JPWO2004038816A1 - Oxide superconductor thin film element - Google Patents

Oxide superconductor thin film element Download PDF

Info

Publication number
JPWO2004038816A1
JPWO2004038816A1 JP2004546397A JP2004546397A JPWO2004038816A1 JP WO2004038816 A1 JPWO2004038816 A1 JP WO2004038816A1 JP 2004546397 A JP2004546397 A JP 2004546397A JP 2004546397 A JP2004546397 A JP 2004546397A JP WO2004038816 A1 JPWO2004038816 A1 JP WO2004038816A1
Authority
JP
Japan
Prior art keywords
thin film
oxide superconductor
superconductor thin
substrate
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004546397A
Other languages
Japanese (ja)
Inventor
隆介 喜多
隆介 喜多
吉田 隆
吉田  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Foundation for Science and Technology Promotion
Original Assignee
Hamamatsu Foundation for Science and Technology Promotion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Foundation for Science and Technology Promotion filed Critical Hamamatsu Foundation for Science and Technology Promotion
Publication of JPWO2004038816A1 publication Critical patent/JPWO2004038816A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide

Abstract

本発明の目的は、叙上の従来の問題を解消し、優れた性能を示す酸化物超伝導体を低い基板温度で成膜した酸化物超伝導体薄膜素子を提供することである。本発明は、少なくとも基板と酸化物超伝導体薄膜から構成され、該酸化物超伝導体薄膜が、Yb1−xNdxBa2Cu3O7−yであって、xが0.01〜0.30、yが0.00〜0.20である組成を有し、結晶粒のc軸が基板に垂直に配向された酸化物超伝導体薄膜素子に関する。An object of the present invention is to provide an oxide superconductor thin film element in which an oxide superconductor exhibiting excellent performance is formed at a low substrate temperature by solving the conventional problems described above. The present invention includes at least a substrate and an oxide superconductor thin film, and the oxide superconductor thin film is Yb1-xNdxBa2Cu3O7-y, where x is 0.01 to 0.30 and y is 0.00. The present invention relates to an oxide superconductor thin film element having a composition of ˜0.20 and having crystal grains c-axis oriented perpendicular to the substrate.

Description

本発明は、酸化物超伝導体を用いた薄膜素子に関する。より詳しくは、YbおよびNdを含む酸化物超伝導体を用いた薄膜素子に関する。  The present invention relates to a thin film element using an oxide superconductor. More specifically, the present invention relates to a thin film element using an oxide superconductor containing Yb and Nd.

酸化物超伝導体(RBaCu7−y;ここでRはY、Gd、Eu、Nd、Ho、Yb、Tb、Sm、Pr、Dy、Lu、ErおよびTmの群から選ばれた1種以上の元素)は、臨界温度が高く、従来用いられていた高価な液体ヘリウム冷媒に代わり安価な液体チッ素冷媒が利用できるため、これら材料を薄膜化して電力輸送用線材や、超高速演算素子などへの応用が期待されている。しかし、酸化物超伝導体が薄膜化されたときにも優れた特性(高い臨界温度、高い臨界電流密度)を示すためには、斜方晶をとるこれら酸化物超伝導体材料結晶粒のc軸が基板に対して垂直に配向(以下、c軸配向という)することが必要である。
たとえば、大電流素子にYb1−xNdBaCu7−y系材料の使用が検討されている(たとえば、特開平9−87094号公報参照。)。しかし、特開平9−87094号公報の場合、溶融加工法を用いて線材が作製されており、結晶粒が電流伝送方向に対してランダムに配向されている。このため、特開平9−87094号公報に記載の酸化物超伝導材料においては、充分な電流密度が得られない。
加えて従来これら酸化物超伝導材料を薄膜素子に応用するためには多層にわたる積層化プロセスが必要で、このためには、薄膜作製時の基板温度をできるだけ低く抑える必要がある。
しかし酸化物超伝導体において、▲1▼結晶粒をc軸配向させる、▲2▼薄膜作製時の基板温度をできるだけ低く抑えるという2つの課題を同時に達成することは従来できていない。
たとえば、YbBaCu7−y系酸化物超伝導体薄膜を形成するための工程で、700〜750℃以下の低い基板温度では、結晶粒がa軸配向となったり、あるいはa軸配向した結晶粒がかなりの量混在するため、充分にc軸配向させることはできない。一方、基板温度が高いほど容易にc軸配向するものの、750℃を超えると、Baの下地バッファ層への拡散が顕著になり、下地バッファ層の特性に劣化が生じるという問題がある。
さらに、大電流輸送用線材へ応用する場合、線材として流すことのできる全電流(すなわち、電流密度×膜厚)をできる限り大きくする必要がある。しかし従前のYbBaCu7−y薄膜では、膜厚の増加とともに臨界電流密度が急激に減少し、充分な全電流が得られないという問題もある。
Oxide superconductor (RBa 2 Cu 3 O 7-y ; where R is selected from the group of Y, Gd, Eu, Nd, Ho, Yb, Tb, Sm, Pr, Dy, Lu, Er and Tm One or more elements) have a high critical temperature, and inexpensive liquid nitrogen refrigerants can be used instead of the expensive liquid helium refrigerants that have been used in the past. Application to arithmetic elements is expected. However, in order to show excellent characteristics (high critical temperature, high critical current density) even when the oxide superconductor is thinned, c of these oxide superconductor material grains that take orthorhombic crystals. It is necessary that the axis be oriented perpendicularly to the substrate (hereinafter referred to as c-axis orientation).
For example, Yb 1-x Nd use of x Ba 2 Cu 3 O 7- y based materials have been studied in a large-current element (e.g., JP-A-9-87094 JP reference.). However, in the case of Japanese Patent Application Laid-Open No. 9-87094, a wire is produced using a melt processing method, and crystal grains are randomly oriented with respect to the current transmission direction. For this reason, the oxide superconducting material described in JP-A-9-87094 cannot obtain a sufficient current density.
In addition, conventionally, in order to apply these oxide superconducting materials to thin film elements, a multi-layer lamination process is required. For this purpose, it is necessary to keep the substrate temperature at the time of thin film production as low as possible.
However, in oxide superconductors, it has not been possible to achieve two problems at the same time: (1) crystal grains are c-axis oriented, and (2) the temperature of the substrate is kept as low as possible.
For example, in a process for forming a YbBa 2 Cu 3 O 7-y- based oxide superconductor thin film, the crystal grains are a-axis oriented or a-axis oriented at a low substrate temperature of 700 to 750 ° C. or lower. Since a considerable amount of the crystal grains are mixed, the c-axis orientation cannot be sufficiently achieved. On the other hand, although the c-axis orientation is easier as the substrate temperature is higher, when the temperature exceeds 750 ° C., there is a problem that the diffusion of Ba into the underlying buffer layer becomes significant and the characteristics of the underlying buffer layer are deteriorated.
Furthermore, when applied to a wire for transporting large current, it is necessary to increase the total current (that is, current density × film thickness) that can be passed as the wire as much as possible. However, the conventional YbBa 2 Cu 3 O 7-y thin film has a problem that the critical current density rapidly decreases as the film thickness increases, and a sufficient total current cannot be obtained.

本発明の目的は、叙上の従来の問題を解消し、優れた性能を示す酸化物超伝導体を低い基板温度で成膜した酸化物超伝導体薄膜素子を提供することである。
すなわち、本発明は、少なくとも基板と酸化物超伝導体薄膜から構成され、該酸化物超伝導体薄膜が、Yb1−xNdBaCu7−yであって、xが0.01〜0.30、yが0.00〜0.20である組成を有し、結晶粒のc軸が基板に垂直に配向された酸化物超伝導体薄膜素子に関する。
前記薄膜の膜厚は、0.15μm〜10.0μmであることが好ましい。
前記薄膜の膜厚は、0.15μm〜1.0μmであることがより好ましい。
前記薄膜の膜厚は、0.25μm〜1.0μmであることがさらに好ましい。
また、本発明はxが0.01〜0.30であり、yが0.00〜0.20であるYb1−xNdBaCu7−yの組成からなる焼結体をターゲットとして基板上に蒸着する工程において、前記基板の温度が650℃〜850℃である酸化物超伝導体薄膜素子の製法に関する。
前記基板の温度は、750℃〜850℃であることが好ましい。
さらに、本発明は、少なくとも基板と酸化物超伝導体薄膜から構成され、該酸化物超伝導体薄膜が、2種類の希土類元素を含み、それぞれの希土類元素を単体で含む酸化物超伝導体のあいだの融点の差が10℃以上であって、前記酸化物超伝導体薄膜の膜厚が0.25〜0.75μmの範囲において、5×10〜13×10A/cmの臨界電流密度、または、前記酸化物超伝導体薄膜の膜厚が0.25〜1μmの範囲において、2×10〜4×10A/cmの臨界電流密度を示し、結晶粒のc軸が基板に垂直に配向された酸化物超伝導体薄膜素子に関する。
従来よりYbの一部をNdに置換した組成の開示はあった(特開平9−87094号公報)が、薄膜化の実施はなかった。本発明によれば、Yb1−xNdBaCu7−y系において、x=0.01〜0.30、さらに好ましくはx=0.05〜0.25、またy=0.00〜0.20、さらに好ましくはy=0.00〜0.05の組成範囲では、低い薄膜形成温度でも、5×10〜13×10A/cmと高い臨界電流密度を示す酸化物超伝導体薄膜が得られている。
An object of the present invention is to provide an oxide superconductor thin film element in which an oxide superconductor exhibiting excellent performance is formed at a low substrate temperature by solving the conventional problems described above.
That is, the present invention includes at least a substrate and an oxide superconductor thin film, and the oxide superconductor thin film is Yb 1-x Nd x Ba 2 Cu 3 O 7-y , where x is 0. The present invention relates to an oxide superconductor thin film element having a composition of 01 to 0.30 and y of 0.00 to 0.20, in which the c-axis of crystal grains is oriented perpendicular to the substrate.
The thickness of the thin film is preferably 0.15 μm to 10.0 μm.
The film thickness of the thin film is more preferably 0.15 μm to 1.0 μm.
The thickness of the thin film is more preferably 0.25 μm to 1.0 μm.
Further, the present invention x is 0.01 to 0.30, y is a Yb 1-x Nd x Ba 2 Cu 3 O 7-y sintered body having a composition of a 0.00 to 0.20 The present invention relates to a method of manufacturing an oxide superconductor thin film element in which the temperature of the substrate is 650 ° C. to 850 ° C. in the step of vapor deposition on a substrate as a target.
The temperature of the substrate is preferably 750 ° C to 850 ° C.
Furthermore, the present invention comprises at least a substrate and an oxide superconductor thin film, the oxide superconductor thin film containing two kinds of rare earth elements, and each of the oxide superconductors containing each rare earth element alone. The criticality of 5 × 10 5 to 13 × 10 5 A / cm 2 is obtained when the difference in melting point is 10 ° C. or more and the thickness of the oxide superconductor thin film is in the range of 0.25 to 0.75 μm. When the current density or the film thickness of the oxide superconductor thin film is in the range of 0.25 to 1 μm, the critical current density is 2 × 10 5 to 4 × 10 5 A / cm 2 , and the c-axis of the crystal grain The present invention relates to an oxide superconductor thin film element that is oriented perpendicular to the substrate.
Conventionally, there has been a disclosure of a composition in which a part of Yb is substituted with Nd (Japanese Patent Laid-Open No. 9-87094), but no thinning has been carried out. According to the present invention, in the Yb 1-x Nd x Ba 2 Cu 3 O 7-y system, x = 0.01 to 0.30, more preferably x = 0.05 to 0.25, and y = 0. In a composition range of 0.00 to 0.20, more preferably y = 0.00 to 0.05, a high critical current density of 5 × 10 5 to 13 × 10 5 A / cm 2 is exhibited even at a low thin film formation temperature. An oxide superconductor thin film has been obtained.

図1は本発明の、酸化物超伝導薄膜素子の構成を示す図である。
図2は本発明の実施例における、(Yb1−xNd)BaCu7−y系の、パルスレーザ蒸着用ターゲットにおける不純物相の混在比を示すグラフである。
図3は本発明の実施例における、(Yb1−xNd)BaCu7−y系の、パルスレーザ蒸着用ターゲットにおける超伝導転移温度(Tc)を示すグラフである。
図4は(Yb0.9Nd0.1)BaCu7−y薄膜における、温度77°Kでの臨界電流密度(Jc)の膜厚依存性を示すグラフである。
図5は(Yb0.9Nd0.1)BaCu7−y薄膜における、温度77°Kでの臨界電流密度(Jc)の膜厚依存性を示すグラフである。
FIG. 1 is a diagram showing the configuration of an oxide superconducting thin film element according to the present invention.
FIG. 2 is a graph showing a mixture ratio of impurity phases in a target for pulse laser deposition in the (Yb 1-x Nd x ) Ba 2 Cu 3 O 7-y system according to an example of the present invention.
3 in an embodiment of the present invention, is a graph illustrating the (Yb 1-x Nd x) Ba 2 Cu 3 O 7-y system, the superconducting transition temperature in the pulsed laser deposition target (Tc).
FIG. 4 is a graph showing the film thickness dependence of critical current density (Jc) at a temperature of 77 ° K in a (Yb 0.9 Nd 0.1 ) Ba 2 Cu 3 O 7-y thin film.
FIG. 5 is a graph showing the film thickness dependence of critical current density (Jc) at a temperature of 77 ° K in a (Yb 0.9 Nd 0.1 ) Ba 2 Cu 3 O 7-y thin film.

本発明の酸化物超伝導体薄膜素子を、添付した図面を参照しつつ、以下に詳細に説明する。
本発明は、少なくとも基板と酸化物超伝導体薄膜から構成され、該酸化物超伝導体薄膜が、Yb1−xNdBaCu7−yであって、xが0.01〜0.30、yが0.00〜0.20である組成を有し、結晶粒のc軸が基板に垂直に配向された酸化物超伝導体薄膜素子である。
xは、0.05〜0.25が好ましく、0.1〜0.2がより好ましい。また、yは、0.00〜0.05が好ましく、0.00〜0.03がより好ましい。xが0.01〜0.30、yが0.00〜0.20の範囲外である場合は、不純物相であるBaCuOやYbBaCuO(以下211相)の割合が増加、あるいは超伝導転移温度が低下する。
前記薄膜の膜厚は、0.15μm〜10.0μmである。膜厚は、0.15μm〜1.0μmが好ましく、0.25μm〜1.0μmがより好ましい。薄膜の膜厚が、0.15μmより小さいと基板やバッファ層の影響を受けやすいため、反応層が生成することにより十分な臨界電流密度が得られない傾向にある。
ここで、結晶粒のc軸が基板に垂直に配向されているとは、薄膜を構成している結晶粒のうち、大部分(90%以上)の結晶粒において、そのc軸が基板に垂直であることをいう。
また、本発明は、xが0.01〜0.30であり、yが0.00〜0.20であるYb1−xNdBaCu7−yの組成からなる焼結体をターゲットとして基板上に蒸着する工程において、前記基板の温度が650℃〜850℃である酸化物超伝導体薄膜素子の製法に関する。
前記基板の温度は、750℃〜850℃が好ましく、750℃〜800℃がより好ましい。前記基板の温度が650℃より低いと超伝導体薄膜の結晶性が低下し、かつ結晶粒のc軸が基板に垂直に配向しにくくなり、850℃より高いと超伝導体薄膜と基板、あるいはバッファ層との反応が進むため結晶粒の配向に乱れが生ずることとなる。
少なくとも基板と酸化物超伝導体薄膜から構成され、該酸化物超伝導体薄膜が、2種類の希土類元素を含み、それぞれの希土類元素を単体で含む酸化物超伝導体のあいだの融点の差が10℃以上であって、前記酸化物超伝導体薄膜の膜厚が0.25〜0.75μmの範囲において、5×10〜13×10A/cmの臨界電流密度、または、前記酸化物超伝導体薄膜の膜厚が0.25〜1μmの範囲において、2×10〜4×10A/cmの臨界電流密度を示し、結晶粒のc軸が基板に垂直に配向された酸化物超伝導体薄膜素子に関する。
それぞれの希土類元素を単体で含む酸化物超伝導体のあいだの融点の差は、10℃〜160℃が好ましく、40℃〜160℃がより好ましい。融点の差が10℃未満の場合は、ピニングセンタが導入されないため、十分な臨界電流密度が得られなくなる。
前記酸化物超伝導体薄膜の膜厚が、0.25〜0.75μmの範囲においては、5×10A/cm以上の臨界電流密度を示すことが好ましい。臨界電流密度が5×10A/cmより小さい場合は、本素子を電力輸送や強磁場発生へ応用することが難しくなる。
前記酸化物超伝導体薄膜の膜厚が、0.25〜1μmの範囲においては、2×10A/cm以上の臨界電流密度を示すことが好ましい。
臨界電流密度が2×10A/cmより小さい場合は、十分な電力輸送特性が得られない。
図1は、本発明の酸化物超伝導体薄膜素子の断面図、図2は、本発明の酸化物超伝導体薄膜形成用ターゲット焼結体における、不純物相混在比のNd濃度依存性を示すグラフ、図3は本発明の酸化物超伝導体薄膜形成用ターゲット焼結体における臨界温度のNd濃度依存性を示すグラフ、図4、図5は本発明および比較例の酸化物超伝導体薄膜における臨界電流密度の膜厚依存性を示すグラフである。
基板1上に、酸化物超伝導体薄膜2が設けられている(図1の(a)参照)。基板1は、ハステロイなどのNi系合金であり、またMgO単結晶なども用いられる。基板がNi系合金の場合、基板1と酸化物超伝導体薄膜2の反応を防ぐため、CeOなどの酸化物バッファ層3を挿入することもある(図1の(b)参照)。
この場合、酸化物超伝導体薄膜2を形成するとき、基板温度が高いほど、結晶粒はc軸が基板に垂直に配向しやすく、優れた特性(高い臨界温度、高い臨界電流密度)が得られる一方、基板と酸化物超伝導体薄膜、あるいは酸化物バッファ層と酸化物超伝導体薄膜との反応は、基板温度が高いほど顕著となり、多くの場合、酸化物超伝導体中のBaの拡散によって酸化物バッファ層の特性が劣化してしまう。
実施の形態1
酸化物超伝導体薄膜2は、パルスレーザ蒸着法などを用いて形成される。まず、パルスレーザ蒸着用の酸化物超伝導体ターゲットは、つぎのようにして作製される。
各金属元素の酸化物、炭酸塩などを出発材料とし、粉砕混合する(工程A)。
工程Aで得られた粉体を、大気ないし酸素雰囲気中880〜910℃の温度で12〜48時間焼結する。場合によっては、この工程を複数回繰り返す(工程B)。
工程Bで得られた焼結体を、粉砕、混合し、所定の形状に成形後、さらに大気ないし酸素雰囲気中900〜930℃程度の温度まで昇温し12〜96時間焼結する(工程C)。
工程Cで得られた焼結体をさらに、粉砕、混合し所定の形状に成形後、酸素ガスフロー中で880℃〜910℃で12〜96時間昇温し酸素アニールを行ない、そののち所定の条件で冷却される(工程D)。
工程A、B、CおよびDを経て得られた、(Yb1−xNd)BaCu7−y系のターゲットにおいて、xが0.01〜0.30、yが0.00〜0.10なる組成を選択することにより、図2に見られるように不純物相であるBaCuOやYbBaCuO(以下211相)の割合が減少し、単一の結晶相を含むことになる。図3に見られるように、この組成範囲では、臨界温度が高い良好なターゲットが得られる。
この焼結体を、パルスレーザ蒸着の際のターゲットとして使用し、超伝導体薄膜を作製する。レーザはArF、KrF、XeClなどのエキシマレーザを使用して成膜する。
このターゲットを用い、パルスレーザ蒸着法によって薄膜を形成する。そのとき、基板温度を650℃〜850℃とする。図4は基板温度を750〜850℃とした場合の酸化物超伝導体薄膜の臨界電流密度を示しており、図5は基板温度を650〜750℃とした場合の臨界電流密度を示している。図中実施例はNdを含む実施例を示し、比較例はNdを含まない例を示している。
このように低い基板温度で薄膜形成を行なうにもかかわらず、(Yb −xNd)BaCu7−y薄膜はc軸配向することがわかった。図4に示すようにNdを添加しない(x=0)場合、0.2μmの膜厚では10〜10A/cmの臨界電流密度が得られるものの、膜厚の増加によって臨界電流密度が著しく減少し、0.5μmの膜厚では2×10A/cmまでも低下する。一方、Ybをx=0.10だけNdに置換した場合、臨界電流密度は膜厚の増加に対してほとんど低下しない。その結果、0.25〜0.75μmの膜厚領域で5×10〜13×10A/cmの高い臨界電流密度が得られ、さらに1μmまで膜厚を増加しても臨界電流密度は2×10〜4×10A/cmと、Ndを添加しない同厚の場合に比べ、30〜60倍もの高い臨界電流密度が得られることがわかった(図4参照)。また、膜厚を0.25μmに減少しても同程度の臨界電流密度が得られる。
実施の形態2
実施の形態2としては、2種類の希土類元素を含む酸化物超伝導体(R1−xR’BaCu7−y;ここでRおよびR’はY、Gd、Eu、Nd、Ho、Yb、Tb、Sm、Pr、Dy、Lu、ErおよびTmの群から選ばれる元素)であって、それぞれの希土類元素を単体で含む酸化物超伝導体の融点の差が10℃以上あることである。一般的に酸化物超伝導体の臨界電流密度を向上させるためには、超伝導相を高品質化するだけでなく、侵入した磁束が動かないようにピニングセンタを導入する必要がある。融点の異なる2種類の酸化物超伝導体が混在することにより、高融点側の酸化物超伝導体相の部分が有効なピニングセンタとして作用し、高磁界まで超伝導状態を維持できるためと考えられる。
たとえば、NdBaCu7−y系の融点はYbBaCu7−y系の融点に比べて約100℃高い。この場合、少量混合されるNd側がピニングセンタとして働くことになる。YbとNdを含む系では融点の差が約100℃であるが、ピニングセンタの形成という観点からは配向性に差が出る領域が形成されればよいので、融点の差が10℃以上であればよいと考えられる。
The oxide superconductor thin film element of the present invention will be described below in detail with reference to the accompanying drawings.
The present invention is composed of at least a substrate and an oxide superconductor thin film, and the oxide superconductor thin film is Yb 1-x Nd x Ba 2 Cu 3 O 7-y , and x is 0.01 to The oxide superconductor thin film element has a composition in which 0.30 and y are 0.00 to 0.20, and the c-axis of the crystal grain is oriented perpendicular to the substrate.
x is preferably 0.05 to 0.25, and more preferably 0.1 to 0.2. Further, y is preferably 0.00 to 0.05, and more preferably 0.00 to 0.03. When x is outside the range of 0.01 to 0.30 and y is within the range of 0.00 to 0.20, the proportion of impurity phases BaCuO 2 and Yb 2 BaCuO 5 (hereinafter referred to as 211 phase) increases or exceeds The conduction transition temperature decreases.
The thickness of the thin film is 0.15 μm to 10.0 μm. The film thickness is preferably from 0.15 μm to 1.0 μm, more preferably from 0.25 μm to 1.0 μm. If the thickness of the thin film is smaller than 0.15 μm, it is likely to be affected by the substrate and the buffer layer, so that a sufficient critical current density tends not to be obtained when the reaction layer is formed.
Here, the c-axis of the crystal grain is oriented perpendicular to the substrate. Most of the crystal grains constituting the thin film (90% or more) have the c-axis perpendicular to the substrate. It means that.
Further, the present invention, x is 0.01 to 0.30, a sintered body which y is a composition of Yb 1-x Nd x Ba 2 Cu 3 O 7-y is 0.00 to 0.20 The present invention relates to a method for manufacturing an oxide superconductor thin film element in which the temperature of the substrate is 650 ° C. to 850 ° C.
The temperature of the substrate is preferably 750 ° C to 850 ° C, more preferably 750 ° C to 800 ° C. If the temperature of the substrate is lower than 650 ° C., the crystallinity of the superconductor thin film is lowered and the c-axis of the crystal grains is difficult to be oriented perpendicular to the substrate, and if it is higher than 850 ° C., the superconductor thin film and the substrate, or Since the reaction with the buffer layer proceeds, the crystal grain orientation is disturbed.
The oxide superconductor thin film is composed of at least a substrate and an oxide superconductor thin film, and the oxide superconductor thin film contains two kinds of rare earth elements. A critical current density of 5 × 10 5 to 13 × 10 5 A / cm 2 in a range of 10 ° C. or higher and the oxide superconductor thin film having a thickness of 0.25 to 0.75 μm, or When the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 μm, the critical current density is 2 × 10 5 to 4 × 10 5 A / cm 2 , and the c-axis of the crystal grains is oriented perpendicular to the substrate. The present invention relates to an oxide superconductor thin film device.
The difference in melting point between the oxide superconductors containing each rare earth element alone is preferably 10 ° C to 160 ° C, more preferably 40 ° C to 160 ° C. When the difference between the melting points is less than 10 ° C., a pinning center is not introduced, so that a sufficient critical current density cannot be obtained.
It is preferable that the oxide superconductor thin film has a critical current density of 5 × 10 5 A / cm 2 or more in the range of 0.25 to 0.75 μm. When the critical current density is smaller than 5 × 10 5 A / cm 2, it is difficult to apply this element to power transportation and generation of a strong magnetic field.
It is preferable that the oxide superconductor thin film has a critical current density of 2 × 10 5 A / cm 2 or more in the range of 0.25 to 1 μm.
When the critical current density is less than 2 × 10 5 A / cm 2 , sufficient power transport characteristics cannot be obtained.
FIG. 1 is a cross-sectional view of an oxide superconductor thin film element of the present invention, and FIG. 2 shows the Nd concentration dependence of the impurity phase mixture ratio in the target sintered body for forming an oxide superconductor thin film of the present invention. FIG. 3 is a graph showing the dependence of critical temperature on the Nd concentration in a target sintered body for forming an oxide superconductor thin film according to the present invention, and FIGS. 4 and 5 are oxide superconductor thin films according to the present invention and comparative examples. It is a graph which shows the film thickness dependence of the critical current density in.
An oxide superconductor thin film 2 is provided on the substrate 1 (see FIG. 1A). The substrate 1 is a Ni-based alloy such as Hastelloy, and MgO single crystal is also used. When the substrate is a Ni-based alloy, an oxide buffer layer 3 such as CeO 2 may be inserted in order to prevent the reaction between the substrate 1 and the oxide superconductor thin film 2 (see FIG. 1B).
In this case, when the oxide superconductor thin film 2 is formed, the higher the substrate temperature, the easier the crystal grains are oriented with the c-axis perpendicular to the substrate, and excellent characteristics (high critical temperature, high critical current density) are obtained. On the other hand, the reaction between the substrate and the oxide superconductor thin film or between the oxide buffer layer and the oxide superconductor thin film becomes more prominent as the substrate temperature is higher, and in many cases, Ba in the oxide superconductor The characteristics of the oxide buffer layer deteriorate due to the diffusion.
Embodiment 1
The oxide superconductor thin film 2 is formed using a pulse laser deposition method or the like. First, an oxide superconductor target for pulse laser deposition is manufactured as follows.
Oxides and carbonates of each metal element are used as starting materials, and pulverized and mixed (step A).
The powder obtained in step A is sintered for 12 to 48 hours at a temperature of 880 to 910 ° C. in the atmosphere or oxygen atmosphere. Depending on the case, this process is repeated several times (process B).
The sintered body obtained in the step B is pulverized and mixed, formed into a predetermined shape, further heated to a temperature of about 900 to 930 ° C. in the atmosphere or oxygen atmosphere, and sintered for 12 to 96 hours (step C). ).
The sintered body obtained in step C is further pulverized and mixed to form a predetermined shape, and then heated in an oxygen gas flow at 880 ° C. to 910 ° C. for 12 to 96 hours for oxygen annealing. Cooling under conditions (step D).
Step A, B, obtained through C and D, in (Yb 1-x Nd x) Ba 2 Cu 3 O 7-y system of the target, x is from 0.01 to 0.30, y is 0.00 By selecting a composition of ˜0.10, the ratio of impurity phases BaCuO 2 and Yb 2 BaCuO 5 (hereinafter referred to as 211 phase) decreases as shown in FIG. 2, and a single crystal phase is included. Become. As seen in FIG. 3, in this composition range, a good target having a high critical temperature can be obtained.
This sintered body is used as a target for pulsed laser deposition to produce a superconductor thin film. The laser is formed using an excimer laser such as ArF, KrF, or XeCl.
Using this target, a thin film is formed by pulsed laser deposition. At that time, the substrate temperature is set to 650 ° C to 850 ° C. FIG. 4 shows the critical current density of the oxide superconductor thin film when the substrate temperature is 750 to 850 ° C., and FIG. 5 shows the critical current density when the substrate temperature is 650 to 750 ° C. . In the drawing, the example shows an example containing Nd, and the comparative example shows an example not containing Nd.
Despite this perform film formation at a low substrate temperature, (Yb 1 -x Nd x) Ba 2 Cu 3 O 7-y thin film was found to be oriented in the c-axis. As shown in FIG. 4, when Nd is not added (x = 0), a critical current density of 10 5 to 10 6 A / cm 2 can be obtained with a film thickness of 0.2 μm. Significantly decreases, and the film thickness decreases to 2 × 10 4 A / cm 2 at a film thickness of 0.5 μm. On the other hand, when Yb is replaced with Nd by x = 0.10, the critical current density hardly decreases as the film thickness increases. As a result, a high critical current density of 5 × 10 5 to 13 × 10 5 A / cm 2 is obtained in a film thickness region of 0.25 to 0.75 μm, and the critical current density is increased even if the film thickness is increased to 1 μm. Was found to be 2 × 10 5 to 4 × 10 5 A / cm 2 , which is 30 to 60 times higher than that of the same thickness without adding Nd (see FIG. 4). Moreover, even if the film thickness is reduced to 0.25 μm, the same critical current density can be obtained.
Embodiment 2
As Embodiment 2, an oxide superconductor containing two kinds of rare earth elements (R 1-x R ′ x Ba 2 Cu 3 O 7-y ; where R and R ′ are Y, Gd, Eu, Nd , Ho, Yb, Tb, Sm, Pr, Dy, Lu, Er, and Tm), and the difference in melting point of the oxide superconductor containing each rare earth element alone is 10 ° C. or more. That is. In general, in order to improve the critical current density of an oxide superconductor, it is necessary not only to improve the quality of the superconducting phase, but also to introduce a pinning center so that the invading magnetic flux does not move. It is thought that by mixing two types of oxide superconductors with different melting points, the oxide superconductor phase part on the high melting point side acts as an effective pinning center and can maintain the superconducting state up to a high magnetic field. It is done.
For example, NdBa 2 Cu 3 O 7- y system melting point of about 100 ° C. higher than the YbBa 2 Cu 3 O 7-y system melting point. In this case, the Nd side mixed with a small amount functions as a pinning center. In the system containing Yb and Nd, the difference in melting point is about 100 ° C. However, from the viewpoint of forming a pinning center, it is sufficient if a region having a difference in orientation is formed. I think it would be good.

以下、本発明を実施例および比較例によってさらに詳細に説明するが、本発明はこれらに限定されるものではない。
Yb、Nd、BaCO、(またはBaO)およびCuO粉体を出発原料とし、Yb:Nd:Ba:Cuが1−x:x:2:3(x=0.05、0.1、0.15、0.2、0.3)のモル比になるように秤量し、充分に粉砕・混合した(工程A)。
工程Aで得た粉体を電気炉において空気中で900℃、12時間焼成を行なった。これにより得られた粉体を充分に粉砕、混合した。この工程は2回繰り返した(工程B)。
工程Bで得られた粉体を、充分に粉砕・混合したのち、加圧によりペレット化し、空気中で910℃、48時間焼成した(工程C)。
工程Cで得られたペレットを充分に粉砕混合したのち、再度ペレット化し、このペレットを酸素ガスフロー中で910℃まで昇温し、12時間保持し、そののち500℃まで冷却し24時間保持したのち、炉冷することにより酸素アニールを行なった(工程D)。
以上の工程A、B、CおよびDを経て得られた焼結体試料について粉末X線回折法により試料に含まれる不純物相について調べた。その結果を図2に示す、図の縦軸は123相に対する211相の相対強度を示している。Nd置換量xが増加するにつれて、試料に含まれる不純物相の割合が減少し、x=0.1以上では、超伝導相のみが検出され、不純物相は検出されなかった。
またこれらの工程A、B、CおよびDを経て得られた試料について電気抵抗率の温度変化を測定し、超伝導転移温度Tcを調べた。その結果、Nd置換量xが増加するとTcが上昇し、x=0.1の場合にTcは最大値95°Kを示した(図3参照)。
以上、工程A、B、CおよびDを経て得られた焼結体を、ターゲットとして使用し、パルスレーザ蒸着法により薄膜を形成した。レーザはArFエキシマレーザで、基板はMgO(100)単結晶を用いた。基板温度は600〜850℃で、膜厚0.2μmから1μmのものが得られ、いずれも結晶粒がc軸配向していた。
これら薄膜の温度77°Kにおける臨界電流密度を計測したところ、基板温度を750〜850℃とした場合、0.25〜0.75μmの膜厚領域で5×10〜13×10A/cmの高い臨界電流密度が得られ、かつ膜厚が増加しても臨界電流密度はほとんど減少しなかった。その結果、膜厚が1μmまで増加しても、臨界電流密度は2〜4×10A/cmと依然高い値であった(図4参照)。
一方、基板温度を600〜750℃とした場合、基板温度を750〜850℃とした場合と比較して、臨界電流密度の値はごくわずか低下するものの、膜厚に対する傾向はほぼ同様であった(図5参照)。
比較例
実施例と同じ方法で、Ndを含まない薄膜を作製した。
Ndを含まない薄膜の場合、図4および図5から明らかなように、臨界電流密度は、膜厚が0.2μmでは10〜10A/cm程度であるものの、膜厚の増加と共に急激に低下し、0.25μm以上の膜厚では10A/cmまたはそれ以下にまで減少する。このため比較例では、とくに0.5〜0.75μmの膜厚で、実施例の約1/50の臨界電流密度しか得られなかった。
本発明の酸化物超伝導体薄膜素子によれば、液体ヘリウム冷媒が不要となるため、冷却効率が数100倍になる。また、従来の銅線を使用した電力ケーブル管路と同じ大きさでも10倍以上の送電容量が可能となる。この酸化物超伝導薄膜素子を磁石に適用する場合、たとえばBi系酸化物高温超伝導体では、磁場中で臨界電流密度が急激に低下するという材料本来の物性により、77°Kで約1Tまでの磁場しか発生できなかったのに対し、その数倍の発生磁場が可能となるため、超強力磁石が得られると期待される。これにより、たとえば磁気分離装置の分離効率を10倍以上効率化できる。また臨界電流密度の増加により、超伝導発電機のサイズを1/2以下に小型化できるだけでなく、負荷変動に対する安定性が大きくなるため、現行送電設備のままでも送電容量を50%増強できる。また医療分野への応用としては、磁気共鳴撮像装置(MRI)の信号強度が40倍に向上し高解像度化が期待される。
本発明の酸化物超伝導体薄膜素子の製法によれば、低温の基板温度で膜形成するため、酸化物超伝導体薄膜を形成するあいだに、素子の他の要素が反応劣化することなく、かつ結晶粒のc軸が基板に対し垂直に配向するので、膜厚が0.25〜0.75μmの範囲で5×10〜13×10A/cmの臨界電流密度が得られ、膜厚が1μmまで増加しても、2×10〜4×10A/cmの臨界電流密度が得られた。このように膜厚が大きくても、従来の酸化物超伝導体薄膜に比べて数十倍の臨界電流密度が得られるので、格段に高性能の酸化物超伝導体薄膜素子が実現でき、前記電力分野や医療技術分野のごとき多くの応用分野において、技術的および経済的に多大の改良が可能となる。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these.
Yb 2 O 3 , Nd 2 O 3 , BaCO 3 , (or BaO) and CuO powder are used as starting materials, and Yb: Nd: Ba: Cu is 1-x: x: 2: 3 (x = 0.05, 0.1, 0.15, 0.2, 0.3) were weighed so as to have a molar ratio, and sufficiently pulverized and mixed (step A).
The powder obtained in step A was baked in the electric furnace at 900 ° C. for 12 hours in the air. The resulting powder was sufficiently pulverized and mixed. This process was repeated twice (Step B).
The powder obtained in Step B was sufficiently pulverized and mixed, then pelletized by pressurization, and baked in air at 910 ° C. for 48 hours (Step C).
The pellets obtained in Step C were sufficiently pulverized and mixed, and then pelletized again. The pellets were heated to 910 ° C. in an oxygen gas flow, held for 12 hours, then cooled to 500 ° C. and held for 24 hours. After that, oxygen annealing was performed by cooling in the furnace (step D).
The sintered body samples obtained through the above steps A, B, C and D were examined for impurity phases contained in the samples by powder X-ray diffraction method. The result is shown in FIG. 2, and the vertical axis of the figure shows the relative intensity of the 211 phase with respect to the 123 phase. As the Nd substitution amount x increased, the proportion of the impurity phase contained in the sample decreased. When x = 0.1 or more, only the superconducting phase was detected and no impurity phase was detected.
Moreover, the temperature change of the electrical resistivity was measured about the sample obtained through these processes A, B, C, and D, and superconducting transition temperature Tc was investigated. As a result, when the Nd substitution amount x increased, Tc increased. When x = 0.1, Tc showed a maximum value of 95 ° K (see FIG. 3).
As described above, the sintered body obtained through the steps A, B, C, and D was used as a target, and a thin film was formed by a pulse laser deposition method. The laser was an ArF excimer laser and the substrate was MgO (100) single crystal. The substrate temperature was 600 to 850 ° C., and a film thickness of 0.2 μm to 1 μm was obtained. In all cases, the crystal grains were c-axis oriented.
When the critical current density at a temperature of 77 ° K of these thin films was measured, when the substrate temperature was 750 to 850 ° C., the film thickness range of 0.25 to 0.75 μm was 5 × 10 5 to 13 × 10 5 A / A high critical current density of cm 2 was obtained, and the critical current density hardly decreased even when the film thickness was increased. As a result, even when the film thickness increased to 1 μm, the critical current density was still a high value of 2 to 4 × 10 5 A / cm 2 (see FIG. 4).
On the other hand, when the substrate temperature was 600 to 750 ° C., the critical current density value was slightly decreased as compared with the case where the substrate temperature was 750 to 850 ° C., but the tendency to the film thickness was almost the same. (See FIG. 5).
Comparative Example A thin film containing no Nd was prepared in the same manner as in the example.
In the case of a thin film not containing Nd, as is apparent from FIGS. 4 and 5, the critical current density is about 10 5 to 10 6 A / cm 2 when the film thickness is 0.2 μm. It decreases rapidly and decreases to 10 4 A / cm 2 or less at a film thickness of 0.25 μm or more. For this reason, in the comparative example, only a critical current density of about 1/50 of the example was obtained with a film thickness of 0.5 to 0.75 μm.
According to the oxide superconductor thin film element of the present invention, the liquid helium refrigerant is not required, so that the cooling efficiency is several hundred times. Moreover, even if it is the same magnitude | size as the power cable pipe line using the conventional copper wire, the transmission capacity of 10 times or more is attained. When this oxide superconducting thin film element is applied to a magnet, for example, in a Bi-based oxide high-temperature superconductor, the critical current density rapidly decreases in a magnetic field. However, it is expected that a super-strong magnet can be obtained. Thereby, for example, the separation efficiency of the magnetic separation device can be increased by 10 times or more. The increase in critical current density not only reduces the size of the superconducting generator to ½ or less, but also increases the stability against load fluctuations, so that the transmission capacity can be increased by 50% even with the current transmission equipment. As an application in the medical field, the signal intensity of a magnetic resonance imaging apparatus (MRI) is improved by 40 times and high resolution is expected.
According to the manufacturing method of the oxide superconductor thin film element of the present invention, since the film is formed at a low substrate temperature, the other elements of the element are not deteriorated by reaction while the oxide superconductor thin film is formed. and since the c-axis of the crystal grains are aligned vertically to the substrate, the film thickness is the critical current density of 5 × 10 5 ~13 × 10 5 a / cm 2 is obtained in the range of 0.25~0.75Myuemu, Even when the film thickness increased to 1 μm, a critical current density of 2 × 10 5 to 4 × 10 5 A / cm 2 was obtained. Even if the film thickness is large, a critical current density several tens of times higher than that of the conventional oxide superconductor thin film can be obtained, so that a remarkably high performance oxide superconductor thin film element can be realized. In many application fields, such as the electric power field and the medical technology field, great technical and economic improvements are possible.

本発明の酸化物超伝導体薄膜素子の製法によれば、(Yb1−xNd)BaCu7−y系において、xが0.01〜0.30であり、かつyが0.00〜0.20であり、薄膜の結晶粒のc軸が基板に垂直に配向し、成膜時の基板温度が650〜850℃の条件下で薄膜形成したことにより、素子の他の要素が反応劣化することなく、かつ広い膜厚範囲で、5×10〜13×10A/cmと優れた臨界電流密度を示す酸化物超伝導体薄膜素子が得られる。According to production method of an oxide superconductor thin film element of the present invention, in (Yb 1-x Nd x) Ba 2 Cu 3 O 7-y system, x is 0.01 to 0.30, and y is The c-axis of the crystal grains of the thin film is oriented perpendicular to the substrate, and the thin film is formed under the condition that the substrate temperature during film formation is 650 to 850 ° C. An oxide superconductor thin film element exhibiting an excellent critical current density of 5 × 10 5 to 13 × 10 5 A / cm 2 can be obtained in a wide film thickness range without causing element degradation.

Claims (7)

少なくとも基板と酸化物超伝導体薄膜から構成され、該酸化物超伝導体薄膜が、Yb1−xNdBaCu7−yであって、xが0.01〜0.30、yが0.00〜0.20である組成を有し、結晶粒のc軸が基板に垂直に配向された酸化物超伝導体薄膜素子。Is composed of at least a substrate and an oxide superconductor thin film, the oxide superconductor thin film, a Yb 1-x Nd x Ba 2 Cu 3 O 7-y, x is 0.01 to 0.30, An oxide superconductor thin film element having a composition in which y is 0.00 to 0.20, and the c-axis of crystal grains is oriented perpendicular to the substrate. 前記薄膜の膜厚が0.15μm〜10.0μmである請求の範囲第1項記載の酸化物超伝導体薄膜素子。The oxide superconductor thin film element according to claim 1, wherein the thin film has a thickness of 0.15 µm to 10.0 µm. 前記薄膜の膜厚が0.15μm〜1.0μmである請求の範囲第2項記載の酸化物超伝導体薄膜素子。3. The oxide superconductor thin film element according to claim 2, wherein the thin film has a thickness of 0.15 [mu] m to 1.0 [mu] m. 前記薄膜の膜厚が0.25μm〜1.0μmである請求の範囲第3項記載の酸化物超伝導体薄膜素子。The oxide superconductor thin film element according to claim 3, wherein the thin film has a thickness of 0.25 µm to 1.0 µm. xが0.01〜0.30であり、yが0.00〜0.20であるYb1−xNdBaCu7−yの組成からなる焼結体をターゲットとして基板上に蒸着する工程において、前記基板の温度が650℃〜850℃である酸化物超伝導体薄膜素子の製法。x is 0.01 to 0.30, a sintered body y is a composition of Yb 1-x Nd x Ba 2 Cu 3 O 7-y is from 0.00 to 0.20 on a substrate as a target A method for producing an oxide superconductor thin film element in which the temperature of the substrate is 650 ° C to 850 ° C in the step of vapor deposition. 前記基板の温度が750℃〜850℃である請求の範囲第5項記載の酸化物超伝導体薄膜素子の製法。The process for producing an oxide superconductor thin film element according to claim 5, wherein the temperature of the substrate is 750C to 850C. 少なくとも基板と酸化物超伝導体薄膜から構成され、該酸化物超伝導体薄膜が、2種類の希土類元素を含み、それぞれの希土類元素を単体で含む酸化物超伝導体のあいだの融点の差が10℃以上であって、前記酸化物超伝導体薄膜の膜厚が0.25〜0.75μmの範囲において、5×10〜13×10A/cmの臨界電流密度、または、前記酸化物超伝導体薄膜の膜厚が0.25〜1μmの範囲において、2×10〜4×10A/cmの臨界電流密度を示し、結晶粒のc軸が基板に垂直に配向された酸化物超伝導体薄膜素子。The oxide superconductor thin film is composed of at least a substrate and an oxide superconductor thin film, and the oxide superconductor thin film contains two kinds of rare earth elements, and there is a difference in melting point between the oxide superconductors containing each rare earth element alone. A critical current density of 5 × 10 5 to 13 × 10 5 A / cm 2 in a range of 10 ° C. or higher and the oxide superconductor thin film having a thickness of 0.25 to 0.75 μm, or When the thickness of the oxide superconductor thin film is in the range of 0.25 to 1 μm, the critical current density is 2 × 10 5 to 4 × 10 5 A / cm 2 , and the c-axis of the crystal grains is oriented perpendicular to the substrate. Oxide superconductor thin film element.
JP2004546397A 2002-10-23 2003-09-19 Oxide superconductor thin film element Pending JPWO2004038816A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002308923 2002-10-23
JP2002308923 2002-10-23
PCT/JP2003/011954 WO2004038816A1 (en) 2002-10-23 2003-09-19 Oxide superconductor thin film element

Publications (1)

Publication Number Publication Date
JPWO2004038816A1 true JPWO2004038816A1 (en) 2006-02-23

Family

ID=32170991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004546397A Pending JPWO2004038816A1 (en) 2002-10-23 2003-09-19 Oxide superconductor thin film element

Country Status (3)

Country Link
JP (1) JPWO2004038816A1 (en)
AU (1) AU2003268648A1 (en)
WO (1) WO2004038816A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221922A (en) * 2011-04-14 2012-11-12 Sumitomo Electric Ind Ltd Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
JP6212241B2 (en) * 2015-03-24 2017-10-11 株式会社東芝 Superconductor and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141564A (en) * 2000-10-31 2002-05-17 Toshiba Corp Superconducting element and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141564A (en) * 2000-10-31 2002-05-17 Toshiba Corp Superconducting element and manufacturing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN5005009268, YAMAGIWA, K., IEEE TRANSACTION ON APPLIED SUPERCONDUCTIVITY, 199906, V9 N2, P1459−1462 *
JPN5005009269, XU, Y., PHYSICA C, 1992, V199, P430−434 *
JPN5005009270, WINNIE WONG−NG, ABSTRACTS OF MRS FALL PROGRAM 2000. SYMPOSIUM II, HIGH−TEMPERATURESUPERCONDUCTORS−CRYSTAL CHEMISTRY,, 20001127, P641, 10:15 AM*II5.4, MATERIALS RESEARCH SOCIETY *

Also Published As

Publication number Publication date
AU2003268648A1 (en) 2004-05-13
WO2004038816A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
US8326387B2 (en) Re-type oxide superconducting wire and process for producing the same
US8124568B2 (en) Oxide superconductor and method of fabricating same
US20110034336A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
US20110034338A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
US5882536A (en) Method and etchant to join ag-clad BSSCO superconducting tape
JP2719518B2 (en) Manufacturing method of oxide superconducting material
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
KR101719266B1 (en) Superconductor, superconducting wire, and method of forming the same
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US5502029A (en) Laminated super conductor oxide with strontium, calcium, copper and at least one of thallium, lead, and bismuth
JPWO2004038816A1 (en) Oxide superconductor thin film element
JP3217905B2 (en) Metal oxide material and method for producing the same
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
EP3288090A1 (en) Oxide superconductor and method for manufacturing the same
JP7445238B2 (en) Superconducting wire and method for manufacturing superconducting wire
JP3219563B2 (en) Metal oxide and method for producing the same
EP0430568B1 (en) Method of making high Tc superconductor material, and article produced by the method
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
Shimoyama Superconducting joints for the 1.3 GHz persistent NMR magnet under JST-Mirai Program
KR20160006829A (en) Superconductor, superconducting wire, and method of forming the same
JPH04324209A (en) Oxide superconductive wire and its manufacture
Ichino et al. Microstructure and field angle dependence of critical current densities in REBa/sub 2/Cu/sub 3/O/sub y/thin films prepared by PLD method
WO1989008076A1 (en) SUPERCONDUCTIVITY IN A Bi-Ca-Sr-Cu OXIDE COMPOUND SYSTEM FREE OF RARE EARTHS
JP2966119B2 (en) Manufacturing method of oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026