JP2010238633A - Method of manufacturing rare earth-based thick film oxide superconducting wire - Google Patents

Method of manufacturing rare earth-based thick film oxide superconducting wire Download PDF

Info

Publication number
JP2010238633A
JP2010238633A JP2009087669A JP2009087669A JP2010238633A JP 2010238633 A JP2010238633 A JP 2010238633A JP 2009087669 A JP2009087669 A JP 2009087669A JP 2009087669 A JP2009087669 A JP 2009087669A JP 2010238633 A JP2010238633 A JP 2010238633A
Authority
JP
Japan
Prior art keywords
heat treatment
superconductor
water vapor
partial pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009087669A
Other languages
Japanese (ja)
Inventor
Atsushi Kaneko
敦 兼子
Yuji Aoki
裕治 青木
Tsutomu Koizumi
勉 小泉
Tatsunao Nakanishi
達尚 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
SWCC Corp
Original Assignee
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, SWCC Showa Cable Systems Co Ltd filed Critical International Superconductivity Technology Center
Priority to JP2009087669A priority Critical patent/JP2010238633A/en
Publication of JP2010238633A publication Critical patent/JP2010238633A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an Re-based (123) superconductor in a form of a thick film tape with a high critical current value. <P>SOLUTION: After forming a calcination film of a YBCO superconductor by repeating 16 times a step of applying a material solution containing trifluoroacetates of Y and Ba and naphthenate of Cu in proportion of Y:Ba:Cu=1:1.5:3 onto an oriented Ni-W substrate and heating them, a crystallization heat treatment is performed through a temperature raising process from a room temperature to a crystallization heat treatment temperature of 730°C, followed by a subsequent isothermal process. Water vapor is introduced into a furnace at a water vapor partial pressure of 1.05 vol% at the heat treatment temperature of 500°C, the water vapor partial pressure is increased to 2.6 vol% at 690°C before reaching the maximum heat treatment temperature, and then the water vapor partial pressure is further increased to 4.2 vol% stepwise when 30 minutes have passed after reaching the maximum heat treatment temperature of 730°C to retain this water vapor partial pressure during the isothermal process. A Jc value of the YBCO oxide superconductor is 1.48 MA/cm<SP>2</SP>at a film thickness of about 2.0 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、酸化物超電導体の製造方法に係り、特に超電導マグネット、超電導ケーブル、電力機器等に有用な酸化物超電導線材の製造方法に係り、特に、MOD法に好適な厚膜テープ状RE系(123)超電導線材の製造方法に関する。   The present invention relates to a method for manufacturing an oxide superconductor, and more particularly to a method for manufacturing an oxide superconducting wire useful for a superconducting magnet, a superconducting cable, a power device, and the like, and in particular, a thick film tape RE system suitable for the MOD method. (123) It relates to a method of manufacturing a superconducting wire.

酸化物超電導体は、その臨界温度(Tc)が液体窒素温度を超えることから超電導マグネット、超電導ケーブル及び電力機器等への応用が期待されており、種々の研究が鋭意進められている。   Oxide superconductors are expected to be applied to superconducting magnets, superconducting cables, power equipment, and the like because their critical temperature (Tc) exceeds the liquid nitrogen temperature, and various studies have been conducted earnestly.

酸化物超電導体を上記の分野に適用するためには、臨界電流密度(Jc)が高く、かつ高い臨界電流(Ic)値を有する長尺の線材を製造する必要があり、一方、長尺テープを得るためには、強度及び可撓性の観点から金属テープ上に酸化物超電導体を形成する必要がある。また、NbSnやNbAl等の金属系超電導体と同等に実用レベルで使用可能とするためには、Ic値が500A/cm(77K、自己磁界中)程度の値が必要である。 In order to apply the oxide superconductor to the above-mentioned field, it is necessary to produce a long wire having a high critical current density (Jc) and a high critical current (Ic) value, Therefore, it is necessary to form an oxide superconductor on a metal tape from the viewpoint of strength and flexibility. Further, in order to be usable at a practical level equivalent to metal superconductors such as Nb 3 Sn and Nb 3 Al, an Ic value of about 500 A / cm (77 K, in a self magnetic field) is required.

次世代酸化物超電導線材に用いられるRe系酸化物超電導体、即ち、ReBax Cu3y系酸化物超電導体(ここでReは、Y、Nd、Sm、Gd、Eu,Yb、Pr、Ho、Er、Dy、Tm又はLaから選択された少なくとも1種以上の元素を示し、1.3≦x≦2である。以下、Re系(123)超電導体と称する。)は、その結晶方位により超電導特性が変化することから、面内配向性を向上させることが必要であり、このためにも酸化物超電導体をテープ状の基板上に形成する必要がある。この場合、Jc値を向上させるためには、酸化物超電導体のc軸を基板の板面に垂直に配向させ、かつそのa軸(又はb軸)を基板面に平行に面内配向させて、超電導状態の量子的結合性を良好に保持する必要がある。 Re-based oxide superconductors used in next-generation oxide superconducting wires, that is, ReBa x Cu 3 O y- based oxide superconductors (where Re is Y, Nd, Sm, Gd, Eu, Yb, Pr, Ho Represents at least one element selected from Er, Dy, Tm, or La, and 1.3 ≦ x ≦ 2, hereinafter referred to as a Re-based (123) superconductor). Since the superconducting characteristics change, it is necessary to improve the in-plane orientation, and for this purpose, it is necessary to form an oxide superconductor on a tape-like substrate. In this case, in order to improve the Jc value, the c-axis of the oxide superconductor is oriented perpendicularly to the plate surface of the substrate, and the a-axis (or b-axis) is oriented in-plane parallel to the substrate surface. It is necessary to keep the superconducting state quantum connectivity well.

テープ状のRe系酸化物超電導体の製造方法として、MOD法(Metal Organic Deposition Processes:金属有機酸塩堆積法)が知られており、このMOD法は、金属有機酸塩を熱分解させるもので、金属成分の有機化合物が均一に溶解した溶液を基板上に塗布した後、これを加熱して熱分解させることにより基板上に薄膜を形成する方法であり、非真空プロセスであることから低コストで高速成膜が可能であるため長尺のテープ状酸化物超電導線材の製造に適する利点を有する。   A MOD method (Metal Organic Deposition Processes) is known as a method for producing a tape-shaped Re-based oxide superconductor. This MOD method thermally decomposes a metal organic acid salt. This is a method for forming a thin film on a substrate by applying a solution in which an organic compound of a metal component is uniformly dissolved on the substrate, and then thermally decomposing the solution. Therefore, it has an advantage suitable for manufacturing a long tape-shaped oxide superconducting wire.

MOD法においては、出発原料である金属有機酸塩を熱分解させると通常アルカリ土類金属(Ba等)の炭酸塩が生成されるが、この炭酸塩を経由する固相反応による酸化物超電導体の形成には800℃以上の高温熱処理を必要とする。更に、厚膜化を行った際、結晶成長のための核生成が基板界面以外の部分からも生じるため結晶成長速度を制御することが難しく、結果として、面内配向性に優れた超電導膜を得ることが困難である。   In the MOD method, when a metal organic acid salt that is a starting material is thermally decomposed, a carbonate of an alkaline earth metal (Ba or the like) is usually generated. An oxide superconductor by a solid-phase reaction via this carbonate. The formation of this requires high-temperature heat treatment at 800 ° C. or higher. Furthermore, when the film thickness is increased, nucleation for crystal growth occurs from a part other than the substrate interface, so it is difficult to control the crystal growth rate. As a result, a superconducting film having excellent in-plane orientation is obtained. It is difficult to obtain.

MOD法において、炭酸塩を経由せずにRe系(123)超電導体を形成する方法として、フッ素を含む有機酸塩(例えば、TFA塩:トリフルオロ酢酸塩)を出発原料とし、水蒸気雰囲気中で熱処理を行うことにより、フッ化物の分解を経由して超電導体を得る方法が近年精力的に行われている。このTFA塩を出発原料とするMOD法(以下、TFA―MOD法と称する。)では、塗布膜の仮焼後に得られるフッ素を含むアモルファス前駆体と水蒸気との反応により超電導体を生成するが、熱処理中の水蒸気分圧によりフッ化物の分解速度を制御できることから超電導体の結晶成長速度が制御でき、その結果、優れた面内配向性を有する超電導膜が作製できる。また、同法では比較的低温で基板からRe系(123)超電導体をエピタキシャル成長させることかできる。   In the MOD method, as a method of forming a Re-based (123) superconductor without passing through a carbonate, an organic acid salt containing fluorine (for example, TFA salt: trifluoroacetate) is used as a starting material in a water vapor atmosphere. In recent years, a method of obtaining a superconductor through the decomposition of fluoride by performing heat treatment has been vigorously performed. In the MOD method using the TFA salt as a starting material (hereinafter referred to as TFA-MOD method), a superconductor is generated by a reaction between an amorphous precursor containing fluorine obtained after calcination of a coating film and water vapor. Since the decomposition rate of fluoride can be controlled by the water vapor partial pressure during the heat treatment, the crystal growth rate of the superconductor can be controlled. As a result, a superconducting film having excellent in-plane orientation can be produced. Further, in this method, a Re-type (123) superconductor can be epitaxially grown from a substrate at a relatively low temperature.

上述のように、MOD法によりテープ状の酸化物超電導体を製造する場合、実用化のためにはJc値を向上させるための厚膜化が必要不可欠である。TFA塩を出発原料とするMOD法によりこの厚膜化を達成するためには、TFA塩を含む原料溶液の粘性を高くして塗布膜を厚くすることが考えられるが、1回当たりの塗布膜厚が厚くなると、熱処理により分解生成するHF及びCO2 ガスの発生量が増加するため仮焼時に塗布膜が飛散する現象が生じ、結果として高特性を有するテープ状酸化物超電導厚膜を製造することは難しい。 As described above, when a tape-shaped oxide superconductor is manufactured by the MOD method, it is indispensable to increase the film thickness in order to improve the Jc value for practical use. In order to achieve this thickening by the MOD method using a TFA salt as a starting material, it is conceivable to increase the viscosity of the raw material solution containing the TFA salt to increase the thickness of the coating film. When the thickness is increased, the generation amount of HF and CO 2 gas decomposed by heat treatment increases, so that a coating film is scattered during calcination, and as a result, a tape-shaped oxide superconducting thick film having high characteristics is manufactured. It ’s difficult.

また、超電導厚膜を作製するために、塗布及び仮焼の工程を繰返して塗布膜を厚くすることが考えられるが、この場合には、結晶化熱処理によって基板上に面内配向性に優れた超電導結晶を生成させることが困難となる。この理由は、結晶成長の核となる核生成が基板面以外の部分に生ずることによるものと考えられている。この場合、TFA塩を始めとする金属有機酸塩の分解が不十分となり、仮焼により得られる酸化物超電導前駆体膜中に溶媒や有機酸が残存する傾向がある。そのため、その後の結晶化熱処理中の昇温時に、残存していたフッ化物等の有機酸が急激に分解して膜中にクラックやポアが発生する。   In order to produce a superconducting thick film, it is conceivable to increase the thickness of the coating film by repeating the coating and calcining steps. In this case, the in-plane orientation on the substrate was excellent by crystallization heat treatment. It becomes difficult to produce a superconducting crystal. The reason for this is considered to be that nucleation that becomes the nucleus of crystal growth occurs in a portion other than the substrate surface. In this case, decomposition of the metal organic acid salt including the TFA salt becomes insufficient, and the solvent and the organic acid tend to remain in the oxide superconducting precursor film obtained by calcination. Therefore, when the temperature rises during the subsequent crystallization heat treatment, the remaining organic acid such as fluoride rapidly decomposes and cracks and pores are generated in the film.

この傾向は、塗布と仮焼熱処理を繰り返して多層構造の酸化物超電導前駆体膜を形成して厚膜化する場合に著しくなる。その結果、得られた前駆体厚膜を結晶化し超電導膜を得る際にエピタキシャル成長が困難となり、面内配向性に優れた超電導厚膜を得ることが難しく、Jc特性が頭打ちとなる。更に、クラックの発生によりJc特性は著しく低下する。   This tendency becomes prominent when the oxide superconducting precursor film having a multilayer structure is formed by repeating coating and calcining heat treatment to increase the thickness. As a result, when the obtained precursor thick film is crystallized to obtain a superconducting film, epitaxial growth becomes difficult, it is difficult to obtain a superconducting thick film with excellent in-plane orientation, and the Jc characteristic reaches its peak. Furthermore, the Jc characteristics are significantly lowered due to the occurrence of cracks.

このような問題を解決するために、仮焼熱処理中の昇温速度を制御することにより、金属有機酸塩を十分に分解させ、高いJc値と厚膜化を可能にした酸化物超電導体が知られている(例えば、特許文献1参照。)。   In order to solve such a problem, an oxide superconductor capable of sufficiently decomposing a metal organic acid salt and enabling a high Jc value and a thick film by controlling a temperature rising rate during the calcining heat treatment is provided. It is known (for example, refer to Patent Document 1).

また、基板上に形成した酸化物超電導前駆体の熱処理時の仮焼熱処理温度及び/又は結晶化熱処理雰囲気中の導入ガスの水蒸気分圧を制御することにより、高配向性と高Jc値を有する厚膜のテープ状酸化物超電導体を製造する方法が知られている(例えば、特許文献2参照。)。   Further, by controlling the calcining heat treatment temperature and / or the water vapor partial pressure of the introduced gas in the crystallization heat treatment atmosphere during the heat treatment of the oxide superconducting precursor formed on the substrate, it has high orientation and high Jc value. A method for producing a thick tape-shaped oxide superconductor is known (for example, see Patent Document 2).

さらに、仮焼熱処理と超電導体生成の熱処理との間に、中間熱処理を施すことにより基板上に厚膜テープ状Re系(123)超電導体を製造する方法が知られている(例えば、特許文献3参照。)。   Furthermore, a method of manufacturing a thick film tape-shaped Re-based (123) superconductor on a substrate by performing an intermediate heat treatment between the calcining heat treatment and the heat treatment for generating the superconductor is known (for example, Patent Documents). 3).

特開2003−300726号公報Japanese Patent Laid-Open No. 2003-300726 特開2003−34527号公報JP 2003-34527 A 特開2007−165153号公報JP 2007-165153 A

しかしながら、上記の特許文献1の酸化物超電導体は、基板上に、酸化物超電導体を構成する各金属元素を所定のモル比で含む金属有機酸塩の混合溶液を塗布後、仮焼熱処理を施した酸化物超電導前駆体に結晶化熱処理を施した酸化物超電導体において、仮焼熱処理を水蒸気分圧が4.0vol%以下の雰囲気中で昇温速度を0.1〜0.6℃/minの範囲に制御することにより、金属有機酸塩を十分に分解させ、昇温速度が速い場合に膜中に残存する金属有機酸塩が結晶化熱処理中に急激に分解して膜中にクラックやポアが発生するという問題を回避して高いJc値と厚膜化を可能とするものであるが、高いJc値が得られるものの、その膜厚は0.9μm程度に留まり、実用的なJc値を得るために必要な厚膜化に対しては不十分であった。   However, the oxide superconductor of Patent Document 1 described above is subjected to a calcination heat treatment after applying a mixed solution of metal organic acid salt containing each metal element constituting the oxide superconductor in a predetermined molar ratio on the substrate. In the oxide superconductor obtained by subjecting the oxide superconductor precursor to a crystallization heat treatment, the calcining heat treatment is performed at a rate of temperature rise of 0.1 to 0.6 ° C./in an atmosphere having a water vapor partial pressure of 4.0 vol% or less. By controlling to the range of min, the metal organic acid salt is sufficiently decomposed, and when the rate of temperature rise is high, the metal organic acid salt remaining in the film rapidly decomposes during the crystallization heat treatment and cracks in the film Although a high Jc value and a thick film can be obtained by avoiding the problem of generation of pores and pores, although a high Jc value can be obtained, the film thickness is only about 0.9 μm and is practical Jc. It was insufficient for the thickening required to obtain the value.

また、上記の特許文献2の酸化物超電導体は、Re系酸化物超電導体を構成する各金属元素を所定のモル比で含むTFA塩の混合溶液を基板上に塗布し、仮焼熱処理を施した前駆体に結晶化熱処理を施した酸化物超電導体において、最外層の前駆体を除く仮焼熱処理温度を400℃未満で、かつ結晶化熱処理雰囲気中の導入ガスの水蒸気分圧を4.0vol%以下の範囲内に制御することにより、高配向性と高Jc値を有する厚膜のテープ状酸化物超電導体を得るものであるが、その膜厚は1.0μm程度に留まり、実用的なIc値を得るために必要な厚膜化に対しては同様に不十分であった。   In addition, the oxide superconductor of Patent Document 2 described above is applied to a substrate with a mixed solution of TFA salt containing each metal element constituting the Re-based oxide superconductor in a predetermined molar ratio, and subjected to a calcining heat treatment. In the oxide superconductor obtained by subjecting the obtained precursor to crystallization heat treatment, the calcining heat treatment temperature excluding the precursor of the outermost layer is less than 400 ° C., and the water vapor partial pressure of the introduced gas in the crystallization heat treatment atmosphere is 4.0 vol. %, A thick tape-like oxide superconductor having high orientation and high Jc value is obtained, but the film thickness is only about 1.0 μm and is practical. It was similarly insufficient for the thickening required to obtain the Ic value.

さらに、上記の特許文献3のTFAーMOD法による酸化物超電導体は、原料溶液を基板上に塗布後、仮焼熱処理を施し、ついで中間熱処理及び超電導体生成の熱処理を施すことにより、中間熱処理による膜中の残存ポアの減少と膜質の緻密化を可能とし、Jc値が高く、かつ約2μmの厚さを超える厚膜のテープ状Re系(123)超電導体を製造するものであるが、この中間熱処理及び超電導体生成の熱処理を水蒸気分圧13.5%の雰囲気中で施すとともに、中間熱処理を複数回に亘って施すことを必要とするため、仮焼膜形成後の工程を連続して行うことができず、製造工程が複雑となるという問題がある。   Furthermore, the oxide superconductor by the TFA-MOD method of Patent Document 3 described above is subjected to a calcining heat treatment after coating the raw material solution on the substrate, and then subjected to an intermediate heat treatment and a heat treatment for generating the superconductor. It is possible to reduce the residual pores in the film and to densify the film quality, and to produce a thick film tape-shaped Re-type (123) superconductor having a high Jc value and exceeding a thickness of about 2 μm. Since the intermediate heat treatment and the heat treatment for generating the superconductor are performed in an atmosphere having a water vapor partial pressure of 13.5% and the intermediate heat treatment needs to be performed multiple times, the steps after the calcined film formation are continued. There is a problem that the manufacturing process becomes complicated.

本発明者は、鋭意研究の結果、厚膜の酸化物超電導体を製造する場合に、超電導体生成の熱処理過程で仮焼膜の全域で結晶成長核が発生することにより、超電導層の配向性が乱れ易く、その結果、Jc値の低下を招くことを見出した。   As a result of diligent research, the present inventor has found that when a thick oxide superconductor is manufactured, crystal growth nuclei are generated in the entire area of the calcined film during the heat treatment process of superconductor generation, so that the orientation of the superconducting layer Has been found to be easily disturbed, resulting in a decrease in the Jc value.

本発明は、上記の知見に基づきなされたもので、超電導体生成の熱処理過程で結晶成長速度の制御因子である水蒸気分圧を制御する(変化させる)ことにより、配向性を乱す結晶子の成長を抑制し、その結果として、厚膜全域に亘って配向成長を可能とすることにより、高Jc値を有する酸化物超電導線材を製造する方法を提供することをその目的とする。   The present invention has been made on the basis of the above-mentioned knowledge. By controlling (changing) the water vapor partial pressure, which is a control factor of the crystal growth rate, in the heat treatment process of superconductor generation, growth of crystallites disturbing orientation is achieved. As a result, an object of the present invention is to provide a method for producing an oxide superconducting wire having a high Jc value by enabling orientation growth over the entire thick film.

以上の目的を達成するために、本発明の希土類系厚膜酸化物超電導線材の製造方法は、基板上に、中間層を介して酸化物超電導体の仮焼膜を形成した後、超電導体生成の結晶化熱処理を施すことによりRe系(123)超電導体を形成する方法において、結晶化熱処理が、少なくとも水蒸気分圧が増加する雰囲気中で行われる結晶化熱処理温度到達前の昇温過程を含むようにしたものである。   In order to achieve the above object, a method for producing a rare earth-based thick film oxide superconducting wire according to the present invention includes forming a calcined film of an oxide superconductor on a substrate via an intermediate layer, and then generating a superconductor. In the method of forming the Re-based (123) superconductor by performing the crystallization heat treatment, the crystallization heat treatment includes at least a temperature raising process before reaching the crystallization heat treatment temperature in an atmosphere in which the water vapor partial pressure increases. It is what I did.

また、本発明の目的は、上記の結晶化熱処理が、少なくとも水蒸気分圧が増加する雰囲気中で行われる結晶化熱処理温度到達前の昇温過程及び結晶化熱処理温度の恒温過程を含むようにしても達成することができる。   The object of the present invention can also be achieved by including the above-described crystallization heat treatment including at least a crystallization heat treatment temperature rise process and a crystallization heat treatment temperature constant temperature process performed in an atmosphere in which the water vapor partial pressure increases. can do.

以上の発明における酸化物超電導体の仮焼膜は、PLD法(Pulse Laser Deposition Processes:パルスレーザ堆積法)やMOCVD法(Metal Organic Chemical Vapor Deposition Processes:有機金属酸塩化学蒸着法)によっても形成することができるが、特に、前述のMOD法により形成することが好ましい。この場合、酸化物超電導体の仮焼膜は、酸化物超電導体を構成する金属元素を含む原料溶液を塗布し、仮焼熱処理を施す工程を複数回繰り返して、結晶化熱処理後に所定の膜厚を有するように積層して形成される。   The calcined film of the oxide superconductor in the above invention is also formed by PLD method (Pulse Laser Deposition Processes) or MOCVD method (Metal Organic Chemical Vapor Deposition Processes). However, it is particularly preferable to form the film by the MOD method described above. In this case, the calcined film of the oxide superconductor has a predetermined film thickness after the crystallization heat treatment by applying the raw material solution containing the metal element constituting the oxide superconductor and repeating the calcining heat treatment a plurality of times. It is formed by being laminated so as to have.

Re系(123)超電導体をTFAーMOD法により形成する場合に、金属モル濃度比を化学量論比(例えば、Y:Ba:Cu=1:2:3)に調整した混合溶液を用いると、酸化物超電導体の形成には750℃以上の熱処理を必要とし、酸化物超電導体と金属基板とが反応してBaCeOが生成してF元素を膜外に排出するのに多くの時間を有するという問題があり、これを回避するためフッ素化合物を少なくすることが有効であり、1.3≦Ba≦2のモル濃度の範囲、特に、Baモル濃度を約1.5の混合溶液を用いることにより、酸化物超電導体を700℃以上の熱処理温度で形成することが可能となる。 When a Re-based (123) superconductor is formed by the TFA-MOD method, a mixed solution in which the metal molar concentration ratio is adjusted to a stoichiometric ratio (for example, Y: Ba: Cu = 1: 2: 3) is used. The formation of the oxide superconductor requires a heat treatment of 750 ° C. or more, and it takes a lot of time for the oxide superconductor and the metal substrate to react to form BaCeO 3 and discharge the F element outside the film. In order to avoid this problem, it is effective to reduce the fluorine compound, and use a mixed solution having a molar concentration of 1.3 ≦ Ba ≦ 2, particularly a molar concentration of about 1.5. Thus, the oxide superconductor can be formed at a heat treatment temperature of 700 ° C. or higher.

前述の特許文献3によれば、TFA―MOD法によるYBaCu7−y(以下YBCOと称する。)超電導相の成長速度は、結晶化時の水蒸気分圧が上昇するにつれて増大し、Jc値も水蒸気分圧の上昇とともに増大するが、一定の値(PH2O=13.5%)を超えるとYBCO超電導膜中のクラックの発生やポアの生成によりJc値が急激に低下するため、超電導特性上の点からはYBCO超電導相の成長速度の増加には限界があり、この傾向は膜厚が増大するにつれて大きくなる。この場合、YBCOの膜厚が増大するに従ってクラックが発生しない臨界水蒸気分圧が低くなり、高速化の観点からは成長速度が遅い領域の水蒸気分圧下でしか厚膜が焼成できないため、仮焼熱処理と超電導体生成の熱処理との間に超電導体生成の熱処理温度より低い温度で中間熱処理を施し、この中間熱処理によりYBCOの結晶化温度に至る前に仮焼での残存有機分あるいは剰余フッ化物を排出させている。 According to the aforementioned Patent Document 3, the growth rate of YBa 2 Cu 3 O 7-y (hereinafter referred to as YBCO) by the TFA-MOD method increases as the water vapor partial pressure during crystallization increases, The Jc value also increases as the water vapor partial pressure increases. However, if the Jc value exceeds a certain value (P H2O = 13.5%), the Jc value rapidly decreases due to generation of cracks and pores in the YBCO superconducting film. In terms of superconducting characteristics, there is a limit to the increase in the growth rate of the YBCO superconducting phase, and this tendency increases as the film thickness increases. In this case, the critical water vapor partial pressure at which cracks do not occur decreases as the YBCO film thickness increases, and from the viewpoint of speeding up, the thick film can be fired only under the water vapor partial pressure in the region where the growth rate is low. Intermediate heat treatment is performed at a temperature lower than the heat treatment temperature for superconductor generation, and before the crystallization temperature of YBCO is reached by this intermediate heat treatment, residual organic content or residual fluoride in the calcination is removed. It is discharged.

いずれにしても、従来技術では、熱処理中の水蒸気分圧によりフッ化物の分解速度を制御できることを利用して、超電導特性の観点から一定の水蒸気分圧下で超電導体の結晶成長速度を制御することが行われているが、仮焼膜の全域で結晶成長核が発生することにより、超電導層の配向性が乱れ易いという問題がある。   In any case, in the prior art, the crystal growth rate of the superconductor can be controlled under a certain water vapor partial pressure from the viewpoint of superconducting properties by utilizing the fact that the decomposition rate of fluoride can be controlled by the water vapor partial pressure during the heat treatment. However, there is a problem that the orientation of the superconducting layer is likely to be disturbed by the generation of crystal growth nuclei throughout the calcined film.

本発明においては、上記のような中間熱処理を必要とせず、結晶化熱処理が、少なくとも水蒸気分圧が増加する雰囲気中で行われる結晶化熱処理温度到達前の昇温過程又は少なくとも水蒸気分圧が増加する雰囲気中で行われる結晶化熱処理温度到達前の昇温過程及び結晶化熱処理温度の恒温過程を含むことにより、厚膜全域に亘って配向成長が可能となる。   In the present invention, the intermediate heat treatment as described above is not required, and the crystallization heat treatment is performed in an atmosphere in which at least the water vapor partial pressure is increased. By including the temperature raising process before reaching the crystallization heat treatment temperature and the constant temperature treatment process of the crystallization heat treatment temperature performed in the atmosphere, orientation growth is possible over the entire thick film.

以上の発明において、結晶化熱処理中の水蒸気分圧は、13.5vol%以下の範囲内で、特に、2vol%以下から4vol%以上の範囲内で増加するようにすることが好ましい。   In the above invention, the water vapor partial pressure during the crystallization heat treatment is preferably increased within a range of 13.5 vol% or less, particularly within a range of 2 vol% or less to 4 vol% or more.

また、結晶化熱処理温度の恒温過程は、700〜800℃の温度範囲内で行われ、一方、結晶化熱処理温度到達前の昇温過程、又は結晶化熱処理温度到達前の昇温過程及び結晶化熱処理温度の恒温過程において増加する水蒸気分圧は、連続的にあるいは階段的に増加するように雰囲気が制御される。この場合、特に、550℃未満から680℃以上の温度範囲内で水蒸気分圧が増加する結晶化熱処理雰囲気を含むことが 好ましい。
また、以上の水蒸気雰囲気は、RTR(Reel to Reel)方式の電気炉又はバッチ式電気炉のいずれにおいても制御することができる。
The crystallization heat treatment temperature isothermal process is performed within a temperature range of 700 to 800 ° C., while the temperature rise process before the crystallization heat treatment temperature is reached, or the temperature rise process and the crystallization before the crystallization heat treatment temperature is reached. The atmosphere is controlled so that the water vapor partial pressure that increases in the constant temperature process of the heat treatment temperature increases continuously or stepwise. In this case, it is particularly preferable to include a crystallization heat treatment atmosphere in which the water vapor partial pressure increases within a temperature range of less than 550 ° C. to 680 ° C.
Moreover, the above steam atmosphere can be controlled in either an RTR (Reel to Reel) type electric furnace or a batch type electric furnace.

以上の結晶化熱処理は、1〜760Torrの全圧下で施され、特に、1〜100Torrの全圧下で施されることが好ましく、その熱処理雰囲気は、水蒸気、酸化物超電導体と反応しないガス、及び酸素により構成される。   The above crystallization heat treatment is performed under a total pressure of 1 to 760 Torr, and particularly preferably performed under a total pressure of 1 to 100 Torr. The heat treatment atmosphere includes water vapor, a gas that does not react with the oxide superconductor, and Consists of oxygen.

本発明においては、超電導体生成の熱処理過程で結晶成長速度の制御因子である水蒸気分圧を増加させることにより、配向性を乱す結晶子の成長を抑制することができ、厚膜全域に亘って配向成長が可能となるため、高Jc値を有する酸化物超電導線材を製造することができる。その結果、膜厚1.8μm以上で、かつ臨界電流密度が1.35MA/cmのRe系(123)超電導体を得ることができる。 In the present invention, by increasing the water vapor partial pressure, which is a control factor of the crystal growth rate in the heat treatment process for generating the superconductor, it is possible to suppress the growth of crystallites that disturb the orientation, and to cover the entire thick film. Since orientational growth is possible, an oxide superconducting wire having a high Jc value can be produced. As a result, a Re-based (123) superconductor having a film thickness of 1.8 μm or more and a critical current density of 1.35 MA / cm 2 can be obtained.

本発明の一実施例における結晶化熱処理の熱処理温度及び水蒸気分圧プロファイルを示すグラフである。It is a graph which shows the heat processing temperature and water vapor partial pressure profile of the crystallization heat processing in one Example of this invention. 本発明の他の実施例における結晶化熱処理の熱処理温度及び水蒸気分圧プロファイルを示すグラフである。It is a graph which shows the heat processing temperature and water vapor partial pressure profile of the crystallization heat processing in the other Example of this invention. 本発明のさらに他の実施例における結晶化熱処理の熱処理温度及び水蒸気分圧プロファイルを示すグラフである。It is a graph which shows the heat processing temperature and water vapor partial pressure profile of the crystallization heat processing in other Example of this invention.

本発明において使用される基板としては、2軸配向性の多結晶基板又は無配向の多結晶基板のいずれも用いることができる。配向性Ni基板としては、冷間で強圧延加工したNi基板を真空中で熱処理を施して高配向させたRABiTS(商標:rolling-assisted biaxially textured-substrates)を用いることができ、この配向性Ni基板の上にCeO2 のエピタキシャル層の薄膜及びYSZ(イットリウム安定化ジルコニア)の厚膜が順次形成される。 As the substrate used in the present invention, either a biaxially oriented polycrystalline substrate or a non-oriented polycrystalline substrate can be used. As the oriented Ni substrate, RABiTS (trademark: rolling-assisted biaxially textured-substrates) obtained by subjecting a cold-rolled Ni substrate to heat treatment in a vacuum and highly oriented can be used. A thin film of an epitaxial layer of CeO 2 and a thick film of YSZ (yttrium stabilized zirconia) are sequentially formed on the substrate.

一方、無配向の多結晶基板を用いる場合には、IBAD法(Ion Beam Assisted Deposition)を用いることができる。このIBAD法を用いた複合基板は、非磁性で高強度のテープ状Ni系基板(ハステロイ等)に対して斜め方向からイオンを照射しながら、ターゲットから発生した粒子を堆積させて形成した高配向性を有し超電導体を構成する元素との反応を抑制する中間層(CeO 、Y 、YSZ等)を設けたもので、上記の中間層を2層構造としたもの(YSZ又はZrRx2 /CeO又はY 等:Rは、Y、Nd、Sm、Gd、Ei、Yb、Ho、Tm、Dy、Ce、La又はErを示す。)もよく適合する(特開平4−329867号、特開平4−331795号,特願2000−333843号)。 On the other hand, when a non-oriented polycrystalline substrate is used, an IBAD method (Ion Beam Assisted Deposition) can be used. This composite substrate using the IBAD method is formed by depositing particles generated from a target while irradiating ions from an oblique direction to a non-magnetic high-strength tape-like Ni-based substrate (Hastelloy, etc.). Provided with an intermediate layer (CeO 2 , Y 2 O 3 , YSZ, etc.) that suppresses the reaction with the elements constituting the superconductor, and the intermediate layer has a two-layer structure (YSZ or Zr 2 R x2 O 7 / CeO 2 or Y 2 O 3 etc .: R x represents Y, Nd, Sm, Gd, Ei, Yb, Ho, Tm, Dy, Ce, La, or Er. (JP-A-4-329867, JP-A-4-33195, Japanese Patent Application No. 2000-333843).

以上のNi基合金としては、NiにW、Mo、Cr、Fe、Cu、V、Sn及びZnから選択された1以上の元素を含むものを用いることができる。   As the above Ni-based alloy, an alloy containing one or more elements selected from W, Mo, Cr, Fe, Cu, V, Sn and Zn in Ni can be used.

本発明におけるRe系(123)超電導体は、MOD法により形成することができるが、この場合、金属有機酸塩としてトリフルオロ酢酸塩、オクチル酸塩又はナフテン酸塩のいずれか1種以上が用いられ、特に、金属有機酸塩は、少なくともトリフルオロ酢酸塩(TFA塩)を含むTFA―MOD法を用いることが好ましく、この場合、原料溶液は少なくともBaの金属有機酸塩を含み有機溶媒との混合溶液を用いることがより好ましい。   The Re-based (123) superconductor in the present invention can be formed by the MOD method. In this case, any one or more of trifluoroacetate, octylate or naphthenate is used as the metal organic acid salt. In particular, the metal organic acid salt preferably uses a TFA-MOD method including at least trifluoroacetate (TFA salt). In this case, the raw material solution includes at least a metal organic acid salt of Ba and an organic solvent. It is more preferable to use a mixed solution.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

実施例1
配向NiーW基板上に、CeZr及びCeOからなる中間層を順次形成した複合基板を用い、この複合基板上に、Y及びBaのトリフルオロ酢酸塩とCuのナフテン酸塩をY:Ba:Cu=1:1.5:3となるように2−オクタノン中に溶解した原料溶液を塗布し、最高加熱温度400℃で加熱した後、室温まで炉冷する工程を繰り返して仮焼膜を形成した。この仮焼膜は、以上の工程を12回及び16回繰り返して、YBCO超電導体の結晶化熱処理後にそれぞれ約1.45μm及び約2.0μmになるように形成したものである。
Example 1
Using a composite substrate in which an intermediate layer composed of Ce 2 Zr 2 O 7 and CeO 2 is sequentially formed on an oriented Ni-W substrate, Y and Ba trifluoroacetate and Cu naphthenate are formed on the composite substrate. Is applied to a raw material solution dissolved in 2-octanone so that Y: Ba: Cu = 1: 1.5: 3, heated at a maximum heating temperature of 400 ° C., and then furnace-cooled to room temperature. A calcined film was formed. This calcined film is formed by repeating the above process 12 times and 16 times so as to be about 1.45 μm and about 2.0 μm, respectively, after the crystallization heat treatment of the YBCO superconductor.

次いで、複合基板上の仮焼膜を、図1に示す熱処理温度及び水蒸気分圧プロファイルに従ってYBCO超電導体の結晶化熱処理を施した。この結晶化熱処理は、室温から最高熱処理温度(結晶化熱処理温度)730℃までの昇温過程と結晶化熱処理温度における恒温過程及びこれに続く室温までの炉冷過程により構成され、炉内雰囲気圧力は50Torr未満に保持された。   Next, the calcination film on the composite substrate was subjected to crystallization heat treatment of YBCO superconductor according to the heat treatment temperature and water vapor partial pressure profile shown in FIG. This crystallization heat treatment is composed of a temperature rising process from room temperature to a maximum heat treatment temperature (crystallization heat treatment temperature) of 730 ° C., a constant temperature process at the crystallization heat treatment temperature, and a subsequent furnace cooling process to room temperature. Was kept below 50 Torr.

水蒸気は、導入開始温度500℃で水蒸気分圧1.05vol%の条件で炉内に導入され、最高熱処理温度到達前の690℃において水蒸気分圧を4.2vol%に増加させて恒温過程でこの水蒸気分圧が維持された。   Water vapor is introduced into the furnace under the conditions of an introduction start temperature of 500 ° C. and a water vapor partial pressure of 1.05 vol%, and the water vapor partial pressure is increased to 4.2 vol% at 690 ° C. before reaching the maximum heat treatment temperature. The water vapor partial pressure was maintained.

このようにして複合基板上に形成したYBCO酸化物超電導体Jc値を測定した結果、膜厚約1.45μmで1.57MA/cm、膜厚約2.0μmで1.42MA/cmの値を示した。 In this way, the result of measuring the YBCO oxide superconductor Jc values formed on the composite substrate, a thickness of about 1.45μm 1.57MA / cm 2, at a thickness of about 2.0μm of 1.42MA / cm 2 The value is shown.

実施例2
原料溶液を塗布し最高加熱温度で加熱した後、室温まで炉冷する工程を12回及び16回繰り返した他は、実施例1と同様の方法により仮焼膜を形成した。
Example 2
A calcined film was formed by the same method as in Example 1 except that the raw material solution was applied and heated at the maximum heating temperature, and then the furnace cooling step to room temperature was repeated 12 and 16 times.

この仮焼膜は、YBCO超電導体の結晶化熱処理後にそれぞれ約1.45μm及び約2.0μmになるように形成したものである。   This calcined film is formed to have a thickness of about 1.45 μm and about 2.0 μm, respectively, after the crystallization heat treatment of the YBCO superconductor.

次いで、複合基板上の仮焼膜を、図2に示す熱処理温度及び水蒸気分圧プロファイルに従ってYBCO超電導体の結晶化熱処理を施した。   Next, the calcination film on the composite substrate was subjected to crystallization heat treatment of YBCO superconductor according to the heat treatment temperature and water vapor partial pressure profile shown in FIG.

この結晶化熱処理は、室温から最高熱処理温度(結晶化熱処理温度)730℃までの昇温過程と結晶化熱処理温度における恒温過程及びこれに続く室温までの炉冷過程により構成され、炉内雰囲気圧力は50Torr未満に保持された。   This crystallization heat treatment is composed of a temperature rising process from room temperature to a maximum heat treatment temperature (crystallization heat treatment temperature) of 730 ° C., a constant temperature process at the crystallization heat treatment temperature, and a subsequent furnace cooling process to room temperature. Was kept below 50 Torr.

水蒸気は、導入開始温度500℃で水蒸気分圧1.05vol%の条件で炉内に導入され、最高熱処理温度到達前の690℃まで水蒸気分圧を4.2vol%に連続的に増加させて恒温過程でこの水蒸気分圧が維持された。   Water vapor is introduced into the furnace under the conditions of an introduction start temperature of 500 ° C. and a water vapor partial pressure of 1.05 vol%, and the water vapor partial pressure is continuously increased to 4.2 vol% up to 690 ° C. before reaching the maximum heat treatment temperature. This water vapor partial pressure was maintained during the process.

このようにして複合基板上に形成したYBCO酸化物超電導体Jc値を測定した結果、膜厚約1.45μmで1.57MA/cm、膜厚約2.0μmで1.38MA/cmの値を示した。 In this way, the result of measuring the YBCO oxide superconductor Jc values formed on the composite substrate, a thickness of about 1.45μm 1.57MA / cm 2, at a thickness of about 2.0μm of 1.38MA / cm 2 The value is shown.

実施例3
原料溶液を塗布し最高加熱温度で加熱した後、室温まで炉冷する工程を12回及び16回繰り返した他は、実施例1と同様の方法により仮焼膜を形成した。この仮焼膜は、YBCO超電導体の結晶化熱処理後にそれぞれ約1.45μm及び約2.0μmになるように形成したものである。
Example 3
A calcined film was formed by the same method as in Example 1 except that the raw material solution was applied and heated at the maximum heating temperature, and then the furnace cooling step to room temperature was repeated 12 and 16 times. This calcined film is formed to have a thickness of about 1.45 μm and about 2.0 μm, respectively, after the crystallization heat treatment of the YBCO superconductor.

次いで、複合基板上の仮焼膜を、図3に示す熱処理温度及び水蒸気分圧プロファイルに従ってYBCO超電導体の結晶化熱処理を施した。   Next, the calcination film on the composite substrate was subjected to crystallization heat treatment of YBCO superconductor according to the heat treatment temperature and water vapor partial pressure profile shown in FIG.

この結晶化熱処理は、室温から最高熱処理温度(結晶化熱処理温度)730℃までの昇温過程と結晶化熱処理温度における恒温過程及びこれに続く室温までの炉冷過程により構成され、炉内雰囲気圧力は50Torr未満に保持された。   This crystallization heat treatment is composed of a temperature rising process from room temperature to a maximum heat treatment temperature (crystallization heat treatment temperature) of 730 ° C., a constant temperature process at the crystallization heat treatment temperature, and a subsequent furnace cooling process to room temperature. Was kept below 50 Torr.

水蒸気は、導入開始温度500℃で水蒸気分圧1.05vol%の条件で炉内に導入され、最高熱処理温度到達前の690℃で水蒸気分圧を2.6vol%に増加させ、次いで、最高熱処理温度の730℃に到達後30min経過した時にさらに水蒸気分圧を4.2vol%に階段状に増加させて恒温過程でこの水蒸気分圧が維持された。   Steam is introduced into the furnace under the condition of an introduction start temperature of 500 ° C. and a steam partial pressure of 1.05 vol%, and the steam partial pressure is increased to 2.6 vol% at 690 ° C. before reaching the maximum heat treatment temperature. When 30 minutes passed after reaching the temperature of 730 ° C., the water vapor partial pressure was further increased stepwise to 4.2 vol%, and this water vapor partial pressure was maintained in the constant temperature process.

このようにして複合基板上に形成したYBCO酸化物超電導体Jc値を測定した結果、膜厚約1.45μmで1.57MA/cm、膜厚約2.0μmで1.48MA/cmの値を示した。 In this way, the result of measuring the YBCO oxide superconductor Jc values formed on the composite substrate, a thickness of about 1.45μm 1.57MA / cm 2, at a thickness of about 2.0μm of 1.48MA / cm 2 The value is shown.

比較例
原料溶液を塗布し最高加熱温度で加熱した後、室温まで炉冷する工程を10回、12回及び16回繰り返した他は、実施例1と同様の方法により仮焼膜を形成した。この仮焼膜は、YBCO超電導体の結晶化熱処理後にそれぞれ約1.23μm、約1.45μm及び約2.0μmになるように形成したものである。
Comparative Example A calcined film was formed in the same manner as in Example 1 except that the raw material solution was applied, heated at the maximum heating temperature, and then furnace-cooled to room temperature was repeated 10 times, 12 times, and 16 times. This calcined film is formed to have a thickness of about 1.23 μm, about 1.45 μm, and about 2.0 μm, respectively, after the crystallization heat treatment of the YBCO superconductor.

次いで、複合基板上の仮焼膜を、実施例1と同様に、図1に示す熱処理温度プロファイルに従ってYBCO超電導体の結晶化熱処理を施した。   Next, the calcined film on the composite substrate was subjected to crystallization heat treatment of the YBCO superconductor according to the heat treatment temperature profile shown in FIG.

水蒸気は、導入開始温度500℃で水蒸気分圧1.05vol%の条件で炉内に導入され、最高熱処理温度の730℃の恒温過程までこの水蒸気分圧が一定に維持された。   Water vapor was introduced into the furnace under the conditions of an introduction start temperature of 500 ° C. and a water vapor partial pressure of 1.05 vol%, and this water vapor partial pressure was kept constant until the constant temperature process of 730 ° C., the highest heat treatment temperature.

このようにして複合基板上に形成したYBCO酸化物超電導体Jc値を測定した結果、膜厚約1.23μmで1.42MA/cm、膜厚約1.45μmで1.58MA/cm、膜厚約2.0μmで1.1MA/cmの値を示した。 As a result of measuring the YBCO oxide superconductor Jc value formed on the composite substrate in this manner, the film thickness was about 1.23 μm, 1.42 MA / cm 2 , the film thickness was about 1.45 μm, 1.58 MA / cm 2 , A film thickness of about 2.0 μm was 1.1 MA / cm 2 .

以上の実施例1乃至3及び比較例の結果から明らかなように、結晶化熱処理を室温から最高熱処理温度(結晶化熱処理温度)までの昇温過程と結晶化熱処理温度における恒温過程及びこれに続く室温までの炉冷過程により構成し、水蒸気分圧を一定に保持した場合には、膜厚が2.0μm程度になるとJc値が著しく低下するが、結晶化熱処理における結晶化熱処理温度到達前の昇温過程、又は結晶化熱処理温度到達前の昇温過程及び結晶化熱処理温度の恒温過程を、
水蒸気分圧が連続的にあるいは階段的に増加するような雰囲気で施すことにより、厚膜全域に亘って配向成長が可能となり、2.0μm程度の厚膜においても高いJc値を達成することができる。
As is apparent from the results of Examples 1 to 3 and Comparative Example above, the crystallization heat treatment is performed from the room temperature to the maximum heat treatment temperature (crystallization heat treatment temperature), the constant temperature process at the crystallization heat treatment temperature, and the subsequent steps. When it is configured by a furnace cooling process up to room temperature and the water vapor partial pressure is kept constant, the Jc value is significantly reduced when the film thickness is about 2.0 μm, but before the crystallization heat treatment temperature is reached in the crystallization heat treatment. The temperature rising process, or the temperature rising process before reaching the crystallization heat treatment temperature and the crystallization heat treatment temperature constant temperature process,
By applying it in an atmosphere in which the partial pressure of water vapor increases continuously or stepwise, orientation growth can be achieved over the entire thick film, and a high Jc value can be achieved even in a thick film of about 2.0 μm. it can.

本発明により超電導体の厚膜化が可能になるため、高いJc値を有する希土類系厚膜酸化物超電導線材を製造することができ、非真空プロセスであるTFAーMOD法により超電導層を形成することにより、長尺線材の製造に適する上、その製造コストを著しく低減させることができ、電導マグネット、超電導ケーブル及び電力機器等へ適用することができる。   Since the present invention makes it possible to increase the thickness of the superconductor, it is possible to produce a rare earth-based thick film oxide superconducting wire having a high Jc value, and to form the superconducting layer by the TFA-MOD method, which is a non-vacuum process. Thus, it is suitable for manufacturing a long wire, and its manufacturing cost can be remarkably reduced, and it can be applied to a conductive magnet, a superconducting cable, a power device, and the like.

Claims (9)

基板上に、中間層を介して酸化物超電導体の仮焼膜を形成した後、超電導体生成の結晶化熱処理を施すことによりReBa Cu3y系酸化物超電導体(ここでReは、Y、Nd、Sm、Gd、Eu,Yb、Pr、Ho、Er、Dy、Tm又はLaから選択された少なくとも1種以上の元素を示し、1.3≦x≦2及びy=6.2〜7である。以下、Re系(123)超電導体と称する。)を形成する方法において、前記結晶化熱処理は、少なくとも水蒸気分圧が増加する雰囲気中で行われる結晶化熱処理温度到達前の昇温過程を含むことを特徴とする希土類系厚膜酸化物超電導線材の製造方法。 An oxide superconductor calcined film is formed on a substrate via an intermediate layer, and then subjected to a crystallization heat treatment for superconductor generation, whereby ReBa x Cu 3 O y- based oxide superconductor (where Re is It represents at least one element selected from Y, Nd, Sm, Gd, Eu, Yb, Pr, Ho, Er, Dy, Tm or La, and 1.3 ≦ x ≦ 2 and y = 6.2 In the method for forming the Re-based (123) superconductor), the crystallization heat treatment is performed in an atmosphere in which at least the partial pressure of water vapor is increased. A method for producing a rare earth-based thick film oxide superconducting wire comprising a process. 基板上に、中間層を介して酸化物超電導体の仮焼膜を形成した後、超電導体生成の結晶化熱処理を施すことによりRe系(123)超電導体を形成する方法において、前記結晶化熱処理は、少なくとも水蒸気分圧が増加する雰囲気中で行われる結晶化熱処理温度到達前の昇温過程及び結晶化熱処理温度の恒温過程を含むことを特徴とする希土類系厚膜酸化物超電導線材の製造方法。 In the method for forming a Re-based (123) superconductor by forming a calcined film of an oxide superconductor on a substrate through an intermediate layer and then performing a crystallization heat treatment for superconductor generation, the crystallization heat treatment Includes a heating process before reaching the crystallization heat treatment temperature and an isothermal process of the crystallization heat treatment temperature performed in an atmosphere where the water vapor partial pressure is increased, and a method for producing a rare earth-based thick oxide superconducting wire, . 酸化物超電導体の仮焼膜は、酸化物超電導体を構成する金属元素を含む原料溶液を塗布し、仮焼熱処理を施す工程を複数回繰り返して形成されることを特徴とする請求項1又は2記載の希土類系厚膜酸化物超電導線材の製造方法。 The calcined film of the oxide superconductor is formed by applying a raw material solution containing a metal element constituting the oxide superconductor and performing a calcining heat treatment a plurality of times. 2. A method for producing a rare earth-based thick film oxide superconducting wire according to 2. 水蒸気分圧は、13.5vol%以下の範囲内で増加することを特徴とする請求項1乃至3いずれか1項記載の希土類系厚膜酸化物超電導線材の製造方法。 The method for producing a rare earth-based thick film oxide superconducting wire according to any one of claims 1 to 3, wherein the water vapor partial pressure increases within a range of 13.5 vol% or less. 水蒸気分圧は、2vol%以下から4vol%以上の範囲内で増加することを特徴とする請求項4記載の希土類系厚膜酸化物超電導線材の製造方法。 The method for producing a rare earth-based thick film oxide superconducting wire according to claim 4, wherein the water vapor partial pressure increases within a range of 2 vol% or less to 4 vol% or more. 結晶化熱処理は、550℃未満から680℃以上の温度範囲内で水蒸気分圧が増加する雰囲気中を含むことを特徴とする請求項1乃至5いずれか1項記載の希土類系厚膜酸化物超電導線材の製造方法。 6. The rare earth-based thick film oxide superconductor according to claim 1, wherein the crystallization heat treatment includes an atmosphere in which a water vapor partial pressure increases within a temperature range of less than 550 ° C. to 680 ° C. or more. A manufacturing method of a wire. 結晶化熱処理温度は、700〜800℃の温度範囲内にあることを特徴とする請求項1乃至6いずれか1項記載の希土類系厚膜酸化物超電導線材の製造方法。 The method for producing a rare earth-based thick oxide superconducting wire according to any one of claims 1 to 6, wherein the crystallization heat treatment temperature is in a temperature range of 700 to 800 ° C. Re系(123)超電導体は、TFA―MOD法により製造されることを特徴とする請求項項1乃至7いずれか1項記載の希土類系厚膜酸化物超電導線材の製造方法。 The method for producing a rare earth-based thick film oxide superconducting wire according to any one of claims 1 to 7, wherein the Re-based (123) superconductor is manufactured by a TFA-MOD method. Re系(123)超電導体は、膜厚1.8μm以上で、かつ臨界電流密度が1.35MA/cm以上であることを特徴とする請求項1乃至8いずれか1項記載の希土類系厚膜酸化物超電導線材の製造方法。 9. The rare earth-based thickness according to claim 1, wherein the Re-based (123) superconductor has a film thickness of 1.8 μm or more and a critical current density of 1.35 MA / cm 2 or more. A method for producing a film oxide superconducting wire.
JP2009087669A 2009-03-31 2009-03-31 Method of manufacturing rare earth-based thick film oxide superconducting wire Withdrawn JP2010238633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087669A JP2010238633A (en) 2009-03-31 2009-03-31 Method of manufacturing rare earth-based thick film oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087669A JP2010238633A (en) 2009-03-31 2009-03-31 Method of manufacturing rare earth-based thick film oxide superconducting wire

Publications (1)

Publication Number Publication Date
JP2010238633A true JP2010238633A (en) 2010-10-21

Family

ID=43092760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087669A Withdrawn JP2010238633A (en) 2009-03-31 2009-03-31 Method of manufacturing rare earth-based thick film oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP2010238633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173820A (en) * 2011-02-21 2011-09-07 中国科学院电工研究所 Preparation method of YBa2Cu3O7-x(YBCO) high-temperature superconductive thick film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102173820A (en) * 2011-02-21 2011-09-07 中国科学院电工研究所 Preparation method of YBa2Cu3O7-x(YBCO) high-temperature superconductive thick film
CN102173820B (en) * 2011-02-21 2013-07-03 中国科学院电工研究所 Preparation method of YBa2Cu3O7-x(YBCO) high-temperature superconductive thick film

Similar Documents

Publication Publication Date Title
JP5270176B2 (en) Re-based oxide superconducting wire and method for producing the same
JP5156188B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP4713012B2 (en) Tape-shaped oxide superconductor
JP4643522B2 (en) Tape-like thick film YBCO superconductor manufacturing method
JP2007165153A6 (en) A method for producing a thick film tape-shaped RE (123) superconductor.
JP2007115562A (en) Tape-shaped rare-earth group oxide superconductor and its manufacturing method
WO2012056698A1 (en) Oxide superconductivity wire material and method of manufacturing thereof
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
US20110166026A1 (en) Method of fabricatiing oxide superconducting thin film
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP2004171841A (en) Tape-shaped rare earth group oxide superconductor and manufacturing method of the same
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP5562615B2 (en) Rare earth oxide superconducting wire manufacturing method
JP2009289666A (en) Y system oxide superconductive wire rod
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP5380250B2 (en) Rare earth oxide superconducting wire and method for producing the same
JP5503252B2 (en) Rare earth oxide superconducting wire
JP5731236B2 (en) Manufacturing method of oxide superconducting wire
JP2010086666A (en) Oxide superconducting wire and method of manufacturing the same
JP6359937B2 (en) RE oxide superconducting wire manufacturing method
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP2011253766A (en) Method of manufacturing oxide superconductor thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605