JP2010123433A - Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod - Google Patents

Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod Download PDF

Info

Publication number
JP2010123433A
JP2010123433A JP2008296727A JP2008296727A JP2010123433A JP 2010123433 A JP2010123433 A JP 2010123433A JP 2008296727 A JP2008296727 A JP 2008296727A JP 2008296727 A JP2008296727 A JP 2008296727A JP 2010123433 A JP2010123433 A JP 2010123433A
Authority
JP
Japan
Prior art keywords
thin film
heat treatment
superconducting
superconducting thin
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008296727A
Other languages
Japanese (ja)
Inventor
Genki Honda
元気 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008296727A priority Critical patent/JP2010123433A/en
Publication of JP2010123433A publication Critical patent/JP2010123433A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an RE123 superconducting thin film wire rod by which even if the RE123 superconducting thin film wire rod has a large thickness, no cracks are formed on an RE123 superconducting thin film after introduction of oxygen thereto to provide the RE123 superconducting thin film wire rod having a high critical current value. <P>SOLUTION: The manufacturing method includes a precursor forming step of applying a raw material to a substrate to form a precursor wire rod, a thin film forming step of subjecting the precursor wire rod to heat treatment in an oxygen-containing atmosphere to form an RE123 superconducting thin film, a first heat treatment step of subjecting the superconducting thin film to heat treatment, after the thin film forming step in an atmosphere with oxygen concentration lower than oxygen concentration at the thin film forming step, and a second heat treatment step of subjecting the superconducting thin film to heat treatment after the first heat treatment step in an atmosphere with oxygen concentration higher than oxygen concentration at the thin film forming step. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、RE123超電導薄膜線材の製造方法および超電導薄膜線材に関し、詳しくは、高い臨界電流値を有するRE123超電導薄膜線材の製造方法、および前記製造方法により得られる高い臨界電流値を有する超電導薄膜線材に関する。   The present invention relates to a method of manufacturing RE123 superconducting thin film wire and a superconducting thin film wire, and more particularly, a method of manufacturing RE123 superconducting thin film wire having a high critical current value, and a superconducting thin film wire having a high critical current value obtained by the manufacturing method. About.

現在、酸化物超電導材料を用いた超電導線材のひとつとしてRE123超電導薄膜線材がある。RE123超電導薄膜線材とは、金属基板上に気相法あるいは液相法で超電導層が形成された超電導線材である。ここで使用される酸化物超電導材料は、REBaCu(xは7に近い数:以下RE123とする)の化学式で表わされる酸化物超電導材料であり、RE(Rare Earth:レアアース)の部分にはY、Ho、Nd、Sm、Dy、Eu、La、Tm、Gd等の希土類元素の一つかあるいは、その混合体が配される。RE123超電導薄膜を用いた超電導線材の一層の普及のため、臨界電流密度(Jc)や臨界電流値(Ic)をより高めたRE123超電導薄膜線材の研究が行われている。 Currently, there is a RE123 superconducting thin film wire as one of superconducting wires using an oxide superconducting material. The RE123 superconducting thin film wire is a superconducting wire in which a superconducting layer is formed on a metal substrate by a vapor phase method or a liquid phase method. The oxide superconducting material used here is an oxide superconducting material represented by a chemical formula of RE 1 Ba 2 Cu 3 O x (x is a number close to 7: hereinafter referred to as RE123), and RE (Rare Earth) is a rare earth. ) Is one of rare earth elements such as Y, Ho, Nd, Sm, Dy, Eu, La, Tm, and Gd, or a mixture thereof. In order to further spread the superconducting wire using the RE123 superconducting thin film, research on the RE123 superconducting thin film wire with higher critical current density (Jc) and critical current value (Ic) has been conducted.

高い臨界電流値を有するRE123超電導薄膜線材を得るためには、RE123超電導薄膜線材の製造において、基材上にRE123超電導薄膜を形成した後、超電導層に酸素を導入するプロセスが必要である。   In order to obtain the RE123 superconducting thin film wire having a high critical current value, a process of introducing oxygen into the superconducting layer after forming the RE123 superconducting thin film on the substrate is necessary in the production of the RE123 superconducting thin film wire.

このような酸素導入プロセスにおいて、従来は、酸素100%の雰囲気中で熱処理を施すことでRE123超電導層への酸素の導入を行っていた(例えば、特許文献1)。
特開2001−357730号公報
In such an oxygen introduction process, conventionally, oxygen is introduced into the RE123 superconducting layer by performing heat treatment in an atmosphere of 100% oxygen (for example, Patent Document 1).
JP 2001-357730 A

しかし、従来の方法では特にRE123超電導薄膜の膜厚が厚い場合、酸素導入後のRE123超電導薄膜にクラックが生じ、低い臨界電流値にとどまるといった問題が起こっていた。   However, in the conventional method, particularly when the film thickness of the RE123 superconducting thin film is thick, the RE123 superconducting thin film after the introduction of oxygen cracks, resulting in a problem that the critical current value remains low.

そこで、本発明は、RE123超電導薄膜線材の製造方法として、厚膜のRE123超電導薄膜線材であっても、酸素導入後のRE123超電導薄膜にクラックが発生せず、その結果、高い臨界電流値を有するRE123超電導薄膜線材の製造方法を提供し、また高臨界電流値を有するRE123超電導薄膜線材を提供することを課題とする。   Therefore, the present invention provides a method for producing the RE123 superconducting thin film wire, even if it is a thick RE123 superconducting thin film wire, cracks do not occur in the RE123 superconducting thin film after the introduction of oxygen, and as a result, it has a high critical current value. It is an object of the present invention to provide a method for producing a RE123 superconducting thin film wire and to provide a RE123 superconducting thin film wire having a high critical current value.

本発明のRE123超電導薄膜線材の製造方法は、原料を基材に塗布して前駆体線材を形成する前駆体形成工程と前記前駆体線材を酸素含有雰囲気で熱処理し、RE123超電導薄膜を形成する薄膜形成工程と、前記薄膜形成工程後、前記薄膜形成工程時より低い酸素濃度で熱処理する第一の熱処理工程と、前記第一の熱処理工程後、前記薄膜形成工程時より高い酸素濃度で熱処理する第二の熱処理工程を含むことを特徴とするものである。   The manufacturing method of the RE123 superconducting thin film wire of the present invention includes a precursor forming step of forming a precursor wire by applying a raw material to a base material, and a heat treatment of the precursor wire in an oxygen-containing atmosphere to form a RE123 superconducting thin film. A first heat treatment step in which heat treatment is performed at a lower oxygen concentration than in the thin film formation step after the thin film formation step; and a first heat treatment step in which heat treatment is performed at a higher oxygen concentration after the first heat treatment step than in the thin film formation step. It includes two heat treatment steps.

本発明では、原料を基材に塗布しそれを熱処理し、超電導層を形成する塗布熱分解法(以下、「MOD法」とも言う)を採用し、0.2μm以上の厚さをもつ超電導層を形成し大きな臨界電流値を得ようとするものである。0.2μm以上の厚さを持つ超電導層に対して酸素導入を目的とした熱処理を施すと超電導層にクラックが生じやすい、そこで上記のような酸素導入熱処理を行う。第一の熱処理では、薄膜形成工程後の超電導層に含まれる酸素を減少させることを意図している。つまりREBaCuの化学式において薄膜形成工程直後のxをx0(約6.5程度)とすれば、それより小さいx1となるようにする操作である。第二の熱処理では超電導層に含まれる酸素を増加させることを意図している。つまり第二の熱処理後の酸素含有量x2を、x0より大きくする操作である。x0→x1→x2(x1<x0<x2)のような酸素含有量変化経路をたどって超電導層に酸素を導入すれば、超電導層にクラックが発生せず高い臨界電流値を持つRE123超電導薄膜線材が得られる。 In the present invention, a superconducting layer having a thickness of 0.2 μm or more is adopted by applying a coating pyrolysis method (hereinafter also referred to as “MOD method”) in which a raw material is applied to a substrate and heat-treated to form a superconducting layer. To obtain a large critical current value. When a heat treatment for introducing oxygen is performed on a superconducting layer having a thickness of 0.2 μm or more, cracks are likely to occur in the superconducting layer. Therefore, the oxygen introducing heat treatment as described above is performed. The first heat treatment is intended to reduce oxygen contained in the superconducting layer after the thin film formation step. That is, in the chemical formula of RE 1 Ba 2 Cu 3 O x , if x immediately after the thin film formation step is x0 (about 6.5), it is an operation to make x1 smaller than that. The second heat treatment is intended to increase the oxygen contained in the superconducting layer. That is, this is an operation for making the oxygen content x2 after the second heat treatment larger than x0. RE123 superconducting thin film wire having a high critical current value without cracking in the superconducting layer if oxygen is introduced into the superconducting layer following the oxygen content change path such as x0 → x1 → x2 (x1 <x0 <x2) Is obtained.

本発明において、第一の熱処理を施すことによって、RE123超電導のc軸長を薄膜形成工程後より長くすることが好ましい。第一の熱処理においてc軸長が長くなっていることが確認できる程度、酸素含有量を減少させることが効果的である。   In the present invention, the first heat treatment is preferably performed so that the c-axis length of RE123 superconductivity is longer than that after the thin film formation step. It is effective to reduce the oxygen content to such an extent that the c-axis length can be confirmed to be long in the first heat treatment.

さらには、第一の熱処理を施すことによって、RE123超電導の結晶構造を正方晶とすることが好ましい。正方晶になっていることが確認できる程度、さらに酸素含有量を減少させることがより効果的である。酸素含有量、結晶の軸長、結晶構造とクラック発生の機構については、後段に詳細を記す。   Furthermore, it is preferable to change the crystal structure of RE123 superconductivity to tetragonal by performing the first heat treatment. It is more effective to further reduce the oxygen content to the extent that it can be confirmed that the crystals are tetragonal. The oxygen content, crystal axis length, crystal structure and crack generation mechanism will be described in detail later.

本発明において、第二の熱処理を施すことによって、RE123超電導のc軸長を薄膜形成工程後より短くすることが好ましい。第二の熱処理においてc軸長が短くなっていることが確認できるよう、酸素含有量を増加させることが効果的である。   In the present invention, it is preferable to make the c-axis length of RE123 superconductivity shorter than after the thin film formation step by performing a second heat treatment. It is effective to increase the oxygen content so that it can be confirmed that the c-axis length is shortened in the second heat treatment.

本発明において、第一の熱処理は、酸素濃度10ppm以下の雰囲気下で行うことが好ましい。このような酸素濃度で熱処理を行えば、確実に超電導層の酸素量を減少させることができる。   In the present invention, the first heat treatment is preferably performed in an atmosphere having an oxygen concentration of 10 ppm or less. If heat treatment is performed at such an oxygen concentration, the amount of oxygen in the superconducting layer can be reliably reduced.

本発明において、第二の熱処理は、酸素濃度1000ppm以上の雰囲気下で行うことが好ましい。このような酸素濃度で熱処理を行えば、確実に超電導層の酸素量を増加させることができる。   In the present invention, the second heat treatment is preferably performed in an atmosphere having an oxygen concentration of 1000 ppm or more. If heat treatment is performed at such an oxygen concentration, the amount of oxygen in the superconducting layer can be reliably increased.

本発明のRE123超電導薄膜線材は、上記の製造方法により製造される。これにより、高い臨界電流値をもつRE123超電導薄膜線材が得られる。   The RE123 superconducting thin film wire of the present invention is manufactured by the above manufacturing method. Thereby, the RE123 superconducting thin film wire having a high critical current value is obtained.

本発明により、0.2μm以上の厚さをもつRE123超電導薄膜線材であっても酸素導入過程においてクラックが発生せず、その結果、高い臨界電流値を有するRE123超電導薄膜線材を得ることができる。   According to the present invention, even if the RE123 superconducting thin film wire having a thickness of 0.2 μm or more is not cracked during the oxygen introduction process, an RE123 superconducting thin film wire having a high critical current value can be obtained.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(RE123超電導薄膜線材の構成)
図1は、本発明の対象であるRE123超電導薄膜線材の構成を模式的に示す部分断面斜視図である。図1を参照して、代表的なRE123超電導薄膜線材の例について説明する。RE123超電導薄膜線材10は、配向金属基板11と、配向金属基板11上に形成された中間層12と、中間層12上に形成された超電導薄膜層13と、超電導薄膜層13を保護するための安定化層14と、全体を保護し導電性をあげるための保護層15、16からなる。基本構成としては、配向金属基板11、中間層12、超電導層13からなり、安定化層14、保護層15、16は用途に応じてオプションとして設けられる。
(Configuration of RE123 superconducting thin film wire)
FIG. 1 is a partial cross-sectional perspective view schematically showing the configuration of the RE123 superconducting thin film wire that is the subject of the present invention. An example of a typical RE123 superconducting thin film wire will be described with reference to FIG. The RE123 superconducting thin film wire 10 protects the oriented metal substrate 11, the intermediate layer 12 formed on the oriented metal substrate 11, the superconducting thin film layer 13 formed on the intermediate layer 12, and the superconducting thin film layer 13. It consists of a stabilizing layer 14 and protective layers 15 and 16 for protecting the whole and enhancing conductivity. As a basic configuration, it consists of an oriented metal substrate 11, an intermediate layer 12, and a superconducting layer 13, and a stabilization layer 14 and protective layers 15 and 16 are optionally provided depending on the application.

配向金属基板11としては、例えばNi配向基板、Ni合金系の配向基板等を採用できる。中間層12は、例えばCeOやYSZ(イットリウム安定化ジルコニア)等の酸化物を採用できる。超電導薄膜層13としては例えばYBaCu(xは7に近い数)などの、RE123系超電導材料が選択される。安定化層14と保護層15、16としては、Ag(銀)やCu(銅)が用いられる。 As the alignment metal substrate 11, for example, a Ni alignment substrate, a Ni alloy-based alignment substrate, or the like can be adopted. The intermediate layer 12 can employ an oxide such as CeO 2 or YSZ (yttrium stabilized zirconia). As the superconducting thin film layer 13, a RE123-based superconducting material such as YBa 2 Cu 3 O x (x is a number close to 7) is selected. As the stabilization layer 14 and the protective layers 15 and 16, Ag (silver) or Cu (copper) is used.

(酸素導入処理前のRE123超電導薄膜線材の作製)
まず、ベース材料として、Ni合金等の配向金属基板を準備する。この配向金属基板上に物理蒸着法等を用いて、CeO、YSZ等からなる中間層を積層する。この積層体を基材とする。基材の構成としては、例えばCeO/YSZ/CeO/Ni合金が好ましい。この基材上に、RE、Ba、Cu各元素の、例えばフッ素フリーであるアセチルアセトナート錯体を、RE:Ba:Cuのモル比が1:2:3となるように調整して、溶媒に溶解した原料溶液とする。この原料溶液を超電導層を形成した際の厚さが0.2−1.0μmとなるよう塗布する。この溶液塗布体に対し、溶媒除去のための仮焼を施す。仮焼は、大気雰囲気で400−500℃、1−2時間程度の条件で行う。
(Preparation of RE123 superconducting thin film wire before oxygen introduction treatment)
First, an oriented metal substrate such as a Ni alloy is prepared as a base material. An intermediate layer made of CeO 2 , YSZ, or the like is laminated on the oriented metal substrate by physical vapor deposition or the like. This laminate is used as a base material. The structure of the substrate, for example, CeO 2 / YSZ / CeO 2 / Ni alloy is preferable. On this substrate, for example, fluorine-free acetylacetonate complex of each element of RE, Ba, and Cu is adjusted so that the molar ratio of RE: Ba: Cu is 1: 2: 3. A dissolved raw material solution is used. This raw material solution is applied so that the thickness when the superconducting layer is formed is 0.2 to 1.0 μm. The solution applied body is calcined to remove the solvent. The calcination is performed in an air atmosphere at 400 to 500 ° C. for about 1-2 hours.

仮焼された溶液塗布体に中間熱処理を施してもよい。これは仮焼中生成した炭酸塩が超電導層の成長を阻害するため、続く本焼の前に予め生成した炭酸塩を分解除去するために行われるものである。この中間熱処理は、酸素濃度が100ppm程度の雰囲気下、温度600−700℃、時間1−3時間の条件で行われる。以上が前駆体線材形成工程である。   An intermediate heat treatment may be applied to the calcined solution application body. This is performed in order to decompose and remove the carbonate generated in advance before the subsequent calcination, because the carbonate generated during calcination inhibits the growth of the superconducting layer. This intermediate heat treatment is performed in an atmosphere having an oxygen concentration of about 100 ppm under conditions of a temperature of 600 to 700 ° C. and a time of 1 to 3 hours. The above is the precursor wire forming step.

続いて、上で得られた前駆体線材に対し、超電導薄膜形成のために熱処理(本焼)を施す。この本焼により、塗布された原料が目的とするRE123超電導相へと変態する。この工程後得られるものがRE123超電導薄膜線材である。本焼は、酸素濃度が100ppm程度の雰囲気下、温度750−800℃、時間1−2時間の条件で行われる。このRE123超電導薄膜線材に以下の酸素導入処理を施す。   Subsequently, the precursor wire obtained above is subjected to heat treatment (main firing) for forming a superconducting thin film. By this firing, the applied raw material is transformed into the intended RE123 superconducting phase. What is obtained after this step is the RE123 superconducting thin film wire. The main firing is performed in an atmosphere having an oxygen concentration of about 100 ppm under conditions of a temperature of 750 to 800 ° C. and a time of 1-2 hours. The RE123 superconducting thin film wire is subjected to the following oxygen introduction treatment.

(酸素導入処理)
まず、図2を用いて酸素含有量、結晶の軸長、結晶構造とクラック発生の機構について説明する。図2は超電導層中の酸素含有量(x)と結晶構造、結晶の軸長、超電導特性の関係を表した図である。RE123超電導体では酸素含有量(x)によって、超電導特性、結晶の軸長、結晶構造が変化する。xが7に近いほど、超電導特性は良くなり、c軸長が短くなる。またRE123超電導結晶は斜方晶となり、そのa軸長、b軸長の差が大きくなる。
(Oxygen introduction treatment)
First, the oxygen content, the crystal axis length, the crystal structure, and the mechanism of crack generation will be described with reference to FIG. FIG. 2 is a graph showing the relationship between the oxygen content (x) in the superconducting layer, the crystal structure, the axial length of the crystal, and the superconducting characteristics. In the RE123 superconductor, the superconducting characteristics, the crystal axial length, and the crystal structure change depending on the oxygen content (x). The closer x is to 7, the better the superconducting properties and the shorter the c-axis length. The RE123 superconducting crystal is orthorhombic, and the difference between the a-axis length and the b-axis length increases.

超電導薄膜形成工程の超電導層は、酸素濃度100ppm程度の条件下で熱処理され、形成されているため、xが6.5程度である。図2中、x0で示される長方形領域の状態となっている。つまりc軸長が11.73Å程度、斜方晶でa軸長が3.83Å、b軸長3.87Å程度、超電導特性としては中くらいとなっている。従来の酸素導入方法では、この状態から酸素含有量を大きくするために、超電導薄膜形成工程直後に酸素濃度が高い、例えば酸素100%の雰囲気下で熱処理を施して、酸素を超電導層に導入していた。図2中では破線矢印で表される経路(x0→x2)である。この場合、超電導層を構成する一個一個の超電導結晶の性能は高くなるが、前述したように、層中にクラック(超電導結晶同士が離れる)が入りやすい。つまり、個々の超電導結晶は性能が高いがそれらが繋がらず、結局低い性能となってしまう。   Since the superconducting layer in the superconducting thin film forming step is heat-treated and formed under the condition of an oxygen concentration of about 100 ppm, x is about 6.5. In FIG. 2, it is in the state of a rectangular area indicated by x0. In other words, the c-axis length is about 11.73 mm, the orthorhombic a-axis length is about 3.83 mm, the b-axis length is about 3.87 mm, and the superconducting characteristics are medium. In the conventional oxygen introduction method, in order to increase the oxygen content from this state, heat treatment is performed immediately after the superconducting thin film formation step in an atmosphere having a high oxygen concentration, for example, 100% oxygen, and oxygen is introduced into the superconducting layer. It was. In FIG. 2, this is a route (x0 → x2) represented by a dashed arrow. In this case, the performance of each superconducting crystal constituting the superconducting layer is improved, but as described above, cracks (the superconducting crystals are separated from each other) are likely to enter the layer. That is, although individual superconducting crystals have high performance, they are not connected, resulting in low performance.

クラックが発生する機構は以下のとおりである。超電導薄膜形成後の超電導層は多数の結晶がa軸長とb軸長の差が小さい斜方晶であり、それら結晶が最も収まりよく(エネルギー的に安定な状態)で配列している。超電導層の中には正方晶の結晶も少なからずいるが、量の多い結晶構造が観察結果として表れる。これら結晶に酸素を導入していくと、結晶は軸の方向や位置を変えることなくa軸は短く、b軸は長くなっていく。最も収まりのいい状態から、ある部分では縮んで隙間ができたり、結晶同士が押し合って軸が長くなることを抑制するため割れたりする。これらがクラックである。結晶構造を変えず酸素を導入するために起こる現象である。この現象は0.2μm以上の厚さを持つ超電導層で現れやすく、0.5μm以上の厚さになると顕著になる。   The mechanism for generating the crack is as follows. In the superconducting layer after the superconducting thin film is formed, a large number of crystals are orthorhombic with a small difference between the a-axis length and the b-axis length, and these crystals are arranged in the best fit (energy stable state). Although there are a few tetragonal crystals in the superconducting layer, a large amount of crystal structure appears as an observation result. When oxygen is introduced into these crystals, the a-axis becomes shorter and the b-axis becomes longer without changing the direction and position of the axis. From the best fit state, it shrinks in a certain part to form a gap, or cracks to prevent the crystals from pressing each other and lengthening the axis. These are cracks. This is a phenomenon that occurs because oxygen is introduced without changing the crystal structure. This phenomenon is likely to appear in a superconducting layer having a thickness of 0.2 μm or more, and becomes prominent when the thickness is 0.5 μm or more.

一方、全ての結晶が正方晶である超電導層に酸素を導入すると、酸素導入前はa、b軸方向は決まっていず、酸素の導入課程でエネルギー的に安定、言い換えれば結晶が斜方晶に移行するのに障害の小さい方向に各結晶のa、b軸方向が選択される。つまり、収まりのいいように結晶が変化する。そのためクラックは生じにくい。   On the other hand, when oxygen is introduced into a superconducting layer in which all crystals are tetragonal, the a and b axis directions are not determined before the introduction of oxygen, and are stable in terms of energy during the oxygen introduction process, in other words, the crystals become orthorhombic. The a- and b-axis directions of each crystal are selected in the direction in which the obstacle is small for the transition. In other words, the crystals change so that they fit well. As a result, cracks are unlikely to occur.

そこで本発明は、超電導薄膜形成後、超電導薄膜形成工程(約100ppm)より低い酸素濃度(例えば、10ppm)で熱処理し超電導層から酸素を抜く。それによって正方晶の超電導結晶を増加させる。その後、超電導薄膜形成工程(約100ppm)より高い酸素濃度(例えば、1000ppm)で熱処理し、酸素を導入すれば、正方晶の結晶が増加したため、クラックが入りにくいといった現象を応用したものである。   Accordingly, in the present invention, after the superconducting thin film is formed, the oxygen is extracted from the superconducting layer by heat treatment at a lower oxygen concentration (for example, 10 ppm) than in the superconducting thin film forming step (about 100 ppm). Thereby, tetragonal superconducting crystals are increased. After that, heat treatment is performed at a higher oxygen concentration (for example, 1000 ppm) than in the superconducting thin film formation step (for example, 1000 ppm), and when oxygen is introduced, tetragonal crystals increase and cracks are less likely to occur.

酸素含有量(x)の変化は、非破壊検査では測定できないので、c軸長の変化を見て酸素含有量の変化とする。第一の熱処理でc軸長が超電導薄膜形成(初期状態とする)後より長くなれば酸素含有量が減少していること、第二の熱処理後に初期状態より短くなっていれば、酸素含有量が増加していることが確認できる。   Since the change in oxygen content (x) cannot be measured by nondestructive inspection, the change in oxygen content is determined by looking at the change in c-axis length. If the c-axis length in the first heat treatment is longer than after the formation of the superconducting thin film (initial state), the oxygen content is reduced. If the c-axis length is shorter than the initial state after the second heat treatment, the oxygen content is reduced. Can be confirmed.

また、第一の熱処理後、マクロ的に観測できる結晶構造が正方晶になっていれば(図2中、x1で示される長方形領域近傍の状態)、正方晶結晶が主となるため、より確実にクラックの発生を防止できる。図2中、実線矢印で表される経路(x0→x1→x2)が最も好ましい酸素導入経路である。   Further, after the first heat treatment, if the crystal structure that can be observed macroscopically is a tetragonal crystal (a state in the vicinity of the rectangular region indicated by x1 in FIG. 2), the tetragonal crystal is mainly used. In addition, the occurrence of cracks can be prevented. In FIG. 2, the route (x0 → x1 → x2) represented by the solid line arrow is the most preferable oxygen introduction route.

第一の熱処理は、酸素濃度が超電導薄膜形成工程より低い(例えば、50ppm)雰囲気下、温度500−600℃、時間30−120分の条件で行う。第二の熱処理は、酸素濃度が超電導薄膜形成工程より高い(例えば、500ppm)雰囲気下、温度500−600℃、時間30−120分の条件で行う。   The first heat treatment is performed under the conditions of a temperature of 500 to 600 ° C. and a time of 30 to 120 minutes in an atmosphere having an oxygen concentration lower than that of the superconducting thin film forming step (for example, 50 ppm). The second heat treatment is performed under conditions of a temperature of 500 to 600 ° C. and a time of 30 to 120 minutes in an atmosphere in which the oxygen concentration is higher (for example, 500 ppm) than in the superconducting thin film forming step.

以下に、実施例および比較例を挙げて本発明を具体的に説明する。なお以下の実施例および比較例においては、RE123超電導薄膜の形成にはMOD法の内でも有害なHF等を発生するおそれがないフッ素フリーのMOD法を用いた。   The present invention will be specifically described below with reference to examples and comparative examples. In the following Examples and Comparative Examples, the fluorine-free MOD method that does not cause harmful HF or the like among the MOD methods was used to form the RE123 superconducting thin film.

基材として、幅1cmのCeO/YSZ/CeO/Ni合金の基板を用い、この基材上に、Y、Ba、Cuの各アセチルアセトナート錯体を、Y:Ba:Cuのモル比が1:2:3となるように調整して溶媒に溶解した。その溶液を基材に塗布した。超電導層形成後の厚さが0.3μmと0.6μmとなるよう二種の塗布体を用意した。これらを大気雰囲気の下で20℃/分の昇温速度で500℃まで昇温して、2時間保持後炉冷し仮焼熱処理を施した。 A substrate of CeO 2 / YSZ / CeO 2 / Ni alloy having a width of 1 cm is used as a base material, and each acetylacetonate complex of Y, Ba, and Cu is formed on this base material with a molar ratio of Y: Ba: Cu. It adjusted so that it might become 1: 2: 3, and it melt | dissolved in the solvent. The solution was applied to the substrate. Two types of coated bodies were prepared so that the thickness after forming the superconducting layer was 0.3 μm and 0.6 μm. These were heated to 500 ° C. at a temperature rising rate of 20 ° C./min in an air atmosphere, held for 2 hours, and then cooled in a furnace and subjected to a calcining heat treatment.

ついでアルゴン/酸素混合ガス(酸素濃度:100ppm、CO濃度:1ppm以下)雰囲気の下、20℃/分の昇温速度で680℃まで昇温し、180分保持して中間熱処理を施した。この中間処理は、仮焼熱処理中生成した炭酸塩が、超電導層の結晶成長を阻害するため、本焼熱処理の前に予め生成した炭酸塩を分解除去するために行われるものである。 Next, in an argon / oxygen mixed gas atmosphere (oxygen concentration: 100 ppm, CO 2 concentration: 1 ppm or less), the temperature was increased to 680 ° C. at a temperature increase rate of 20 ° C./min, and maintained for 180 minutes to perform an intermediate heat treatment. This intermediate treatment is performed in order to decompose and remove the carbonate generated in advance before the main heat treatment because the carbonate produced during the calcining heat treatment inhibits the crystal growth of the superconducting layer.

中間熱処理の後、アルゴン/酸素混合ガス(酸素濃度:100ppm、CO濃度:1ppm以下)雰囲気の下、20℃/分の昇温速度で780℃まで昇温し、90分保持して本焼熱処理を施し、塗布した原料を超電導体に変態させY123超電導薄膜線材を得た。超電導層の膜厚としては、0.3μm、0.6μmの2種である。 After the intermediate heat treatment, the temperature is increased to 780 ° C. at a temperature increase rate of 20 ° C./min in an argon / oxygen mixed gas (oxygen concentration: 100 ppm, CO 2 concentration: 1 ppm or less) atmosphere, and maintained for 90 minutes. Heat treatment was performed, and the applied raw material was transformed into a superconductor to obtain a Y123 superconducting thin film wire. There are two types of film thickness of the superconducting layer: 0.3 μm and 0.6 μm.

その後、得られた各Y123超電導薄膜線材に対して、以下の条件で熱処理を施した。
比較例1:超電導層膜厚 0.3μm
第1の熱処理 無し
第2の熱処理 無し
比較例2:超電導層膜厚 0.6μm
第1の熱処理 無し
第2の熱処理 無し
比較例3:超電導層膜厚 0.3μm
第1の熱処理 100%酸素中、550℃、60分
第2の熱処理 無し
図2中 x0→x2の経路
比較例4:超電導層膜厚 0.6μm
第1の熱処理 100%酸素中、550℃、60分
第2の熱処理 無し
図2中 x0→x2の経路
比較例5:超電導層膜厚 0.3μm
第1の熱処理 10ppm酸素中、550℃、60分
第2の熱処理 無し
図2中 x0→x1の経路
比較例6:超電導層膜厚 0.6μm
第1の熱処理 10ppm酸素中、550℃、60分
第2の熱処理 無し
図2中 x0→x1の経路
実施例1:超電導層膜厚 0.3μm
第1の熱処理 10ppm酸素中、550℃、60分
第2の熱処理 100%酸素中、550℃、60分
図2中 x0→x1→x2の経路
実施例2:超電導層膜厚 0.6μm
第1の熱処理 10ppm酸素中、550℃、60分
第2の熱処理 100%酸素中、550℃、60分
図2中 x0→x1→x2の経路
Thereafter, each Y123 superconducting thin film wire obtained was heat-treated under the following conditions.
Comparative Example 1: Superconducting layer thickness 0.3 μm
No first heat treatment
Second heat treatment None Comparative example 2: Superconducting layer thickness 0.6 μm
No first heat treatment
Second heat treatment None Comparative example 3: Superconducting layer thickness 0.3 μm
First heat treatment in 100% oxygen at 550 ° C. for 60 minutes
No second heat treatment
In FIG. 2, x0 → x2 path Comparative Example 4: Superconducting layer thickness 0.6 μm
First heat treatment in 100% oxygen at 550 ° C. for 60 minutes
No second heat treatment
In FIG. 2, x0 → x2 path Comparative Example 5: Superconducting layer thickness 0.3 μm
First heat treatment 550 ° C., 60 minutes in 10 ppm oxygen
No second heat treatment
In FIG. 2, the path from x0 to x1 Comparative Example 6: Superconducting layer thickness 0.6 μm
First heat treatment 550 ° C., 60 minutes in 10 ppm oxygen
No second heat treatment
In FIG. 2, x0 → x1 path Example 1: Superconducting layer thickness 0.3 μm
First heat treatment 550 ° C., 60 minutes in 10 ppm oxygen
Second heat treatment in 100% oxygen at 550 ° C. for 60 minutes
In FIG. 2, the path of x0 → x1 → x2 Example 2: Superconducting layer thickness 0.6 μm
First heat treatment 550 ° C., 60 minutes in 10 ppm oxygen
Second heat treatment in 100% oxygen at 550 ° C. for 60 minutes
The route x0 → x1 → x2 in FIG.

上記の実施例、比較例の臨界電流値(Ic)を温度77K、自己磁場下で測定した。また、XRDにより超電導層の結晶構造とc軸長の長さを測定した。さらに各線材におけるクラックの発生の有無を目視にて観察した。各測定結果を表1に併せて示す。   The critical current values (Ic) of the above Examples and Comparative Examples were measured at a temperature of 77K and a self magnetic field. Further, the crystal structure of the superconducting layer and the length of the c-axis length were measured by XRD. In addition, the presence or absence of cracks in each wire was visually observed. The measurement results are also shown in Table 1.

Figure 2010123433
Figure 2010123433

第1、第2の熱処理を施さない比較例1、2は結晶構造が斜方晶で、c軸長が11.73Åになっており、図2中のx0近傍の状態となっていた、これらはクラックの発生はないが超電導特性があまりよくなく、Icが0である。   In Comparative Examples 1 and 2 where the first and second heat treatments were not performed, the crystal structure was orthorhombic and the c-axis length was 11.73 mm, which was in the vicinity of x0 in FIG. Although no crack is generated, the superconducting properties are not so good and Ic is zero.

本焼直後に、本焼条件より高い酸素濃度で第1の熱処理を施した比較例3、4は斜方晶で比較例1、2に比べc軸長が短くなっている。これらは超電導特性がよくなっているがクラックが発生し、あまりIcが高くない。   Comparative examples 3 and 4 in which the first heat treatment was performed at a higher oxygen concentration than the main firing conditions immediately after the main firing were orthorhombic and had a shorter c-axis length than the comparative examples 1 and 2. These have good superconducting properties, but cracks occur and Ic is not so high.

本焼直後に、本焼条件より低い酸素濃度で第1の熱処理だけを施した比較例5、6は正方晶で比較例1、2に比べc軸長が長くなっている。これらは超電導特性は悪くIcは0である。しかしクラックは発生していない。   In Comparative Examples 5 and 6 in which only the first heat treatment was performed at an oxygen concentration lower than that in the main baking conditions immediately after the main baking, the comparative examples 5 and 6 are tetragonal and have a longer c-axis length than the comparative examples 1 and 2. These have poor superconducting properties and Ic is 0. However, no cracks have occurred.

本焼条件より低い酸素濃度で第1の熱処理、本焼条件より高い酸素濃度で第2の熱処理を施した実施例1、2は斜方晶で比較例1、2に比べc軸長が短くなっている。これらは超電導特性がよくなっており、かつクラックが発生していないのでIcが高い。   Examples 1 and 2, which were subjected to the first heat treatment at an oxygen concentration lower than the firing conditions and the second heat treatment at an oxygen concentration higher than the firing conditions, are orthorhombic and have a shorter c-axis length than the comparative examples 1 and 2. It has become. These have good superconducting properties and have high Ic because no cracks are generated.

また、超電導層厚さの影響を比較例3、4と実施例1、2で比較して検討してみる。厚さ0.3μmの比較例3と実施例1のIcの比率は、65A/40A=1.63である。一方、厚さ0.6μmの比較例4と実施例2のIcの比率は、107A/55A=1.95となっており、超電導層の厚さが厚いほど本発明の効果が顕著であることが分かる。   Further, the influence of the superconducting layer thickness will be examined in Comparative Examples 3 and 4 and Examples 1 and 2. The ratio of Ic in Comparative Example 3 and Example 1 having a thickness of 0.3 μm is 65A / 40A = 1.63. On the other hand, the ratio of Ic in Comparative Example 4 and Example 2 having a thickness of 0.6 μm is 107A / 55A = 1.95, and the effect of the present invention becomes more remarkable as the thickness of the superconducting layer increases. I understand.

次に超電導層厚さが0.6μmの線材で第1、第2の熱処理において温度550℃とし、酸素濃度を変化させ熱処理したいくつかの試験材を作製した。その熱処理条件とIc、結晶構造、c軸長の測定結果を表2に示す。   Next, several test materials were produced using a wire having a superconducting layer thickness of 0.6 μm, heat-treated at a temperature of 550 ° C. in the first and second heat treatments, and changing the oxygen concentration. Table 2 shows the heat treatment conditions and the measurement results of Ic, crystal structure, and c-axis length.

Figure 2010123433
Figure 2010123433

実施例6と7を比較してみると、第1の熱処理における酸素濃度が20ppmである実施例7では第1の熱処理後、結晶構造が正方晶になっておらず、酸素が超電導層からあまり抜けていない。そのため第2の熱処理後のIcが実施例6にくらべ低い。   Comparing Examples 6 and 7, in Example 7 in which the oxygen concentration in the first heat treatment is 20 ppm, the crystal structure is not tetragonal after the first heat treatment, and oxygen is not much from the superconducting layer. It is not missing. Therefore, Ic after the second heat treatment is lower than that in Example 6.

第2の熱処理における酸素濃度の影響は、実施例6、8、9を比較すると分かる。第二の熱処理の酸素濃度が1000ppm以上である、実施例6と9は100Aを超えるIcが得られている。これから第2の熱処理時の酸素濃度は1000ppm以上が好ましいと言える。   The influence of the oxygen concentration in the second heat treatment can be seen by comparing Examples 6, 8, and 9. In Examples 6 and 9, in which the oxygen concentration of the second heat treatment is 1000 ppm or more, Ic exceeding 100 A is obtained. From this, it can be said that the oxygen concentration during the second heat treatment is preferably 1000 ppm or more.

今回開示された実施の形態および実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

RE123超電導薄膜線材の構成を模式的に示す部分断面斜視図である。It is a partial section perspective view showing typically composition of RE123 superconducting thin film wire. 超電導層中の酸素含有量(x)と結晶構造、結晶の軸長、超電導特性の関係を表した図である。It is a figure showing the relationship between oxygen content (x) in a superconducting layer, crystal structure, crystal axial length, and superconducting characteristics.

符号の説明Explanation of symbols

10 RE123超電導薄膜線材
11 配向金属基板
12 中間層
13 超電導薄膜層
14 安定化層
15 16 保護層
10 RE123 superconducting thin film wire 11 oriented metal substrate 12 intermediate layer 13 superconducting thin film layer 14 stabilization layer 15 16 protective layer

Claims (7)

RE123超電導薄膜線材の製造方法であって、
原料を基材に塗布して前駆体線材を形成する前駆体形成工程と
前記前駆体線材を酸素含有雰囲気で熱処理し、RE123超電導薄膜を形成する薄膜形成工程と、
前記薄膜形成工程後、前記薄膜形成工程時より低い酸素濃度で熱処理する第一の熱処理工程と、
前記第一の熱処理工程後、前記薄膜形成工程時より高い酸素濃度で熱処理する第二の熱処理工程を含むことを特徴とするRE123超電導薄膜線材の製造方法。
A manufacturing method of RE123 superconducting thin film wire,
A precursor forming step of forming a precursor wire by applying a raw material to a base material; and a thin film forming step of heat-treating the precursor wire in an oxygen-containing atmosphere to form a RE123 superconducting thin film;
After the thin film formation step, a first heat treatment step for heat treatment at a lower oxygen concentration than during the thin film formation step,
A method for producing a RE123 superconducting thin film wire, comprising a second heat treatment step after the first heat treatment step, wherein the second heat treatment step is performed at a higher oxygen concentration than during the thin film formation step.
前記第一の熱処理を施すことによって、RE123超電導のc軸長を前記薄膜形成工程後より長くすることを特徴とする請求項1に記載のRE123超電導薄膜線材の製造方法。   2. The method of manufacturing an RE123 superconducting thin film wire according to claim 1, wherein the first heat treatment is performed to make the RE123 superconducting c-axis length longer than after the thin film forming step. 前記第一の熱処理を施すことによって、RE123超電導の結晶構造を正方晶とすることを特徴とする請求項1または2に記載のRE123超電導薄膜線材の製造方法。   3. The method of manufacturing a RE123 superconducting thin film wire according to claim 1 or 2, wherein the first heat treatment is performed to change the RE123 superconducting crystal structure into a tetragonal crystal. 前記第二の熱処理を施すことによって、RE123超電導のc軸長を前記薄膜形成工程後より短くすることを特徴とする請求項1ないし3のいずれか1つに記載のRE123超電導薄膜線材の製造方法。   4. The method of manufacturing a RE123 superconducting thin film wire according to claim 1, wherein the second heat treatment is performed to shorten the c-axis length of RE123 superconductivity after the thin film forming step. 5. . 前記第一の熱処理は、酸素濃度10ppm以下の雰囲気下で行うことを特徴とする請求項1ないし4のいずれか1つに記載のRE123超電導薄膜線材の製造方法。   5. The method of manufacturing a RE123 superconducting thin film wire according to claim 1, wherein the first heat treatment is performed in an atmosphere having an oxygen concentration of 10 ppm or less. 前記第二の熱処理は、酸素濃度1000ppm以上の雰囲気下で行うことを特徴とする請求項1ないし5のいずれか1つに記載のRE123超電導薄膜線材の製造方法。   6. The method of manufacturing an RE123 superconducting thin film wire according to claim 1, wherein the second heat treatment is performed in an atmosphere having an oxygen concentration of 1000 ppm or more. 請求項1ないし請求項6のいずれか1つに記載のRE123超電導薄膜線材の製造方法により製造された、RE123超電導薄膜線材。   An RE123 superconducting thin film wire produced by the method for producing an RE123 superconducting thin film wire according to any one of claims 1 to 6.
JP2008296727A 2008-11-20 2008-11-20 Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod Withdrawn JP2010123433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296727A JP2010123433A (en) 2008-11-20 2008-11-20 Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296727A JP2010123433A (en) 2008-11-20 2008-11-20 Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod

Publications (1)

Publication Number Publication Date
JP2010123433A true JP2010123433A (en) 2010-06-03

Family

ID=42324596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296727A Withdrawn JP2010123433A (en) 2008-11-20 2008-11-20 Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod

Country Status (1)

Country Link
JP (1) JP2010123433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014883A (en) * 2010-06-30 2012-01-19 Railway Technical Research Institute High-temperature superconductive wire rod and high-temperature superconductive coil using the same
JP7398663B2 (en) 2018-11-29 2023-12-15 国立研究開発法人産業技術総合研究所 Superconducting wire and method for manufacturing superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012014883A (en) * 2010-06-30 2012-01-19 Railway Technical Research Institute High-temperature superconductive wire rod and high-temperature superconductive coil using the same
JP7398663B2 (en) 2018-11-29 2023-12-15 国立研究開発法人産業技術総合研究所 Superconducting wire and method for manufacturing superconducting wire

Similar Documents

Publication Publication Date Title
JP2009164010A (en) Re-based oxide superconducting wire and method of manufacturing the same
JP4602911B2 (en) Rare earth tape oxide superconductor
JP2007165153A (en) Manufacturing method of thick-film tape-like re-based (123) superconductor
JP2007165153A6 (en) A method for producing a thick film tape-shaped RE (123) superconductor.
JP5757718B2 (en) Manufacturing method of oxide superconducting wire
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP2011510171A (en) Wet chemical methods for producing high temperature superconductors
JP2010123433A (en) Method of manufacturing re123 superconducting thin film wire rod, and re123 superconducting thin film wire rod
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
JP5562615B2 (en) Rare earth oxide superconducting wire manufacturing method
JP2010135134A (en) Manufacturing method for re123 superconductive thin-film wire rod, and re123 superconductive thin-film wire rod
JP5690524B2 (en) Re-based oxide superconducting wire and method for producing the same
JP2009295579A (en) Method for manufacturing shaped substrate for coated conductor and coated conductor using the substrate
JP5380250B2 (en) Rare earth oxide superconducting wire and method for producing the same
WO2013179443A1 (en) Oxide superconducting thin film and method for manufacturing same
JP2012221922A (en) Raw material solution for formation of oxide superconducting thin film layer, oxide superconducting thin film layer, and oxide superconducting thin film wire material
WO2013153651A1 (en) Oxide superconductor thin-film wiring material, and production method therefor
JPWO2014103995A1 (en) RE123-based superconducting wire and method for producing the same
JP5865426B2 (en) Manufacturing method of oxide superconducting wire
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP2012174564A (en) Oxide superconducting thin film and method for producing the same
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2012181963A (en) Oxide superconducting wire manufacturing method
KR100998310B1 (en) Method of forming a precursor solution for metal organic deposition and mothod of forming a superconducting thick film using thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207