の基板温度 をできるだけ低く抑える必要がある。 In addition, in order to apply these oxide superconducting materials to thin-film devices, a multi-layer stacking process is conventionally required. Must be kept as low as possible.
しかし酸化物超伝導体において、 ①結晶粒を C軸配向させる、 ②薄膜作 製時の基板温度をできるだけ低く抑えるという 2つの課題を同時に達成す ることは従来できていない。  However, in oxide superconductors, it has not been possible to simultaneously achieve the two tasks of (1) aligning the crystal grains along the C axis and (2) keeping the substrate temperature at the time of thin film production as low as possible.
たとえば、 YbBa2Cu 307_y系酸化物超伝導体薄膜を形成するため の工程で、 700〜750°C以下の低い基板温度では、 結晶粒が a軸配向 となったり、 あるいは a軸配向した結晶粒がかなりの量混在するため、 充 分に c軸配向させることはできない。 一方、 基板温度が高いほど容易に c 軸配向するものの、 750°Cを超えると、 B aの下地バッファ層への拡散 が顕著になり、 下地バッファ層の特性に劣化が生じるという問題がある。 さらに、 大電流輸送用線材へ応用する場合、 線材として流すことのでき る全電流 (すなわち、 電流密度 X膜厚) をできる限り大きくする必要があ る。 しかし従前の YbB a2Cu307_y薄膜では、 膜厚の増加とともに臨 界電流密度が急激に減少し、 充分な全電流が得られないという問題もある。 発明の開示 For example, in the process for forming a YbBa 2 Cu 3 0 7 _ y based oxide superconductor thin film, the following low substrate temperature 700 to 750 ° C, the crystal grains may become the a-axis orientation, or the a-axis Since a considerable amount of oriented crystal grains coexist, c-axis orientation cannot be fully achieved. On the other hand, although the c-axis orientation is more easily performed as the substrate temperature is higher, when the temperature exceeds 750 ° C, diffusion of Ba into the underlying buffer layer becomes remarkable, and there is a problem that the properties of the underlying buffer layer deteriorate. Furthermore, when applied to wires for high-current transport, the total current that can flow as wires (ie, current density x film thickness) must be as large as possible. However, in conventional YbB a 2 Cu 3 0 7 _ y thin film, and decreases the critical current density rapidly with increasing film thickness, there is a problem that a sufficient total current can not be obtained. Disclosure of the invention
本発明の目的は、 叙上の従来の問題を解消し、 優れた性能を示す酸化物 超伝導体を低い基板温度で成膜した酸化物超伝導体薄膜素子を提供するこ とである。  An object of the present invention is to solve the above-mentioned conventional problems and to provide an oxide superconductor thin film element in which an oxide superconductor exhibiting excellent performance is formed at a low substrate temperature.
すなわち、 本発明は、 少なくとも基板と酸化物超伝導体薄膜から構成さ れ、 該酸化物超伝導体薄膜が、 Υ ^_χΝο1χΒ&2( ιι37 yであって、 Xが 0. 01〜0. 30、 yが 0. 00〜 20である組成を有し、 結 晶粒の c軸が基板に垂直に配向された酸化物超伝導体薄膜素子に関する。 前記薄膜の膜厚は、 0. 15 m〜: 10. 0 mであることが好ましい。 前記薄膜の膜厚は、 0. 15 m〜l. 0 //mであることがより好まし い。 前記薄膜の膜厚は、 0. 25 /m〜l. 0 mであることがさらに好ま しい。 That is, the present invention is composed of at least a substrate and an oxide superconductor thin film, the oxide superconductor thin film, Υ ^ _ χ Νο1 χ Β & 2 ( a Iotaiota 37 y, X is 0 An oxide superconductor thin film element having a composition of 0.01 to 0.30 and y of 0.00 to 20 and having a crystal grain c-axis oriented perpendicular to the substrate. 0.15 m to: preferably 10.0 m The film thickness of the thin film is more preferably 0.15 m to 1.0 // m. More preferably, the thin film has a thickness of 0.25 / m to 1.0 m.
また、 本発明は Xが 0. 01〜0. 30であり、 yが 0. 00〜0. 2 0である
Figure imgf000005_0001
a2Cu 307 yの組成からなる焼結体をターゲ ットとして基板上に蒸着する工程において、 前記基板の温度が 650°C〜 850°Cである酸化物超伝導体薄膜素子の製法に関する。
In the present invention, X is 0.01 to 0.30, and y is 0.00 to 0.20.
Figure imgf000005_0001
in the step of depositing on a substrate a sintered body having a composition of a 2 Cu 3 0 7 y as targeting Tsu bets, preparation of the oxide superconductor thin film element temperature of the substrate is 650 ° C~ 850 ° C About.
前記基板の温度は、 750°C〜850°Cであることが好ましい。  The temperature of the substrate is preferably 750 ° C to 850 ° C.
さらに、 本発明は、 少なくとも基板と酸化物超伝導体薄膜から構成され、 該酸化物超伝導体薄膜が、 2種類の希土類元素を含み、 それぞれの希土類 元素を単体で含む酸化物超伝導体のあいだの融点の差が 10 °C以上であつ て、 前記酸化物超伝導体薄膜の膜厚が 0. 25〜 0. 75 の範囲にお いて、 5 X 105〜13 X 105AZcm2の臨界電流密度、 または、 前記 酸化物超伝導体薄膜の膜厚が 0. 25〜 1 mの範囲において、 2 X 10 5〜4X 105 A/cm2の臨界電流密度を示し、 結晶粒の c軸が基板に垂 直に配向された酸化物超伝導体薄膜素子に関する。 Further, the present invention provides an oxide superconductor comprising at least a substrate and an oxide superconductor thin film, wherein the oxide superconductor thin film contains two kinds of rare earth elements, and each of the rare earth elements alone. When the difference in melting point is 10 ° C. or more and the thickness of the oxide superconductor thin film is in the range of 0.25 to 0.75, 5 × 10 5 to 13 × 10 5 AZcm 2 A critical current density, or a critical current density of 2 × 10 5 to 4 × 10 5 A / cm 2 when the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 m; The present invention relates to an oxide superconductor thin film element whose axis is oriented perpendicular to a substrate.
従来より Ybの一部を Ndに置換した組成の開示はあった (特開平 9 - 87094号公報) が、 薄膜化の実施はなかった。 本発明によれば、 Yb i—xNdxB a2Cu 307 y系において、 x = 0. 01〜0. 30、 さら に好ましくは x=0. 05〜0. 25、 また y = 0. 00〜0. 20、 さ らに好ましくは y = 0. 00〜0. 05の組成範囲では、 低い薄膜形成温 度でも、 5 X 105〜; 13 X 1 05 AZ cm2と高い臨界電流密度を示す酸 化物超伝導体薄膜が得られている。 図面の簡単な説明 Conventionally, there has been disclosed a composition in which a part of Yb is substituted with Nd (Japanese Patent Application Laid-Open No. 9-87094), but no thinning has been performed. According to the present invention, the Yb i-xNdxB a 2 Cu 3 0 7 y system, x = 0. 01~0. 30, preferably a further x = 0. 05~0. 25, also y = 0. 00 In the composition range of y = 0.20, and more preferably, y = 0.00 to 0.05, even at a low film formation temperature, a high critical current density of 5 × 10 5 to 13 × 10 5 AZ cm 2 An oxide superconductor thin film having the following characteristics is obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の、 酸化物超伝導薄膜素子の構成を示す図である。  FIG. 1 is a diagram showing a configuration of an oxide superconducting thin film element of the present invention.
図 2は本発明の実施例における、 (Yb^xNdx) B a2Cu37_y 系の、 パルスレーザ蒸着用夕一ゲットにおける不純物相の混在比を示すグ ラフである。 FIG. 2 shows (Yb ^ xNdx) B a 2 Cu 37 _ y in the embodiment of the present invention. 5 is a graph showing the mixture ratio of impurity phases in a pulse laser vapor deposition system.
図 3は本発明の実施例における、 (Yb -xNdx) B a2Cu 307_y 系の、 パルスレーザ蒸着用ターゲットにおける超伝導転移温度 (Tc) を 示すグラフである。 3 in an embodiment of the present invention, is a graph illustrating the (Yb -xNdx) B a 2 Cu 3 0 7 _ y system, the superconducting transition in the pulsed laser deposition target temperature (Tc).
図 4は (Yb Ndu) B a2Cu 307 y薄膜における、 温度 77° Kでの臨界電流密度 (J c) の膜厚依存性を示すグラフである。 Figure 4 is a graph showing the film thickness dependency of the (Yb Ndu) the critical current density at B a 2 Cu 3 0 7 in the y thin film, the temperature 77 ° K (J c).
図 5は (YbQ.gNdo^) B a2Cu 307 y薄膜における、 温度 77° Kでの臨界電流密度 (J c) の膜厚依存性を示すグラフである。 発明を実施するための最良の形態 Figure 5 is a graph showing the film thickness dependency of the (YbQ.gNdo ^) the critical current density at B a 2 Cu 3 0 7 in the y thin film, the temperature 77 ° K (J c). BEST MODE FOR CARRYING OUT THE INVENTION
本発明の酸化物超伝導体薄膜素子を、 添付した図面を参照しつつ、 以下 に詳細に説明する。  The oxide superconductor thin film element of the present invention will be described below in detail with reference to the accompanying drawings.
本発明は、 少なくとも基板と酸化物超伝導体薄膜から構成され、 該酸化 物超伝導体薄膜が、 Ybi— xNdxB a2Cu 307 yであって、 xが 0. 01〜0. 30、 yが 0. 00〜0. 20である組成を有し、 結晶粒の c 軸が基板に垂直に配向された酸化物超伝導体薄膜素子である。 The present invention is composed of at least a substrate and an oxide superconductor thin film, oxide superconductor thin film, a Ybi- x Nd x B a 2 Cu 3 0 7 y, x is from 0.01 to 0 30. An oxide superconductor thin film element having a composition in which y is 0.00 to 0.20 and the c-axis of crystal grains is oriented perpendicular to the substrate.
Xは、 0. 05〜0. 25が好ましく、 0. 1〜0. 2がより好ましい。 また、 yは、 0. 00〜0. 05が好ましく、 0. 00〜0. 03がより 好ましい。 Xが 0. 01〜0. 30、 yが 0. 00〜0. 20の範囲外で ある場合は、 不純物相である BaCu〇2や Yb2B aCu〇5 (以下 21 1相) の割合が増加、 あるいは超伝導転移温度が低下する。 X is preferably from 0.05 to 0.25, more preferably from 0.1 to 0.2. Further, y is preferably from 0.00 to 0.05, more preferably from 0.00 to 0.03. X is from 0.01 to 0.30, y is out of the range of 0.00 to 0.20, the proportion of an impurity phase BaCu_〇 2 and Yb 2 B ACu_〇 5 (hereinafter 21 1 phase) Increase or decrease the superconducting transition temperature.
前記薄膜の膜厚は、 0. 15 ΠΙ〜10. 0 mである。 膜厚は、 0. 15 ΠΙ〜1. 0 imが好ましく、 0. 25 m〜l. 0 mがより好ま しい。 薄膜の膜厚が、 0. 15 mより小さいと基板やバッファ層の影響 を受けやすいため、 反応層が生成することにより十分な臨界電流密度が得 られない傾向にある。 The thin film has a thickness of 0.15 m to 10.0 m. The film thickness is preferably 0.15 to 1.0 im, more preferably 0.25 to 1.0 m. If the thickness of the thin film is smaller than 0.15 m, it is easily affected by the substrate and the buffer layer, and a sufficient critical current density can be obtained by forming a reaction layer. Tend not to be.
ここで、 結晶粒の C軸が基板に垂直に配向されているとは、 薄膜を構成 している結晶粒のうち、 大部分 (90%以上) の結晶粒において、 その c 軸が基板に垂直であることをいう。  Here, that the C axis of the crystal grains is oriented perpendicular to the substrate means that the c axis is perpendicular to the substrate in most (90% or more) of the crystal grains constituting the thin film. It means that.
また、 本発明は、 Xが 0. 01〜0. 30であり、 yが 0. 00〜0. 20である Yb卜 xNdxB a2Cu 307yの組成からなる焼結体をター ゲットとして基板上に蒸着する工程において、 前記基板の温度が 650°C 〜850°Cである酸化物超伝導体薄膜素子の製法に関する。 Further, the present invention, X is 0. from 01 to 0 30, y is 0. 00-0 20 Yb Bok x Nd x B a 2 Cu 3 0 7 -.. A composition of y sintered body The present invention relates to a method for producing an oxide superconductor thin film element in which the temperature of the substrate is 650 ° C to 850 ° C in the step of vapor-depositing the target on a substrate.
前記基板の温度は、 750 〜 850°Cが好ましく、 750°C〜800 °Cがより好ましい。 前記基板の温度が 650°Cより低いと超伝導体薄膜の 結晶性が低下し、 力、つ結晶粒の c軸が基板に垂直に配向しにくくなり、 8 50°Cより高いと超伝導体薄膜と基板、 あるいはバッファ層との反応が進 むため結晶粒の配向に乱れが生ずることとなる。  The temperature of the substrate is preferably from 750 to 850 ° C, more preferably from 750 to 800 ° C. If the temperature of the substrate is lower than 650 ° C, the crystallinity of the superconductor thin film decreases, and the c-axis of the force and the crystal grains becomes difficult to be oriented perpendicular to the substrate. Since the reaction between the thin film and the substrate or the buffer layer proceeds, the orientation of crystal grains is disturbed.
少なくとも基板と酸化物超伝導体薄膜から構成され、 該酸化物超伝導体 薄膜が、 2種類の希土類元素を含み、 それぞれの希土類元素を単体で含む 酸化物超伝導体のあいだの融点の差が 10°C以上であって、 前記酸化物超 伝導体薄膜の膜厚が 0. 25〜0. 75 mの範囲において、 5 X 105 〜13X 105 A/ cm2の臨界電流密度、 または、 前記酸化物超伝導体 薄膜の膜厚が 0. 25〜 1 mの範囲において、 2 X 105〜4 X 105 A/ cm2の臨界電流密度を示し、 結晶粒の c軸が基板に垂直に配向され た酸化物超伝導体薄膜素子に関する。 It is composed of at least a substrate and an oxide superconductor thin film. The oxide superconductor thin film contains two kinds of rare earth elements, and the difference in melting point between the oxide superconductors containing each rare earth element alone is A critical current density of 5 × 10 5 to 13 × 10 5 A / cm 2 when the temperature is 10 ° C. or more and the thickness of the oxide superconductor thin film is in a range of 0.25 to 0.75 m, or When the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 m, a critical current density of 2 × 10 5 to 4 × 10 5 A / cm 2 is exhibited, and the c-axis of the crystal grains is perpendicular to the substrate. The present invention relates to an oxide superconductor thin film element which is oriented in a direction.
それぞれの希土類元素を単体で含む酸化物超伝導体のあいだの融点の差 は、 1 0で〜 160°Cが好ましく、 40° (:〜 160。Cがより好ましい。 融 点の差が 10°C未満の場合は、 ピニングセンタが導入されないため、 十分 な臨界電流密度が得られなくなる。  The difference in melting point between oxide superconductors containing each rare earth element alone is preferably 10 to 160 ° C, more preferably 40 ° (: to 160.C. The melting point difference is 10 °. If it is less than C, a sufficient critical current density cannot be obtained because the pinning center is not introduced.
前記酸化物超伝導体薄膜の膜厚が、 0. 25〜 75 μιηの範囲にお いては、 5X 105A/ cm2以上の臨界電流密度を示すことが好ましい。 臨界電流密度が 5 X I 05A/cm2より小さい場合は、 本素子を電力輸 送や強磁場発生へ応用することが難しくなる。 The thickness of the oxide superconductor thin film is in the range of 0.25 to 75 μιη. In particular, it is preferable to exhibit a critical current density of 5 × 10 5 A / cm 2 or more. If the critical current density is 5 XI 0 5 A / cm 2 less than, it is difficult to apply this device to the power transportation and high magnetic field generation.
前記酸化物超伝導体薄膜の膜厚が、 0. 25〜1 mの範囲においては、 2X 105 A/ cm2以上の臨界電流密度を示すことが好ましい。 When the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 m, it is preferable to exhibit a critical current density of 2 × 10 5 A / cm 2 or more.
臨界電流密度が 2 X I 05A/cm2より小さい場合は、 十分な電力輸 送特性が得られない。 If the critical current density is 2 XI 0 5 A / cm 2 less than, not enough power transportation characteristics.
図 1は、 本発明の酸化物超伝導体薄膜素子の断面図、 図 2は、 本発明の 酸化物超伝導体薄膜形成用ターゲット焼結体における、 不純物相混在比の Nd濃度依存性を示すグラフ、 図 3は本発明の酸化物超伝導体薄膜形成用 タ一ゲット焼結体における臨界温度の Nd濃度依存性を示すグラフ、 図 4、 図 5は本発明および比較例の酸化物超伝導体薄膜における臨界電流密度の 膜厚依存性を示すグラフである。  FIG. 1 is a cross-sectional view of the oxide superconductor thin film element of the present invention, and FIG. 2 shows the Nd concentration dependency of the impurity phase mixture ratio in the target sintered body for forming an oxide superconductor thin film of the present invention. FIG. 3 is a graph showing the dependence of the critical temperature on the Nd concentration in the target sintered body for forming an oxide superconductor thin film of the present invention. FIGS. 4 and 5 are graphs showing the oxide superconductivity of the present invention and the comparative example. 4 is a graph showing the film thickness dependence of the critical current density in a body thin film.
基板 1上に、 酸化物超伝導体薄膜 2が設けられている (図 1の (a) 参 照) 。 基板 1は、 ハステロイなどの N i系合金であり、 また MgO単結晶 なども用いられる。 基板が N i系合金の場合、 基板 1と酸化物超伝導体薄 膜 2の反応を防ぐため、 C e 02などの酸化物バッファ層 3を挿入するこ ともある (図 1の (b) 参照) 。 An oxide superconductor thin film 2 is provided on a substrate 1 (see (a) of FIG. 1). The substrate 1 is made of a Ni-based alloy such as Hastelloy, and MgO single crystal is also used. When the substrate is N i based alloy, there to prevent reaction of the substrate 1 and the oxide superconductor thin film 2, also inserted child oxide buffer layer 3, such as C e 0 2 (shown in FIG. 1 (b) See).
この場合、 酸化物超伝導体薄膜 2を形成するとき、 基板温度が高いほど、 結晶粒は c軸が基板に垂直に配向しやすく、 優れた特性 (高い臨界温度、 高い臨界電流密度) が得られる一方、 基板と酸化物超伝導体薄膜、 あるい は酸化物バッファ層と酸化物超伝導体薄膜との反応は、 基板温度が高いほ ど顕著となり、 多くの場合、 酸化物超伝導体中の B aの拡散によって酸化 物バッファ層の特性が劣化してしまう。  In this case, when forming the oxide superconductor thin film 2, the higher the substrate temperature, the more easily the crystal grains are oriented with the c-axis perpendicular to the substrate, and excellent characteristics (high critical temperature, high critical current density) are obtained. On the other hand, the reaction between the substrate and the oxide superconductor thin film, or the reaction between the oxide buffer layer and the oxide superconductor thin film, becomes more remarkable as the substrate temperature increases, and in many cases, the reaction between the oxide superconductor and the oxide superconductor thin film. Due to the diffusion of Ba, the characteristics of the oxide buffer layer deteriorate.
実施の形態 1 Embodiment 1
酸化物超伝導体薄膜 2は、 パルスレーザ蒸着法などを用いて形成される。 まず、 パルスレーザ蒸着用の酸化物超伝導体ターゲットは、 つぎのように して作製される。 The oxide superconductor thin film 2 is formed by using a pulse laser deposition method or the like. First, an oxide superconductor target for pulsed laser deposition is fabricated as follows.
各金属元素の酸化物、 炭酸塩などを出発材料とし、 粉碎混合する (工程 Oxide, carbonate, etc. of each metal element is used as a starting material and ground and mixed.
A) 。 A)
工程 Aで得られた粉体を、 大気ないし酸素雰囲気中 880〜910°Cの 温度で 12〜 48時間焼結する。 場合によっては、 この工程を複数回繰り 返す (工程 B) 。  The powder obtained in step A is sintered in air or oxygen atmosphere at 880 to 910 ° C for 12 to 48 hours. In some cases, this process is repeated several times (process B).
工程 Bで得られた焼結体を、 粉砕、 混合し、 所定の形状に成形後、 さら に大気ないし酸素雰囲気中 900〜930°C程度の温度まで昇温し 12 〜96時間焼結する (工程 C) 。  The sintered body obtained in step B is pulverized, mixed, formed into a predetermined shape, and then further heated to a temperature of about 900 to 930 ° C in an air or oxygen atmosphere and sintered for 12 to 96 hours ( Step C).
工程 Cで得られた焼結体をさらに、 粉碎、 混合し所定の形状に成形後、 酸素ガスフロー中で 880 〜 910°Cで 12〜96時間昇温し酸素ァニ ールを行ない、 そののち所定の条件で冷却される (工程 D) 。  The sintered body obtained in step C is further pulverized, mixed and formed into a predetermined shape, and then heated in an oxygen gas flow at 880 to 910 ° C for 12 to 96 hours to perform oxygen annealing. Thereafter, it is cooled under predetermined conditions (step D).
工程 A、 B、 Cおよび Dを経て得られた、 (Yb^Ndx) B a2Cu 37y系のターゲットにおいて、 Xが 0. 01〜0. 30、 yが 0. 0 0〜0. 10なる組成を選択することにより、 図 2に見られるように不純 物相である B a CuO 2ゃ丫 b2B aC uOs (以下 211相) の割合が減 少し、 単一の結晶相を含むことになる。 図 3に見られるように、 この組成 範囲では、 臨界温度が高い良好なターゲッ卜が得られる。 (Yb ^ Ndx) B a 2 Cu 37 obtained through steps A, B, C and D — In the y- based target, X is 0.01 to 0.30, and y is 0.00.0 to by selecting 0.10 a composition, declined the proportion of impure phase as seen B a CuO 2 Ya丫b 2 B aC uO s (hereinafter 211 phase) in FIG. 2, a single crystal Phase will be included. As can be seen from FIG. 3, in this composition range, a good target having a high critical temperature can be obtained.
この焼結体を、 パルスレーザ蒸着の際のターゲットとして使用し、 超伝 導体薄膜を作製する。 レーザは A r F、 Kr F、 Xe C 1などのエキシマ レーザを使用して成膜する。  This sintered body is used as a target during pulsed laser deposition to produce a superconductor thin film. The laser is formed using an excimer laser such as ArF, KrF, and XeC1.
このターゲットを用い、 パルスレーザ蒸着法によって薄膜を形成する。 そのとき、 基板温度を 650°C〜850°Cとする。 図 4は基板温度を 75 0〜85 Otとした場合の酸化物超伝導体薄膜の臨界電流密度を示してお り、 図 5は基板温度を 650〜750でとした場合の臨界電流密度を示し ている。 図中実施例は Ndを含む実施例を示し、 比較例は Ndを含まない 例を示している。 Using this target, a thin film is formed by a pulsed laser deposition method. At that time, the substrate temperature is 650 ° C to 850 ° C. Fig. 4 shows the critical current density of the oxide superconductor thin film when the substrate temperature was set at 750 to 85 Ot, and Fig. 5 shows the critical current density when the substrate temperature was set at 650 to 750. ing. In the figure, the example shows an example containing Nd, and the comparative example shows an example containing no Nd.
このように低い基板温度で薄膜形成を行なうにもかかわらず、 ( Y bェ _xNdx) B a2Cu 307_y薄膜は c軸配向することがわかった。 図 4に 示すように Ndを添加しない (x=0) 場合、 0. 2 mの膜厚では 10 5〜106A/cm2の臨界電流密度が得られるものの、 膜厚の増加によつ て臨界電流密度が著しく減少し、 0. 5 /xmの膜厚では 2X 104AZc m2までも低下する。 一方、 Ybを x = 0. 1 0だけ Ndに置換した場合、 臨界電流密度は膜厚の増加に対してほとんど低下しない。 その結果、 0. 25〜0. 75 mの膜厚領域で 5 X 105〜; 13 X 105A/cm2の高 い臨界電流密度が得られ、 さらに 1 zmまで膜厚を増加しても臨界電流密 度は 2 X 105〜4X 105A/cm2と、 N dを添加しない同厚の場合に 比べ、 30〜 60倍もの高い臨界電流密度が得られることがわかつた (図 4参照) 。 また、 膜厚を 0. 25 mに減少しても同程度の臨界電流密度 が得られる。 Despite this perform film formation at a low substrate temperature, (Y b E _ x Nd x) B a 2 Cu 3 0 7 _ y thin film was found to be oriented in the c-axis. As shown in Fig. 4, when Nd is not added (x = 0), a critical current density of 10 5 to 10 6 A / cm 2 can be obtained with a film thickness of 0.2 m, but the increase in film thickness As a result, the critical current density is remarkably reduced, and is reduced to 2 × 10 4 AZcm 2 at a film thickness of 0.5 / xm. On the other hand, when Yb is replaced with Nd for x = 0.10, the critical current density hardly decreases with an increase in film thickness. As a result, a high critical current density of 5 × 10 5 to 13 × 10 5 A / cm 2 was obtained in the thickness range of 0.25 to 0.75 m, and the film thickness was further increased to 1 zm. It was also found that the critical current density was 2 × 10 5 to 4 × 10 5 A / cm 2 , which is 30 to 60 times higher than that of the same thickness without addition of Nd. 4). Even if the film thickness is reduced to 0.25 m, the same critical current density can be obtained.
実施の形態 2 Embodiment 2
実施の形態 2としては、 2種類の希土類元素を含む酸化物超伝導体 (R !_XR' XB a2Cu37y; ここで Rおよび R' は Y、 Gd、 Eu、 N d、 Ho、 Yb、 Tb、 Sm、 P r、 Dy、 Lu、 E rおよび Tmの群か ら選ばれる元素) であって、 それぞれの希土類元素を単体で含む酸化物超 伝導体の融点の差が 1 o°c以上あることである。 一般的に酸化物超伝導体 の臨界電流密度を向上させるためには、 超伝導相を高品質化するだけでな く、 侵入した磁束が動かないようにピニングセンタを導入する必要がある。 融点の異なる 2種類の酸化物超伝導体が混在することにより、 高融点側の 酸化物超伝導体相の部分が有効なピニングセンタとして作用し、 高磁界ま で超伝導状態を維持できるためと考えられる。 たとえば、 NdB a 2Cu37 y系の融点は Yb B a2Cu37_y系の 融点に比べて約 100 高い。 この場合、 少量混合される Nd側がピニン グセン夕として働くことになる。 Y bと N dを含む系では融点の差が約 1 0 o°cであるが、 ピニングセンタの形成という観点からは配向性に差が出 る領域が形成されればよいので、 融点の差が 1 o°c以上であればよいと考 えられる。 As the second embodiment, two kinds of oxide superconductor containing a rare earth element (R _ X R! 'X B a 2 Cu 3 〇 7 one y; where R and R' are Y, Gd, Eu, Nd, Ho, Yb, Tb, Sm, Pr, Dy, Lu, Er, and Tm), and the melting point of the oxide superconductor containing each rare earth element alone. The difference is 1 o ° c or more. In general, in order to improve the critical current density of oxide superconductors, it is necessary not only to improve the quality of the superconducting phase but also to introduce a pinning center so that the penetrated magnetic flux does not move. When two types of oxide superconductors with different melting points coexist, the portion of the oxide superconductor phase on the high melting point side acts as an effective pinning center, and the superconducting state can be maintained up to a high magnetic field. Conceivable. For example, NdB a 2 Cu 37 y system melting point of about 100 higher than that of Yb B a 2 Cu 37 _ y system melting point. In this case, the Nd side, which is mixed in a small amount, acts as the pinning center. In the system containing Yb and Nd, the difference in melting point is about 10 o ° c.However, from the viewpoint of forming a pinning center, it is only necessary to form a region in which the orientation is different. Should be 1 o ° c or more.
実施例 Example
以下、 本発明を実施例および比較例によってさらに詳細に説明するが、 本発明はこれらに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Yb203、 Nd23、 B aC03、 (または B aO) および Cu〇粉体 を出発原料とし、 Yb : Nd : Ba : Cuが 1— x : x : 2 : 3 (x = 0 . 05、 0. 1、 0. 15、 0. 2、 0. 3) のモル比になるように秤量 し、 充分に粉砕 ·混合した (工程 A) 。 Yb 2 0 3, Nd 2 3, B aC0 3, a starting material (or B aO-) and Cu_〇 powder, Yb: Nd: Ba: Cu is 1- x: x: 2: 3 (x = 0 It was weighed so that the molar ratios became 0.05, 0.1, 0.15, 0.2, and 0.3), and sufficiently crushed and mixed (process A).
工程 Aで得た粉体を電気炉において空気中で 900°C、 12時間焼成を 行なった。 これにより得られた粉体を充分に粉砕、 混合した。 この工程は 2回繰り返した (工程 B) 。  The powder obtained in step A was fired in an electric furnace at 900 ° C for 12 hours in air. The powder thus obtained was sufficiently pulverized and mixed. This step was repeated twice (step B).
工程 Bで得られた粉体を、 充分に粉碎'混合したのち、 加圧によりペレ ット化し、 空気中で 910°C、 48時間焼成した (工程 C) 。  The powder obtained in step B was sufficiently ground and mixed, then pelletized by applying pressure, and calcined in air at 910 ° C for 48 hours (step C).
工程 Cで得られたペレツトを充分に粉碎混合したのち、 再度ペレツト化 し、 このペレツトを酸素ガスフロ一中で 910°Cまで昇温し、 12時間保 持し、 そののち 500でまで冷却し 24時間保持したのち、 炉冷すること により酸素ァニールを行なった (工程 D) 。  After the pellet obtained in Step C is sufficiently ground and mixed, it is again pelletized, the pellet is heated to 910 ° C in an oxygen gas flow, held for 12 hours, and then cooled to 500. After holding for a while, oxygen annealing was performed by cooling the furnace (Step D).
以上の工程 A、 B、 Cおよび Dを経て得られた焼結体試料について粉末 X線回折法により試料に含まれる不純物相について調べた。 その結果を図 2に示す、 図の縦軸は 123相に対する 211相の相対強度を示している。 N d置換量 Xが増加するにつれて、 試料に含まれる不純物相の割合が減少 し、 x = 0. 1以上では、 超伝導相のみが検出され、 不純物相は検出され なかった。 The sintered body sample obtained through the above steps A, B, C and D was examined for impurity phases contained in the sample by powder X-ray diffraction method. The results are shown in FIG. 2. The vertical axis of the figure shows the relative intensity of the 211 phase to the 123 phase. As the amount of Nd substitution X increases, the proportion of the impurity phase in the sample decreases. However, at x = 0.1 or more, only the superconducting phase was detected, and no impurity phase was detected.
またこれらの工程 A、 B、 Cおよび Dを経て得られた試料について電気 抵抗率の温度変化を測定し、 超伝導転移温度 T cを調べた。 その結果、 N d置換量 Xが増加すると Tcが上昇し、 x = 0. 1の場合に Tcは最大値 95° Kを示した (図 3参照) 。  In addition, the samples obtained through these steps A, B, C, and D were measured for changes in electrical resistivity with temperature, and the superconducting transition temperature Tc was examined. As a result, when the Nd substitution amount X increased, Tc increased, and when x = 0.1, Tc exhibited a maximum value of 95 ° K (see Fig. 3).
以上、 工程 A、 B、 Cおよび Dを経て得られた焼結体を、 ターゲットと して使用し、 パルスレーザ蒸着法により薄膜を形成した。 レーザは ArF エキシマレ一ザで、 基板は MgO (100) 単結晶を用いた。 基板温度は 600〜850°Cで、 膜厚 0. 2 mから 1 mのものが得られ、 いずれ も結晶粒が c軸配向していた。  As described above, the sintered body obtained through the steps A, B, C and D was used as a target, and a thin film was formed by a pulsed laser deposition method. The laser used was an ArF excimer laser and the substrate used was MgO (100) single crystal. Substrate temperatures of 600 to 850 ° C and film thicknesses of 0.2 m to 1 m were obtained, and the crystal grains were c-axis oriented in each case.
これら薄膜の温度 77° Kにおける臨界電流密度を計測したところ、 基 板温度を 750〜850°Cとした場合、 0. 25〜0. 75 mの膜厚領 域で 5 X 105〜 13 X 105 AZcm2の高い臨界電流密度が得られ、 力、 つ膜厚が増加しても臨界電流密度はほとんど減少しなかった。 その結果、 膜厚が 1 / mまで増加しても、 臨界電流密度は 2〜4X 105A/cm2 と依然高い値であった (図 4参照) 。 The critical current densities of these thin films at 77 ° K were measured.When the substrate temperature was 750 to 850 ° C, 5 X 10 5 to 13 X in the 0.25 to 0.75 m film thickness region A high critical current density of 10 5 AZcm 2 was obtained, and the critical current density hardly decreased even when the force and the film thickness increased. As a result, even when the film thickness was increased to 1 / m, the critical current density was still as high as 2 to 4 × 10 5 A / cm 2 (see Fig. 4).
一方、 基板温度を 600〜750°Cとした場合、 基板温度を 750〜8 50 とした場合と比較して、 臨界電流密度の値はごくわずか低下するも のの、 膜厚に対する傾向はほぼ同様であった (図 5参照) 。  On the other hand, when the substrate temperature is set to 600 to 750 ° C, the value of the critical current density is slightly reduced compared to when the substrate temperature is set to 750 to 850, but the tendency with respect to the film thickness is almost the same. (See Figure 5).
比較例 Comparative example
実施例と同じ方法で、 Ndを含まない薄膜を作製した。  In the same manner as in the example, a thin film containing no Nd was produced.
Ndを含まない薄膜の場合、 図 4および図 5から明らかなように、 臨界 電流密度は、 膜厚が 0. 2 mでは 105〜106AZcm2程度であるも のの、 膜厚の増加と共に急激に低下し、 0. 25 m以上の膜厚では 10 4AZcm2またはそれ以下にまで減少する。 このため比較例では、 とく に 0. 5〜0. 75 zmの膜厚で、 実施例の約 1Z50の臨界電流密度し か得られなかった。 If a thin film containing no Nd, as apparent from FIGS. 4 and 5, the critical current density, the film thickness that also is by 2 m in 10 5 ~10 6 AZcm 2 about 0.1, the film thickness increases With a film thickness of 0.25 m or more, it decreases to 10 4 AZcm 2 or less. Therefore, in the comparative example, At a film thickness of 0.5 to 0.75 zm, only the critical current density of about 1Z50 of the example could be obtained.
本発明の酸化物超伝導体薄膜素子によれば、 液体へリゥム冷媒が不要と なるため、 冷却効率が数 100倍になる。 また、 従来の銅線を使用した電 力ケーブル管路と同じ大きさでも 10倍以上の送電容量が可能となる。 こ の酸化物超伝導薄膜素子を磁石に適用する場合、 たとえば B i系酸化物高 温超伝導体では、 磁場中で臨界電流密度が急激に低下するという材料本来 の物性により、 77° Kで約 1Tまでの磁場しか発生できなかったのに対 し、 その数倍の発生磁場が可能となるため、 超強力磁石が得られると期待 される。 これにより、 たとえば磁気分離装置の分離効率を 10倍以上効率 化できる。 また臨界電流密度の増加により、 超伝導発電機のサイズを 1/ 2以下に小型化できるだけでなく、 負荷変動に対する安定性が大きくなる ため、 現行送電設備のままでも送電容量を 50%増強できる。 また医療分 野への応用としては、 磁気共鳴撮像装置 (MR I) の信号強度が 40倍に 向上し高解像度化が期待される。  According to the oxide superconductor thin film element of the present invention, the cooling efficiency is increased by several hundred times because a liquid vapor refrigerant is not required. In addition, even with the same size as conventional power cable lines using copper wires, it is possible to achieve a power transmission capacity 10 times or more. When this oxide superconducting thin film element is applied to a magnet, for example, in the case of a Bi-based oxide high-temperature superconductor, due to the inherent properties of the material, the critical current density drops sharply in a magnetic field, the temperature rises at 77 ° K. Although a magnetic field of only about 1T can be generated, a magnetic field several times larger than that can be generated, and it is expected that an ultra-strong magnet will be obtained. As a result, for example, the separation efficiency of the magnetic separation device can be increased by a factor of 10 or more. In addition, the increase in critical current density not only reduces the size of the superconducting generator to less than 1/2, but also increases the stability against load fluctuations, so that the transmission capacity can be increased by 50% even with the existing transmission equipment. For applications in the medical field, the signal intensity of a magnetic resonance imaging device (MRI) is expected to increase by a factor of 40, resulting in higher resolution.
本発明の酸化物超伝導体薄膜素子の製法によれば、 低温の基板温度で膜 形成するため、 酸化物超伝導体薄膜を形成するあいだに、 素子の他の要素 が反応劣化することなく、 かつ結晶粒の c軸が基板に対し垂直に配向する ので、 膜厚が 0. 25〜0. 75 mの範囲で 5 X 105〜: L 3 X 105 A/ cm2の臨界電流密度が得られ、 膜厚が 1 まで増加しても、 2 X 105〜4X 105 AZ cm2の臨界電流密度が得られた。 このように膜厚 が大きくても、 従来の酸化物超伝導体薄膜に比べて数十倍の臨界電流密度 が得られるので、 格段に高性能の酸化物超伝導体薄膜素子が実現でき、 前 記電力分野や医療技術分野のごとき多くの応用分野において、 技術的およ び経済的に多大の改良が可能となる。 産業上の利用可能性 According to the method for manufacturing an oxide superconductor thin film element of the present invention, since a film is formed at a low substrate temperature, other elements of the element do not undergo reaction deterioration during formation of the oxide superconductor thin film, In addition, since the c-axis of the crystal grains is oriented perpendicular to the substrate, the critical current density of 5 × 10 5 to L 3 × 10 5 A / cm 2 in the range of 0.25 to 0.75 m Even when the film thickness was increased to 1, a critical current density of 2 × 10 5 to 4 × 10 5 AZ cm 2 was obtained. Even with such a large film thickness, a critical current density several tens of times higher than that of a conventional oxide superconductor thin film can be obtained, so that an extremely high-performance oxide superconductor thin film element can be realized. In many applications, such as power and medical technology, significant technical and economic improvements are possible. Industrial applicability
本発明の酸化物超伝導体薄膜素子の製法によれば、 (Yb^Nd^ B a2Cu 307 y系において、 Xが 0. 01〜0. 30であり、 かつ が 0. 00〜0. 20であり、 薄膜の結晶粒の c軸が基板に垂直に配向し、 成膜時の基板温度が 650〜850°Cの条件下で薄膜形成したことにより、 素子の他の要素が反応劣化することなく、 かつ広い膜厚範囲で、 5X 10 5〜13 X 105 AZ cm2と優れた臨界電流密度を示す酸化物超伝導体薄 膜素子が得られる。 According to production method of an oxide superconductor thin film element of the present invention, (Yb ^ Nd ^ in B a 2 Cu 3 0 7 y system, X is from 0.01 to 0.30, and is 0. 00 0.20, and the c-axis of the crystal grains of the thin film was oriented perpendicular to the substrate, and the other elements of the element reacted because the film was formed at a substrate temperature of 650 to 850 ° C during film formation. without degradation, and a wide range of film thickness, an oxide superconductor thin film element exhibiting the critical current density and excellent 5X 10 5 ~13 X 10 5 AZ cm 2 is obtained.

Claims

言青求の範囲 Scope of Word
1. 少なくとも基板と酸化物超伝導体薄膜から構成され、 該酸化物超伝導 体薄膜が、 Yb
Figure imgf000015_0001
a2Cu 307_yであって、 xが 0. 01〜 0. 30、 yが 0. 00〜0. 20である組成を有し、 結晶粒の c軸が 基板に垂直に配向された酸化物超伝導体薄膜素子。
1. At least a substrate and an oxide superconductor thin film, wherein the oxide superconductor thin film is Yb
Figure imgf000015_0001
A a 2 Cu 3 0 7 _ y , x has a composition 0. 01~ 0. 30, y is 0. 00~0. 20, c-axis of the crystal grains are oriented perpendicular to the substrate Oxide superconductor thin film element.
2. 前記薄膜の膜厚が 0. 15 /im〜10. 0 mである請求の範囲第 1 項記載の酸化物超伝導体薄膜素子。  2. The oxide superconductor thin film element according to claim 1, wherein said thin film has a thickness of 0.15 / im to 10.0 m.
3. 前記薄膜の膜厚が 0. 15 ΠΙ〜1. 0 i mである請求の範囲第 2項 記載の酸化物超伝導体薄膜素子。  3. The oxide superconductor thin film element according to claim 2, wherein the thin film has a thickness of 0.15 to 1.0 im.
4. 前記薄膜の膜厚が 0. 25 /m〜l. 0 imである請求の範囲第 3項 記載の酸化物超伝導体薄膜素子。  4. The oxide superconductor thin film element according to claim 3, wherein the thin film has a thickness of 0.25 / m to 1.0 im.
5. Xが 0. 01〜0. 30であり、 yが 0. 00〜0. 20である Yb 丄— xNdxB a2Cu 307yの組成からなる焼結体をターゲットとして 基板上に蒸着する工程において、 前記基板の温度が 650で〜 850°C である酸化物超伝導体薄膜素子の製法。 . 5. X is from 0.01 to 0 is 30, y is from 0.00 to 0 20 a is Yb丄 -. X Nd x B a 2 Cu 3 0 7 - a a composition of y sintered body as the target A method for producing an oxide superconductor thin film element, wherein the temperature of the substrate is 650 to 850 ° C. in the step of vapor deposition on the substrate.
6. 前記基板の温度が 750 ° (:〜 850 である請求の範囲第 5項記載の 酸化物超伝導体薄膜素子の製法。  6. The method for producing an oxide superconductor thin film device according to claim 5, wherein the temperature of the substrate is 750 ° (: to 850).
7. 少なくとも基板と酸化物超伝導体薄膜から構成され、 該酸化物超伝導 ' 体薄膜が、 2種類の希土類元素を含み、 それぞれの希土類元素を単体で 含む酸化物超伝導体のあいだの融点の差が 10°C以上であって、 前記酸 化物超伝導体薄膜の膜厚が 0. 25〜0. 75 mの範囲において、 5 X 105〜: L 3 X 105 A/ cm 2の臨界電流密度、 または、 前記酸化物 超伝導体薄膜の膜厚が 0. 25〜1 の範囲において、 2 X 105〜 4 X 10 SAZcm2の臨界電流密度を示し、 結晶粒の c軸が基板に垂 直に配向された酸化物超伝導体薄膜素子。 7. At least a substrate and an oxide superconductor thin film, wherein the oxide superconductor thin film contains two kinds of rare earth elements, and the melting point between the oxide superconductors containing each rare earth element alone. Is 5 ° C. or more and the thickness of the oxide superconductor thin film is in the range of 0.25 to 0.75 m, and 5 × 10 5 to: L 3 × 10 5 A / cm 2 Critical current density, or a critical current density of 2 × 10 5 to 4 × 10 SAZcm 2 when the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 , and the c-axis of the crystal grain is Oxide superconductor thin film element oriented vertically.
PCT/JP2003/011954 2002-10-23 2003-09-19 Oxide superconductor thin film element WO2004038816A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003268648A AU2003268648A1 (en) 2002-10-23 2003-09-19 Oxide superconductor thin film element
JP2004546397A JPWO2004038816A1 (en) 2002-10-23 2003-09-19 Oxide superconductor thin film element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-308923 2002-10-23
JP2002308923 2002-10-23

Publications (1)

Publication Number Publication Date
WO2004038816A1 true WO2004038816A1 (en) 2004-05-06

Family

ID=32170991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011954 WO2004038816A1 (en) 2002-10-23 2003-09-19 Oxide superconductor thin film element

Country Status (3)

Country Link
JP (1) JPWO2004038816A1 (en)
AU (1) AU2003268648A1 (en)
WO (1) WO2004038816A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221922A (en) * 2011-04-14 2012-11-12 Sumitomo Electric Ind Ltd Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
EP3276637A4 (en) * 2015-03-24 2018-12-05 Kabushiki Kaisha Toshiba Superconductor and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020074626A1 (en) * 2000-10-31 2002-06-20 Kabushiki Kaisha Toshiba Superconducting device and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020074626A1 (en) * 2000-10-31 2002-06-20 Kabushiki Kaisha Toshiba Superconducting device and method of manufacturing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WINNIE WONG-NG ET AL.: "Phase equilibria of the Ba-Nd-Cu-O and Ba-Nd-Yb-Cu-O systems", ABSTRACTS OF MRS FALL PROGRAM 2000, SYMPOSIUM II, HIGH-TEMPERATURE SUPERCONDUCTORS-CRYSTAL CHEMISTRY, PROCESSING AND PROPERTIES, MATERIALS RESEARCH SOCIETY, 27 November 2000 (2000-11-27) - 1 December 2000 (2000-12-01), pages 641, XP002976359 *
XU Y. ET AL.: "Ion size effect on Tc in the (Yb0.8-zNdzPro2)Ba2Cu3O7-gamma and (Er0.7-zEUzPr0.3)Ba2CU3O7-gamma systems", PHYSICA C, vol. 199, 1992, pages 430 - 434, XP002976347 *
YAMAGIWA K. ET AL.: "Film orientation of RE123 prepared by chemical solution deposition", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, vol. 9, no. 2, June 1999 (1999-06-01), pages 1459 - 1462, XP002976346 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221922A (en) * 2011-04-14 2012-11-12 Sumitomo Electric Ind Ltd Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
EP3276637A4 (en) * 2015-03-24 2018-12-05 Kabushiki Kaisha Toshiba Superconductor and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2004038816A1 (en) 2006-02-23
AU2003268648A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US20130196856A1 (en) Iron based superconducting structures and methods for making the same
US20050074220A1 (en) Magnesium -boride superconducting wires fabricated using thin high temperature fibers
US20100065417A1 (en) Methods for forming superconducting conductors
WO2011017439A1 (en) Critical current density enhancement via incorporation of nanoscale ba2renbo6 in rebco films
US20110034338A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
US6316391B1 (en) Oxide superconducting wire and method of manufacturing the same
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
EP1966837B1 (en) Anti-epitaxial film in a superconducting article and related articles, devices and systems
US5502029A (en) Laminated super conductor oxide with strontium, calcium, copper and at least one of thallium, lead, and bismuth
WO2004038816A1 (en) Oxide superconductor thin film element
JPH1125771A (en) Oxide superconducting tape material and its manufacture
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
US20040142824A1 (en) Method for the manufacture of a high temperature superconducting layer
JP3217905B2 (en) Metal oxide material and method for producing the same
JP3219563B2 (en) Metal oxide and method for producing the same
JP2545423B2 (en) Composite oxide superconducting thin film and method for producing the same
Shimoyama Superconducting joints for the 1.3 GHz persistent NMR magnet under JST-Mirai Program
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2761727B2 (en) Manufacturing method of oxide superconductor
JP2567416B2 (en) Preparation method of superconducting thin film
WO1989008076A1 (en) SUPERCONDUCTIVITY IN A Bi-Ca-Sr-Cu OXIDE COMPOUND SYSTEM FREE OF RARE EARTHS
JP2544760B2 (en) Preparation method of superconducting thin film
JPH11329118A (en) Oxide superconducting composite material and its manufacture
JPH0829938B2 (en) Composite oxide superconducting thin film and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004546397

Country of ref document: JP

122 Ep: pct application non-entry in european phase