JP2010086666A - Oxide superconducting wire and method of manufacturing the same - Google Patents

Oxide superconducting wire and method of manufacturing the same Download PDF

Info

Publication number
JP2010086666A
JP2010086666A JP2008251135A JP2008251135A JP2010086666A JP 2010086666 A JP2010086666 A JP 2010086666A JP 2008251135 A JP2008251135 A JP 2008251135A JP 2008251135 A JP2008251135 A JP 2008251135A JP 2010086666 A JP2010086666 A JP 2010086666A
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
superconducting wire
superconducting
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008251135A
Other languages
Japanese (ja)
Inventor
Atsushi Kaneko
敦 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
SWCC Corp
Original Assignee
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, SWCC Showa Cable Systems Co Ltd filed Critical International Superconductivity Technology Center
Priority to JP2008251135A priority Critical patent/JP2010086666A/en
Publication of JP2010086666A publication Critical patent/JP2010086666A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve on magnetic field characteristics of an ReBCO superconductor having different characteristics at a high magnetic field. <P>SOLUTION: On a biaxially oriented metal base plate 11, a first intermediate layer 12a made of Ce<SB>2</SB>Zr<SB>2</SB>O<SB>7</SB>by an MOD method and a second intermediate layer 12b made of CeO<SB>2</SB>by a PLD method are laminated, on which, a superconducting layer 13 made by a TFA-MOD method is laminated. The superconducting layer 13 has a 3-layer structure with a film thickness of 1.1 μm sequentially laminating a first superconducting layer 13a made of YBa<SB>1.5</SB>Cu<SB>3</SB>O<SB>y</SB>, a second superconducting layer 13b made of SmBa<SB>1.5</SB>Cu<SB>3</SB>O<SB>y</SB>, and a third superconducting layer 13c made of YBa<SB>2.0</SB>Cu<SB>3</SB>O<SB>y</SB>. Jc of the superconducting wire 10 shows a value each of [3.46×10<SP>4</SP>A/cm<SP>2</SP>]<SB>OT</SB>in a self-magnetic field (77K), and [0.83×10<SP>4</SP>A/cm<SP>2</SP>]<SB>3T</SB>in an outside magnetic field (B//c axis, 77K) of 3T. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超電導マグネット、超電導ケーブル、超電導エネルギー貯蔵装置、電動機や変圧器等の超電導電力機器等に有用な酸化物超電導線材に係り、特にMOD法に適した超電導線材及びその製造方法の改良に関する。   The present invention relates to a superconducting magnet, a superconducting cable, a superconducting energy storage device, an oxide superconducting wire useful for a superconducting power device such as an electric motor or a transformer, and more particularly to improvement of a superconducting wire suitable for the MOD method and a method for manufacturing the same. .

酸化物超電導体は、従来のNbSnやNbAl等の金属系超電導体と比較して臨界温度(Tc)が高く、送電ケーブル、変圧器、モーター、電力貯蔵システム等の超電導応用機器を液体窒素温度で運用できることから、その線材化の研究が精力的に行われている。 Oxide superconductors have a higher critical temperature (Tc) than conventional metal-based superconductors such as Nb 3 Sn and Nb 3 Al, and superconducting applications such as power cables, transformers, motors, and power storage systems. Since it can be operated at liquid nitrogen temperature, research into making it into wire has been vigorously conducted.

酸化物超電導体を上記の分野に適用するためには、臨界電流密度(Jc)が高く、かつ高い臨界電流(Ic)値を有する長尺の線材を製造する必要があり、一方、長尺線材を得るためには、強度及び可撓性の観点から金属基体上に酸化物超電導体を形成する必要がある。また、従来の金属系超電導体と同等に実用レベルで使用可能とするためには、500A/cm(77K、自己磁界中)程度のIc値が必要である。   In order to apply the oxide superconductor to the above-mentioned field, it is necessary to produce a long wire having a high critical current density (Jc) and a high critical current (Ic) value, In order to obtain the above, it is necessary to form an oxide superconductor on a metal substrate from the viewpoint of strength and flexibility. In addition, an Ic value of about 500 A / cm (77 K, in a self-magnetic field) is required to enable use at a practical level equivalent to a conventional metal superconductor.

酸化物超電導体のうち、ReBaCu(ここで、y=6.2〜7であり、Reは、Y、Yb、Tm、Er、Ho、Dy、Gd、Eu、Sm、Nd又はLaから選択された少なくとも1種以上の元素を示す。以下、ReBCOと称する。)酸化物超電導体は、磁場特性に優れていることから、次世代の超電導材料としてその線材化が期待されている。 Among oxide superconductors, ReBa 2 Cu 3 O y (where y = 6.2 to 7 and Re is Y, Yb, Tm, Er, Ho, Dy, Gd, Eu, Sm, Nd or This represents at least one element selected from La. Hereinafter referred to as ReBCO.) Since oxide superconductors are excellent in magnetic field characteristics, they are expected to be used as next-generation superconducting materials. .

このReBCO酸化物超電導体の結晶系は斜方晶であり、x軸、y軸及びz軸の3辺の長さが異なり、単位胞の3つの角度も微妙に異なるために双晶を形成し易くBi系超電導体に比べてその線材化が困難であるという問題がある。また、ReBCO酸化物超電導体は、その結晶方位により超電導特性が変化することから、Jcを向上させるためには、その面内配向性を向上させることが必要であり、この面内配向性は下地となる中間層や配向金属基板の配向性及び表面平滑性に著しく影響を受ける。ReBCO酸化物超電導体の面内配向性を向上させるためには、酸化物超電導体をテープ状の基板上に形成する必要があり、このため、面内配向性の高い基板上に酸化物超電導体をエピタキシャル成長させる成膜プロセスが採用されている。   The crystal system of this ReBCO oxide superconductor is orthorhombic, the lengths of the three sides of the x-axis, y-axis and z-axis are different, and the three angles of the unit cell are slightly different, so twins are formed. There exists a problem that it is easy to make the wire material easily compared with a Bi-type superconductor. In addition, since the superconducting properties of the ReBCO oxide superconductor change depending on the crystal orientation, it is necessary to improve the in-plane orientation in order to improve Jc. Are significantly affected by the orientation and surface smoothness of the intermediate layer and the oriented metal substrate. In order to improve the in-plane orientation of the ReBCO oxide superconductor, it is necessary to form the oxide superconductor on a tape-like substrate. For this reason, the oxide superconductor is formed on the substrate having a high in-plane orientation. A film forming process for epitaxially growing is used.

この場合、Jcを向上させるためには、酸化物超電導体のc軸を基板の板面に垂直に配向させ、かつそのa軸(又はb軸)を基板面に平行に面内配向させて、超電導状態の量子的結合性を良好に保持する必要があり、このため、面内配向性の高い金属基板上に面内配向度と方位を向上させた中間層を1層又は複数層形成し、この中間層の結晶格子をテンプレートとして用いることによって、超電導層の結晶の面内配向度と方位を向上させることが行われており、更に超電導層の表面保護と電気的接触の向上及び過通電時の保護回路としての役割を担う銀等の安定化層を超電導層上に積層した構造が採用されている。   In this case, in order to improve Jc, the c-axis of the oxide superconductor is oriented perpendicular to the plate surface of the substrate, and the a-axis (or b-axis) is oriented in-plane parallel to the substrate surface, It is necessary to maintain the superconducting state quantum connectivity well, and for this reason, one or more intermediate layers with improved in-plane orientation and orientation are formed on a metal substrate having high in-plane orientation, By using the crystal lattice of the intermediate layer as a template, the in-plane orientation degree and orientation of the crystal of the superconducting layer have been improved, and further, the surface protection of the superconducting layer and the improvement of electrical contact and overcurrent A structure in which a stabilizing layer of silver or the like that plays a role as a protection circuit is laminated on the superconducting layer is employed.

現在、テープ状のReBCO酸化物超電導線材は種々の方法プロセスで製造されており、PLD(Pulsed Laser Deposition:パルスレーザー堆積)法、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属化学気相蒸着)法やMOD(Metal Organic Deposition :金属有機酸塩堆積)法が知られている。   At present, tape-like ReBCO oxide superconducting wires are manufactured by various method processes such as PLD (Pulsed Laser Deposition), MOCVD (Metal Organic Chemical Vapor Deposition), The MOD (Metal Organic Deposition) method is known.

この内、MOD法は、金属有機酸塩(又は有機金属化合物)を熱分解させるもので、超電導体を構成する金属成分を含む有機化合物が均一に溶解した溶液を基板上に塗布した後、熱分解及び結晶化熱処理を施すことにより基板上に薄膜を形成する方法であり、非真空プロセスであることから低コストで高速成膜が可能である上、高いJcが得られることから、長尺のテープ状酸化物超電導線材の製造に適する利点を有する。   Among these, the MOD method thermally decomposes a metal organic acid salt (or organometallic compound), and after applying a solution in which an organic compound containing a metal component constituting a superconductor is uniformly dissolved on a substrate, This is a method of forming a thin film on a substrate by performing decomposition and crystallization heat treatment. Since it is a non-vacuum process, it can be formed at high speed at a low cost and a high Jc can be obtained. It has an advantage suitable for manufacturing a tape-shaped oxide superconducting wire.

MOD法においては、出発原料である金属有機酸塩を熱分解させると通常アルカリ土類金属(Ba等)の炭酸塩が生成されるが、この炭酸塩を経由する固相反応による酸化物超電導体の形成には800℃以上の高温熱処理を必要とする。更に、厚膜化を行う際、結晶成長のための核生成が基板界面以外の部分からも生じるため結晶成長速度を制御することが難しく、結果として、面内配向性に優れた、即ち、高いJcを有する超電導膜を得ることが難しいという問題がある。   In the MOD method, when a metal organic acid salt that is a starting material is thermally decomposed, a carbonate of an alkaline earth metal (Ba or the like) is usually generated. An oxide superconductor by a solid-phase reaction via this carbonate. The formation of this requires high-temperature heat treatment at 800 ° C. or higher. Further, when the film thickness is increased, nucleation for crystal growth occurs also from a part other than the substrate interface, so it is difficult to control the crystal growth rate. As a result, the in-plane orientation is excellent, that is, high. There is a problem that it is difficult to obtain a superconducting film having Jc.

MOD法における上記の問題を解決するために、炭酸塩を経由せずにReBCO超電導体を形成する方法として、フッ素を含む有機酸塩(例えば、TFA塩:トリフルオロ酢酸塩)を出発原料とし、水蒸気雰囲気中の水蒸気分圧の制御下で熱処理を行い、フッ化物の分解を経由して超電導体を得る方法が近年精力的に行われている(例えば、特許文献1及び2参照。)。   In order to solve the above-mentioned problem in the MOD method, as a method for forming a ReBCO superconductor without passing through a carbonate, an organic acid salt containing fluorine (for example, TFA salt: trifluoroacetate) is used as a starting material, In recent years, a method of obtaining a superconductor through the decomposition of fluoride by performing heat treatment under the control of the partial pressure of water vapor in a water vapor atmosphere has been vigorously performed (see, for example, Patent Documents 1 and 2).

このTFA塩を出発原料とするTFA―MOD法では、塗布膜の仮焼後に得られるフッ素を含むアモルファス前駆体と水蒸気との反応により、HFガスを発生しつつ超電導膜が成長する界面にHFに起因する液相を形成することにより基板界面から超電導体がエピタキシャル成長する。この場合、熱処理中の水蒸気分圧によりフッ化物の分解速度を制御できることから超電導体の結晶成長速度が制御でき、その結果、優れた面内配向性を有する超電導膜が製造できる。また、同法では比較的低温で基板上面から中間層を介してReBCO超電導体をエピタキシャル成長させることができる。   In the TFA-MOD method using TFA salt as a starting material, HF is generated at the interface where superconducting film grows while generating HF gas by the reaction between the amorphous precursor containing fluorine obtained after calcining of the coating film and water vapor. By forming the resulting liquid phase, the superconductor grows epitaxially from the substrate interface. In this case, since the decomposition rate of fluoride can be controlled by the partial pressure of water vapor during the heat treatment, the crystal growth rate of the superconductor can be controlled, and as a result, a superconducting film having excellent in-plane orientation can be produced. In this method, the ReBCO superconductor can be epitaxially grown from the upper surface of the substrate through the intermediate layer at a relatively low temperature.

以上のMOD法で製造されるYBaCu(以下、YBCOと称する。)超電導線材は、比較的に焼成温度が低く、焼成時に配向中間層としてよく知られたCeOとの反応によるBaCeOの発生が抑えられるため、TFA―MOD法によるYBCO超電導線材の検討が種々行われており、また、仮焼熱処理と超電導体生成の熱処理との間に超電導体生成の熱処理温度より低い温度で中間熱処理を施すことにより結晶化温度に至る前に仮焼での残存有機分あるいは剰余フッ化物を排出してクラック発生の防止に有効であることも知られている(例えば、特許文献3参照。)。 The YBa 2 Cu 3 O z (hereinafter referred to as YBCO) superconducting wire produced by the above MOD method has a relatively low firing temperature, and is based on the reaction with CeO 2 well known as an alignment intermediate layer during firing. Since the generation of BaCeO 3 is suppressed, various studies of YBCO superconducting wires by the TFA-MOD method have been conducted, and the temperature lower than the heat treatment temperature for superconductor generation between the calcination heat treatment and the heat treatment for superconductor generation. It is also known that it is effective in preventing cracks by discharging the residual organic component or residual fluoride in the calcination before reaching the crystallization temperature by performing an intermediate heat treatment in (see, for example, Patent Document 3). .)

従来、上記のTFA―MOD法では、Re:Ba:Cu=1:2:3のモル比からなる原料溶液、例えば、YBCO酸化物超電導体においては、厚膜化と高速仮焼プロセスを可能とするために、出発原料としてY及びBaのTFA塩を、またCuのナフテン酸塩をY:Ba:Cu=1:2:3のモル比で有機溶媒中に混合した溶液を用いることで仮焼プロセスにおけるHFガスの大量発生を抑制しているが、酸化物超電導体を生成するためには焼成温度が750℃以上で熱処理を施さなければならず、生成した酸化物超電導層と中間層とが反応して、界面にBaCeOを生成し、F元素を膜外に排出までに多くの時間を要する結果、この排出が不十分となりIc値が低下するという問題があった。さらに、超電導層の厚膜化に伴ってJcが低下し、予想される値よりも低いIc値しか得られないという問題もあった。 Conventionally, in the TFA-MOD method described above, a raw material solution having a molar ratio of Re: Ba: Cu = 1: 2: 3, such as a YBCO oxide superconductor, can be made thicker and subjected to a high-speed calcining process. In order to achieve this, a TFA salt of Y and Ba as a starting material and a naphthenate salt of Cu were mixed in an organic solvent at a molar ratio of Y: Ba: Cu = 1: 2: 3, and calcined. Although a large amount of HF gas is suppressed in the process, in order to produce an oxide superconductor, heat treatment must be performed at a firing temperature of 750 ° C. or higher, and the produced oxide superconducting layer and intermediate layer are As a result of the reaction, BaCeO 3 is generated at the interface, and it takes a long time to discharge the F element to the outside of the film. As a result, this discharge becomes insufficient and the Ic value is lowered. Furthermore, there is a problem that Jc decreases as the thickness of the superconducting layer increases, and only an Ic value lower than expected can be obtained.

特に、酸化物超電導体を生成するための焼成にバッチ式の熱処理炉を用いる方法を採用した場合には、仮焼膜を形成した長尺の線材をドラム上に巻回し、電気炉中で所定の熱処理パターンに従って熱処理が施されるが、同時に反応ガスが発生するために発生した有害ガス(例えば、YBCO超電導体製造時のHFガス)を効率よく炉外に排出する必要がある。即ち、ReBCO酸化物超電導体の熱処理は水蒸気雰囲気下で施され、仮焼膜中のBaFのFとHOとが反応してHFガスが発生し膜外に排出されるため、排出ガスが炉外に速やかに排出されないと仮焼膜の界面でHFガスの濃度勾配がなくなり反応が抑制される結果、結晶成長速度がHFガスの濃度に影響されることになる。 In particular, when a method using a batch-type heat treatment furnace is employed for firing to produce an oxide superconductor, a long wire formed with a calcined film is wound on a drum, and the predetermined length is set in an electric furnace. Although the heat treatment is performed according to the heat treatment pattern, it is necessary to efficiently discharge the harmful gas (for example, HF gas at the time of manufacturing the YBCO superconductor) generated to the outside of the furnace because the reaction gas is generated. That is, the heat treatment of the ReBCO oxide superconductor is performed in a water vapor atmosphere, and the HF gas is generated by the reaction of F of BaF 2 and H 2 O in the calcined film to be discharged out of the film. If the HF gas is not quickly discharged out of the furnace, the concentration of HF gas at the interface of the calcined film disappears and the reaction is suppressed. As a result, the crystal growth rate is affected by the concentration of HF gas.

上記のHFガスの発生による酸化物超電導層と中間層の反応を抑制し、高いIc値を有する酸化物超電導体を得るためにフッ素化合物を少なくすることが有効であり、また、超電導層の厚膜化に伴う超電導特性の低下を防止するためにもBa濃度を低減した原料溶液を用いることが有効である。   In order to suppress the reaction between the oxide superconductor layer and the intermediate layer due to the generation of the HF gas and to obtain an oxide superconductor having a high Ic value, it is effective to reduce the fluorine compound, and the thickness of the superconductor layer. In order to prevent the deterioration of superconducting characteristics accompanying film formation, it is effective to use a raw material solution with a reduced Ba concentration.

即ち、超電導層の厚膜化に伴うJcの低下や予想される値よりも低いIc値が、酸化物超電導層と中間層の反応や厚膜化に伴うクラックの発生及び結晶粒界の電気的結合性の低下に起因することの知見に基づき、本出願人は、このようなHFガスの発生及び酸化物超電導層と中間層の反応を抑制するとともに、クラックの発生及び結晶粒界の電気的結合性の低下の原因を除去又は抑制することにより、高いJc及びIc値を有する厚膜のテープ状Re系超電導体を製造する方法を先に出願している(例えば、特許文献4参照。)。   That is, the decrease in Jc accompanying the increase in the thickness of the superconducting layer and the Ic value lower than the expected value are caused by the reaction between the oxide superconducting layer and the intermediate layer, the generation of cracks due to the increase in the thickness, and the electrical properties of the grain boundaries. Based on the knowledge that it is caused by the decrease in bonding properties, the present applicant suppresses the generation of such HF gas and the reaction between the oxide superconducting layer and the intermediate layer, as well as the generation of cracks and the electrical property of the grain boundaries. A method for producing a thick-film tape-shaped Re-based superconductor having a high Jc and Ic value by removing or suppressing the cause of the decrease in connectivity has been filed earlier (see, for example, Patent Document 4). .

このときの知見に依れば、Baのモル比をその標準モル比より小さくすることにより、HFガスの発生及びBaの偏析が抑制され、結晶粒界でのBaべ一スの不純物の析出が抑制される結果、クラックの発生が抑制されるとともに、結晶粒間の電気的結合性が向上して通電電流によって定義されるJcが向上する。Baのモル比を低減することにより、磁束ピンニング点であるYCu、CuOやYが形成され、磁界特性が改善され、超電導層をTFA―MOD法により形成することにより、高速で均一な厚膜を有する超電導特性に優れたテープ状Re系超電導体を容易に製造可能とすることができる。 According to the knowledge at this time, by making the molar ratio of Ba smaller than the standard molar ratio, generation of HF gas and segregation of Ba are suppressed, and precipitation of Ba-based impurities at the crystal grain boundary is suppressed. As a result, the occurrence of cracks is suppressed, and the electrical connectivity between crystal grains is improved and Jc defined by the energization current is improved. By reducing the molar ratio of Ba, magnetic flux pinning points Y 2 Cu 2 O 5 , CuO and Y 2 O 3 are formed, the magnetic field characteristics are improved, and the superconducting layer is formed by the TFA-MOD method. Thus, it is possible to easily manufacture a tape-shaped Re-based superconductor having a uniform thick film at high speed and excellent in superconducting characteristics.

例えば、Re:Ba:Cu=1:1.5:3のモル比で有機溶媒中に混合した溶液を用いることで結晶化熱処理温度が700℃以上で可能となり、膜厚1.5μmのYBa1.5Cu超電導体で結晶化熱処理温度が750℃において340A/cmのIc値が得られている。 For example, by using a solution mixed in an organic solvent at a molar ratio of Re: Ba: Cu = 1: 1.5: 3, a crystallization heat treatment temperature becomes possible at 700 ° C. or higher, and YBa 1 having a film thickness of 1.5 μm. An Ic value of 340 A / cm was obtained at a crystallization heat treatment temperature of 750 ° C. with a .5 Cu 3 O y superconductor.

しかしながら、TFA―MOD法により製造したYBCO超電導線材は、溶液の組成を制御することにより、超電導体の粒界特性及び結晶性が改善され、自己磁界Jc、即ち、77K、0T(テスラ)におけるJcが向上することが確認されているが、外部磁界の増加とともにJcは低下する。一方、Yに代えてGd又はSmを用いたGdBCO及びSmBCO超電導線材は、YBCOより磁界中でのJcが比較的に大きいが、YBCO超電導体に比べて超電導層形成時の反応温度が高く、CeOとの反応が非常に大きくなり、ReBCOとCeOとの反応によりBaCeO層を非常に厚く形成してしまうという難点がある。 However, the YBCO superconducting wire manufactured by the TFA-MOD method improves the grain boundary characteristics and crystallinity of the superconductor by controlling the composition of the solution, and the self magnetic field Jc, that is, Jc at 77K, 0T (Tesla). However, Jc decreases as the external magnetic field increases. On the other hand, GdBCO and SmBCO superconducting wire using Gd or Sm instead of Y have a relatively large Jc in the magnetic field than YBCO, but the reaction temperature at the time of forming the superconducting layer is higher than that of YBCO superconductor, and CeO. The reaction with 2 becomes very large, and the reaction between ReBCO and CeO 2 results in the formation of a very thick BaCeO 3 layer.

例えば、TFA―MOD法による超電導膜のJcは、YBCO超電導体の場合、外部磁界B(B//c軸、77K)が0Tで7MA/cm程度の高い値を有するが、約8Tでは1000A/cm程度の値まで低下する。一方、GdBCO超電導体の場合、外部磁界B(B//c軸、77K)が0Tで2.9MA/cmとYBCOに比べて低いが、約8Tでは10000A/cm程度の値を有する。さらにReBCO超電導体のJcの外部磁界依存性は、Re元素の種類により変動し、例えば、バルク体において、YBCO超電導体の場合には外部磁界の増加とともにJc値は低下するが、GdBCO、SmBCO及びNdBCO超電導体の場合には外部磁界の増加とともにJcが増大するピーク値が存在し、例えば、外部磁界が1〜5T程度の範囲ではYBCO超電導体よりも高いJc値を有することが知られている。 For example, in the case of a YBCO superconductor, Jc of the superconducting film by the TFA-MOD method has a high value of about 7 MA / cm 2 when the external magnetic field B (B // c axis, 77K) is 0T, but 1000 A at about 8T. It decreases to a value of about / cm 2 . On the other hand, in the case of a GdBCO superconductor, the external magnetic field B (B // c axis, 77K) is 2.9 MA / cm 2 at 0T, which is lower than YBCO, but at about 8T, it has a value of about 10000 A / cm 2 . Further, the external magnetic field dependence of Jc of the ReBCO superconductor varies depending on the type of Re element. For example, in the case of a YBCO superconductor in a bulk body, the Jc value decreases as the external magnetic field increases, but GdBCO, SmBCO and In the case of the NdBCO superconductor, there is a peak value where Jc increases as the external magnetic field increases. For example, it is known that the external magnetic field has a higher Jc value than the YBCO superconductor in the range of about 1 to 5T. .

再表2004−100182号No. 2004-100182 特開2004−171841号JP 2004-171841 A 特開2007−165153号JP 2007-165153 A 特開2008−050190号JP 2008-050190 A

以上のように、ReBCO超電導体が大きな磁界依存性を有するため、自己磁界での高いJcを有するReBCO超電導体の特性が、高磁界領域で十分に発揮されないという問題があり、また、特定範囲の磁界領域以外では高いJcを期待できないという問題があった。このため、高磁界領域で一定以上のIc値を得るためには、厚膜化によるIc値の向上や超電導膜中にピンニング点を導入する必要があった。   As described above, since the ReBCO superconductor has a large magnetic field dependency, there is a problem that the characteristics of the ReBCO superconductor having a high Jc in the self-magnetic field cannot be sufficiently exhibited in a high magnetic field region, There is a problem that high Jc cannot be expected outside the magnetic field region. For this reason, in order to obtain an Ic value above a certain level in a high magnetic field region, it is necessary to improve the Ic value by increasing the thickness and to introduce a pinning point in the superconducting film.

本発明は、以上の問題を解決するためになされたもので、高磁界領域での異なる特性を有するReBCO超電導体の磁界特性を改良した超電導特性に優れた酸化物超電導線材及びその製造方法を提供することをその目的とする。   The present invention has been made to solve the above-described problems, and provides an oxide superconducting wire excellent in superconducting characteristics by improving the magnetic field characteristics of a ReBCO superconductor having different characteristics in a high magnetic field region, and a method for manufacturing the same. The purpose is to do.

上記の問題を解決するために、本発明による酸化物超電導線材は、基板上に1層又は2層以上の中間層を介して酸化物超電導層を形成した酸化物超電導線材において、酸化物超電導層は、ReBaCu(Reは、Y、Yb、Tm、Er、Ho、Dy、Gd、Eu、Sm、Nd又はLaから選択された少なくとも1種以上の元素を示し、x≦2及びy=6.2〜7である。以下同じ。)超電導体からなる超電導層の複数を積層した積層体により形成され、隣接する各超電導層を構成するRe元素の種類及び/又は組成を異なるようにしたものである。 In order to solve the above problem, an oxide superconducting wire according to the present invention is an oxide superconducting wire in which an oxide superconducting layer is formed on a substrate via one or more intermediate layers. Represents ReBa x Cu 3 O y (Re represents at least one element selected from Y, Yb, Tm, Er, Ho, Dy, Gd, Eu, Sm, Nd or La, and x ≦ 2 and y = 6.2 to 7. The same applies hereinafter.) The type and / or composition of the Re element forming each superconducting layer adjacent to each other is formed by stacking a plurality of superconducting layers made of superconductors. It is a thing.

上記の酸化物超電導層は、中間層上に形成されたYBaCu超電導体からなる超電導層を有するか、あるいは中間層上に形成されたReBaCu超電導体のRe元素中に少なくともYを含む超電導層を有することが好ましい。この場合にはYBaCu超電導体の特性を維持するとともに、その高磁界特性を改善することができる。 The oxide superconducting layer has a superconducting layer made of a YBa x Cu 3 O y superconductor formed on the intermediate layer, or the Re element of the ReBa x Cu 3 O y superconductor formed on the intermediate layer. It is preferable to have a superconducting layer containing at least Y therein. In this case, the characteristics of the YBa x Cu 3 O y superconductor can be maintained and the high magnetic field characteristics can be improved.

また、ReBaCuO超電導体中のBa元素のモル比は、1.3≦x≦2.0の範囲内、特に、1.3≦x≦1.8の範囲内であることが好ましい。Baのモル比が2.0を超えるに従って超電導特性が低下し、同様にBaのモル比が1.3未満より少なくなるに従って超電導特性が低下するためである。この場合、Ba元素のモル比を1.3≦x≦1.8の範囲内で変化させることにより、上述したHFガスの発生及びBaの偏析が抑制されて結晶粒界でのBaべ一スの不純物の析出が抑制される結果、クラックの発生が抑制されるとともに、結晶粒間の電気的結合性が改善されてJcを向上させることができ、同時にBaのモル比を低減することにより、磁束ピンニング点であるYCu、CuOやYが形成される結果、磁界特性が改善される。以上のBaのモル比の低減効果は、本出願人による上記の特許文献4により明らかにされている。 The molar ratio of the Ba element in the ReBa x Cu 3 O superconductor is preferably in the range of 1.3 ≦ x ≦ 2.0, and more preferably in the range of 1.3 ≦ x ≦ 1.8. . This is because the superconducting characteristics are lowered as the molar ratio of Ba exceeds 2.0, and similarly the superconducting characteristics are lowered as the molar ratio of Ba is less than 1.3. In this case, by changing the molar ratio of the Ba element within the range of 1.3 ≦ x ≦ 1.8, the generation of HF gas and the segregation of Ba described above are suppressed, and the Ba base at the grain boundary is suppressed. As a result of suppressing the precipitation of impurities, the generation of cracks can be suppressed, the electrical connectivity between crystal grains can be improved and Jc can be improved, and at the same time, the molar ratio of Ba can be reduced, Magnetic field characteristics are improved as a result of the formation of Y 2 Cu 2 O 5 , CuO and Y 2 O 3 which are magnetic flux pinning points. The above-described effect of reducing the molar ratio of Ba is clarified by the above-mentioned Patent Document 4 by the present applicant.

さらに、以上の発明において、酸化物超電導層の厚膜化と高速仮焼プロセスを可能とするために、酸化物超電導層は、MOD法により、特に、TFA塩を出発原料とするTFA―MOD法により形成されていることが好ましい。   Furthermore, in the above invention, in order to enable thickening of the oxide superconducting layer and high-speed calcination process, the oxide superconducting layer is formed by the MOD method, in particular, the TFA-MOD method using TFA salt as a starting material. It is preferable that it is formed by.

以上述べた本発明による酸化物超電導線材は、基板上に1層又は2層以上の中間層を介してReBaCu超電導体の原料溶液をMOD法により塗布後、熱処理を施す工程を繰り返して複数の仮焼膜を形成した後、結晶化熱処理を施すことにより酸化物超電導線材を製造する方法において、各仮焼膜を構成するRe元素の種類及び/又は組成を少なくとも一部の仮焼膜において異なるようにすることにより製造することができ、特に、仮焼膜をTFA―MOD法により形成することが好ましい。このRe元素の種類及び/又は組成が異なる一部の仮焼膜及び他の仮焼膜の膜数については特に限定されない。最終的な結晶化熱処理後に、隣接する各超電導層を構成するRe元素の種類及び/又は組成が異なるように構成されればよい。 The oxide superconducting wire according to the present invention described above includes a step of applying a heat treatment after applying a ReBa x Cu 3 O y superconductor raw material solution on a substrate via one or more intermediate layers by the MOD method. In the method of manufacturing an oxide superconducting wire by repeatedly forming a plurality of calcined films and then performing a crystallization heat treatment, the type and / or composition of the Re element constituting each calcined film is set at least partially. It can manufacture by making it differ in a fired film, It is preferable to form a calcined film especially by TFA-MOD method. The number of some calcined films and other calcined films having different types and / or compositions of the Re element is not particularly limited. What is necessary is just to comprise so that the kind and / or composition of Re element which comprise each adjacent superconducting layer may differ after final crystallization heat processing.

この場合、中間層上の仮焼膜は、YBaCu超電導体の前駆体又は、Re元素中に少なくともYを含むReBaCu超電導体の前駆体により形成することが好ましい。 In this case, the calcined film on the intermediate layer is preferably formed of a precursor of YBa x Cu 3 O y superconductor or a precursor of ReBa x Cu 3 O y superconductor containing at least Y in the Re element. .

以上の酸化物超電導線材の製造において、結晶化熱処理は、Ptotal=1〜760Torrの圧力、PH2O=1〜7.5%の水蒸気分圧及びTmax=700〜800°Cの最大温度の範囲内で施される。 In the production of the above oxide superconducting wire, the crystallization heat treatment is carried out at a pressure of P total = 1 to 760 Torr, a water vapor partial pressure of P H2O = 1 to 7.5% and a maximum temperature of T max = 700 to 800 ° C. It is given within the range.

本発明における基板としては、ハステロイ(登録商標)、ステンレス等の耐熱性の高い無配向金属、Ni又はこれに1種以上の元素(W、Mo、Cr、Fe、Cu、V、Sn又はZn)を9at%以下で添加したNi基合金あるいはCu又はこれに1種以上の元素を添加したCu基合金を冷間圧延加工後、所定の温度で配向熱処理を施して製造した2軸配向金属基板を用いることができ、また、配向金属の領域は中間層に接する側のみでよいため、配向金属基板とステンレス等の無配向金属基板を張り合わせた2層又は多層構造の金属基板を用いることもできる。いずれにしても金属基板上に2軸配向した中間層が形成されていればよい。   As the substrate in the present invention, Hastelloy (registered trademark), highly heat-resistant non-oriented metal such as stainless steel, Ni or one or more elements (W, Mo, Cr, Fe, Cu, V, Sn or Zn). A biaxially oriented metal substrate manufactured by cold rolling a Ni-based alloy or Cu or a Cu-based alloy with one or more elements added thereto at a predetermined temperature and then subjecting it to an orientation heat treatment at a predetermined temperature. Further, since the alignment metal region only needs to be on the side in contact with the intermediate layer, a metal substrate having a two-layer or multilayer structure in which an alignment metal substrate and a non-alignment metal substrate such as stainless steel are bonded to each other can also be used. In any case, a biaxially oriented intermediate layer may be formed on the metal substrate.

また、多結晶基板上に中間層を形成した複合基板として、IBAD(Ion Beam Assisted Deposition)法により製造した複合基板を用いることもできる。   Further, as a composite substrate in which an intermediate layer is formed on a polycrystalline substrate, a composite substrate manufactured by an IBAD (Ion Beam Assisted Deposition) method can be used.

このIBAD複合基板は、ハステロイ(登録商標)C276等からなる非磁性で高強度のテープ状Ni系多結晶基板上に、YSZやGdZrをレーザ蒸着法(PLD法)により堆積し、この中間層の上にCeO中間層をPLD法で形成したものである。IBAD法においては、基板面の法線に対して一定の角度方向からイオンビームを照射しつつ蒸着することにより、多結晶基板上に結晶粒径が微細で緻密に配向した中間層を形成することが可能となり、この高配向性の中間層の形成により、超電導層を構成する元素との反応を抑制することができる利点を有する(例えば、特開平4−329867号及び特開平4−331795号参照)。 This IBAD composite substrate is formed by depositing YSZ or Gd 2 Zr 2 O 7 on a non-magnetic high-strength tape-like Ni-based polycrystalline substrate made of Hastelloy (registered trademark) C276 or the like by a laser vapor deposition method (PLD method). The CeO 2 intermediate layer is formed on the intermediate layer by the PLD method. In the IBAD method, an intermediate layer in which the crystal grain size is fine and densely oriented is formed on a polycrystalline substrate by performing deposition while irradiating an ion beam from a certain angle direction with respect to the normal of the substrate surface. The formation of this highly oriented intermediate layer has the advantage that the reaction with the elements constituting the superconducting layer can be suppressed (see, for example, JP-A-4-329867 and JP-A-4-33195). ).

本発明によれば、基板上の中間層を介して積層したReBaCu超電導体の隣接する各超電導層を構成するRe元素の種類及び/又は組成を異なるようにしたことにより、高磁界領域での異なる特性を有するReBCO超電導体の磁界特性を改良することができる。 According to the present invention, the ReBa x Cu 3 O y superconductor laminated via the intermediate layer on the substrate is made different in the kind and / or composition of the Re element constituting each adjacent superconducting layer. The magnetic field characteristics of the ReBCO superconductor having different characteristics in the magnetic field region can be improved.

図3は、本発明の酸化物超電導線材の軸方向に垂直な断面を示したもので、酸化物超電導線材30は、Ni―W合金等からなる基板31上に、中間層32及び超電導層33を順次積層した構造を有する。中間層32は、例えば、Ce―Zr―O酸化物からなる第1中間層及びCeO酸化物からなる第2中間層を順次積層した2層構造を有し、基板31上に中間層32を形成した複合基板は、例えば、上述のMOD法やPLD法により形成される。一例を挙げれば、Ni―W合金基板上に、第1中間層としてCeZrをMOD法により堆積し、この上に第2中間層としてCeOをPLD法で蒸着することにより形成される。この基板に代えて、ハステロイ(登録商標)C276等の非磁性で高強度のテープ状Ni系多結晶基板を用いることもできる。 FIG. 3 shows a cross section perpendicular to the axial direction of the oxide superconducting wire of the present invention. The oxide superconducting wire 30 has an intermediate layer 32 and a superconducting layer 33 on a substrate 31 made of a Ni—W alloy or the like. Are sequentially stacked. The intermediate layer 32 has, for example, a two-layer structure in which a first intermediate layer made of Ce—Zr—O oxide and a second intermediate layer made of CeO 2 oxide are sequentially stacked. The intermediate layer 32 is formed on the substrate 31. The formed composite substrate is formed by, for example, the above-described MOD method or PLD method. For example, Ce 2 Zr 2 O 7 is deposited as a first intermediate layer on a Ni—W alloy substrate by a MOD method, and CeO 2 is deposited thereon as a second intermediate layer by a PLD method. Is done. Instead of this substrate, a non-magnetic high-strength tape-like Ni-based polycrystalline substrate such as Hastelloy (registered trademark) C276 can be used.

一方、超電導層33は、(Re-1)Bax1Cuからなる第1の超電導層33a、(Re-2)Bax2Cuからなる第2の超電導層33b及び(Re-3)Bax3Cuからなる第3の超電導層33cからなる3層構造を有しており、ここで(Re-1)、(Re-2)及び(Re-3)は、Y、Yb、Tm、Er、Ho、Dy、Gd、Eu、Sm、Nd又はLaから選択された少なくとも1種以上の元素を示し、それぞれRe元素の種類及び/又は組成を異ならせたものである。即ち、(Re-1)、(Re-2)及び(Re-3)は、例えば、それぞれY、Sm及びNdにより構成するか、Y、(Y+Sm)及び(Y+Nd)により構成し、あるいは(Re-1)、(Re-2)及び(Re-3)元素を1以上の同一のRe元素により構成しその組成を異ならせたものである。上記の第1、第2及び第3の超電導層33a、33b及び33cにおいて、Baのモル比x1、x2及びx3は、上述のように、1.3≦x≦2.0の範囲内、特に、1.3≦x≦1.8の範囲内において選択され、同一モル比であっても異なるモル比であってもよい。さらに、上記の第1、第2及び第3の超電導層33a、33b及び33cは、それぞれ最終的に超電導層を形成する単一又は複数の仮焼膜を形成した後に結晶化熱処理を施すことにより形成される。 On the other hand, the superconducting layer 33 includes a first superconducting layer 33a made of (Re-1) Ba x1 Cu 3 O y , a second superconducting layer 33b made of (Re-2) Ba x2 Cu 3 O y, and (Re- 3) It has a three-layer structure consisting of the third superconducting layer 33c made of Ba x3 Cu 3 O y , where (Re-1), (Re-2) and (Re-3) are Y, At least one element selected from Yb, Tm, Er, Ho, Dy, Gd, Eu, Sm, Nd or La is shown, and the type and / or composition of the Re element is different. That is, (Re-1), (Re-2), and (Re-3) are each composed of, for example, Y, Sm, and Nd, or are composed of Y, (Y + Sm), and (Y + Nd), or (Re -1), (Re-2) and (Re-3) elements are composed of one or more identical Re elements and the compositions thereof are different. In the first, second and third superconducting layers 33a, 33b and 33c, the molar ratios x1, x2 and x3 of Ba are within the range of 1.3 ≦ x ≦ 2.0, particularly as described above. , 1.3 ≦ x ≦ 1.8, and the molar ratio may be the same or different. Further, the first, second, and third superconducting layers 33a, 33b, and 33c are each subjected to crystallization heat treatment after forming a single or plural calcined films that finally form the superconducting layer. It is formed.

図4は、他の本発明の酸化物超電導線材の軸方向に垂直な断面を示したもので、同図において図3と同一部分は同符号で示してあり、(Re-1)及び(Re-2)並びにx1及びx2は図3と同様の意味において使用されている。   FIG. 4 shows a cross section perpendicular to the axial direction of another oxide superconducting wire of the present invention. In FIG. 4, the same parts as those in FIG. 3 are denoted by the same reference numerals, and (Re-1) and (Re -2) and x1 and x2 are used in the same meaning as in FIG.

図4(a)において、酸化物超電導線材40は、基板31上に、中間層32及び超電導層43を順次積層した構造を有し、超電導層43は、(Re-1)Bax1Cuからなる第1の超電導層43a及び(Re-2)Bax2Cuからなる第2の超電導層43bからなる2層構造を有する。 4A, an oxide superconducting wire 40 has a structure in which an intermediate layer 32 and a superconducting layer 43 are sequentially laminated on a substrate 31, and the superconducting layer 43 is composed of (Re-1) Ba x1 Cu 3 O. having a two-layer structure consisting of the first superconducting layer 43a and (Re-2) Ba x2 Cu 3 consisting O y second superconducting layer 43b made of y.

また、図4(b)において、酸化物超電導線材50は、基板31上に、中間層32及び超電導層53を順次積層した構造を有し、超電導層53は、(Re-1)Bax1Cuからなる第1の超電導層53a及び(Re-2)Bax2Cuからなる第2の超電導層53bからなる2層構造の上に第1の超電導層と同一組成の第3の超電導層53cを積層した3層構造を有する。この場合、第1及び第2の超電導層のBaモル比を異ならせることもできる。 4B, the oxide superconducting wire 50 has a structure in which an intermediate layer 32 and a superconducting layer 53 are sequentially laminated on a substrate 31, and the superconducting layer 53 is composed of (Re-1) Ba x1 Cu. 3 O first superconducting where y consisting layer 53a and (Re-2) Ba x2 Cu 3 O y over the two-layer structure consisting of the second superconducting layer 53b made of a first superconducting layer and a third of the same composition A superconducting layer 53c is laminated. In this case, the Ba molar ratio of the first and second superconducting layers can be varied.

さらに、図4(c)において、酸化物超電導線材60は、基板31上に、中間層32及び超電導層63を順次積層した構造を有し、超電導層63は、(Re-1)Bax1Cuからなる第1の超電導層63a及び(Re-2)Bax2Cuからなる第2の超電導層63bを2層構造に積層した超電導層の上に、さらに同一の2層構造の超電導層、即ち、(Re-1)Bax1Cuからなる第3の超電導層63c及び(Re-2)Bax2Cuからなる第4の超電導層63dを積層した4層構造を有する。この場合、第1及び第3の超電導層及び/又は第2及び第4の超電導層のBaモル比を異ならせることもできる。 Further, in FIG. 4C, the oxide superconducting wire 60 has a structure in which an intermediate layer 32 and a superconducting layer 63 are sequentially laminated on a substrate 31, and the superconducting layer 63 is composed of (Re-1) Ba x1 Cu. 3 O first superconducting where y consisting layer 63a and (Re-2) Ba x2 Cu 3 O y the second superconducting layer 63b made of on the superconducting layer laminated two-layer structure, further the same two-layer structure In other words, the four superconducting layers of (Re-1) Ba x1 Cu 3 O y and the fourth superconducting layer 63d of (Re-2) Ba x2 Cu 3 O y are stacked. It has a structure. In this case, the Ba molar ratio of the first and third superconducting layers and / or the second and fourth superconducting layers can be varied.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

実施例1
図1に示すように、2軸配向金属基板11上に、中間層12を堆積した複合基板を用い、この複合基板の上に超電導層13を積層して酸化物超電導線材10を製造した。
Example 1
As shown in FIG. 1, an oxide superconducting wire 10 was manufactured by using a composite substrate in which an intermediate layer 12 was deposited on a biaxially oriented metal substrate 11 and laminating a superconducting layer 13 on the composite substrate.

中間層12は、MOD法によりCeZrからなる第1の中間層12aを堆積し、この中間層の上にPLD法によりCeOからなる第2の中間層12bを蒸着したもので、面内配向度はΔφ=9deg.であった。 The intermediate layer 12 is obtained by depositing a first intermediate layer 12a made of Ce 2 Zr 2 O 7 by the MOD method and depositing a second intermediate layer 12b made of CeO 2 on the intermediate layer by the PLD method. The in-plane orientation degree is Δφ = 9 deg. Met.

超電導層13は、TFA―MOD法を用いて複合基板上に積層したもので、YBa1.5Cuからなる第1の超電導層13a、SmBa1.5Cuからなる第2の超電導層13b及びYBa2.0Cuからなる第3の超電導層13cを順次積層した3層構造を有する。 The superconducting layer 13 is laminated on the composite substrate using the TFA-MOD method, and the first superconducting layer 13a made of YBa 1.5 Cu 3 O y and the second made of SmBa 1.5 Cu 3 O y . The superconducting layer 13b and the third superconducting layer 13c made of YBa 2.0 Cu 3 O y are sequentially stacked.

上記の超電導層13は、以下の方法により形成した。まず、Y―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をY:Ba:Cuのモル比が1:1.5:3となるように2―オクタノン中に混合した混合溶液をディップコーティング法を用いて複合基板上に塗布し、水蒸気モル分率2.0%、760Torrの酸素ガス雰囲気中で最高加熱温度380℃に加熱した後、常温まで炉冷して仮焼膜を形成し、この工程を繰り返して第1の超電導層の仮焼膜を複数層形成した。この仮焼膜上にSm―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をSm:Ba:Cuのモル比が1:1.5:3となるように2―オクタノン中に混合した混合溶液を用いて上記と同様の方法により第2の超電導層の仮焼膜を複数層形成した後、Y―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をY:Ba:Cuのモル比が1:2:3となるように2―オクタノン中に混合した混合溶液を用いて上記と同様の方法により第3の超電導層の仮焼膜を複数層形成した。   The superconducting layer 13 was formed by the following method. First, dip coating a mixed solution in which Y-TFA salt, Ba-TFA salt and Cu naphthenate were mixed in 2-octanone so that the molar ratio of Y: Ba: Cu was 1: 1.5: 3. After coating on a composite substrate using a method, heating to a maximum heating temperature of 380 ° C. in an oxygen gas atmosphere with a water vapor molar fraction of 2.0% and 760 Torr, forming a calcined film by furnace cooling to room temperature, This process was repeated to form a plurality of calcined films of the first superconducting layer. On this calcined film, Sm-TFA salt, Ba-TFA salt and Cu naphthenate were mixed in 2-octanone so that the molar ratio of Sm: Ba: Cu was 1: 1.5: 3. After forming a plurality of calcined films of the second superconducting layer using the solution in the same manner as described above, the Y: TFA salt, Ba-TFA salt and Cu naphthenate were converted to a molar ratio of Y: Ba: Cu. A plurality of calcined films of the third superconducting layer were formed by the same method as described above using a mixed solution mixed in 2-octanone so that the ratio was 1: 2: 3.

以上のようにして第1、第2及び第3の超電導層の仮焼膜を形成した後、水蒸気分圧7.5%未満、炉内圧力760Torr未満の酸素−アルゴンガス雰囲気中で最高加熱温度700~780℃の焼成条件で結晶化熱処理、即ち、超電導体生成の熱処理を施して3層構造の超電導層13を形成した。   After forming the calcined films of the first, second and third superconducting layers as described above, the maximum heating temperature in an oxygen-argon gas atmosphere having a water vapor partial pressure of less than 7.5% and a furnace pressure of less than 760 Torr. A superconducting layer 13 having a three-layer structure was formed by performing a crystallization heat treatment under a firing condition of 700 to 780 ° C., that is, a heat treatment for generating a superconductor.

以上のようにして製造した超電導層の膜厚は1.1μmであった。この超電導線材10のJcを測定した結果、自己磁界(77K)中で[3.46×100TA/cm、3Tの外部磁界(B//c軸、77K)中で[0.83×103TA/cmの値を示した。 The film thickness of the superconducting layer manufactured as described above was 1.1 μm. The result of measuring the Jc of the superconducting wire 10, in self-field (77K) [3.46 × 10 4 ] 0T A / cm 2, 3T of the external magnetic field (B // c-axis, 77K) in [0. 83 × 10 4 ] 3T A / cm 2 .

実施例2
Sm―TFA塩に代えてNd―TFA塩を用いた他は、実施例1と同様にして、複合基板上にYBa1.5Cuからなる第1の超電導層、NdBa1.5Cuからなる第2の超電導層及びYBa2.0Cuからなる第3の超電導層を積層した超電導線材を製造した。
Example 2
A first superconducting layer made of YBa 1.5 Cu 3 O y on the composite substrate, NdBa 1.5 Cu, in the same manner as in Example 1, except that the Nd-TFA salt was used instead of the Sm-TFA salt. 3 was produced O second superconducting layer consisting of y and YBa 2.0 Cu 3 third superconducting wire and the superconducting layers are laminated in consisting of O y.

以上のようにして製造した超電導層の膜厚は1.1μmであった。この超電導線材のJcを測定した結果、自己磁界(77K)中で[3.31×100TA/cm、3Tの外部磁界(B//c軸、77K)中で[1.33×103TA/cmの値を示した。 The film thickness of the superconducting layer manufactured as described above was 1.1 μm. The result of the Jc of the superconducting wire was measured, self-field (77K) [3.31 × 10 4 ] Among 0T A / cm 2, 3T of the external magnetic field (B // c-axis, 77K) in [1.33 × 10 4 ] 3T A / cm 2 was shown.

実施例3
図1と同一部分は同符号で示した図2において、Y―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をY:Ba:Cuのモル比が1:1.5:3となるように混合した混合溶液を用いて複合基板上に第1の超電導層の仮焼膜、Nd―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をNd:Ba:Cuのモル比が1:1.5:3となるように混合した混合溶液を用いて第1の超電導層の仮焼膜上に形成した第2の超電導層の仮焼膜、Y―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をY:Ba:Cuのモル比が1:2:3となるように混合した混合溶液を用いて第2の超電導層の仮焼膜上に形成した第3の超電導層の仮焼膜及びNd―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をNd:Ba:Cuのモル比が1:2:3となるように混合した混合溶液を用いて第3の超電導層の仮焼膜上に形成した第4の超電導層の仮焼膜を順次形成した他は実施例1と同様にして、複合基板上にYBa1.5Cuからなる第1の超電導層23a、NdBa1.5Cuからなる第2の超電導層23b、YBa2.0Cuからなる第3の超電導層23c及びNdBa2.0Cuからなる第4の超電導層23dを積層した酸化物超電導線材20を製造した。
Example 3
The same parts as those in FIG. 1 are denoted by the same reference numerals in FIG. 2, and the Y-TFA salt, Ba-TFA salt and Cu naphthenate are mixed so that the molar ratio of Y: Ba: Cu is 1: 1.5: 3. The first superconducting layer calcined film, Nd-TFA salt, Ba-TFA salt, and Cu naphthenate were mixed on the composite substrate using a mixed solution mixed in a Nd: Ba: Cu molar ratio of 1: 1. Of the second superconducting layer formed on the calcined film of the first superconducting layer by using the mixed solution mixed to be 5: 3, Y-TFA salt, Ba-TFA salt and Cu Calcination of the third superconducting layer formed on the calcined film of the second superconducting layer using a mixed solution in which naphthenate is mixed so that the molar ratio of Y: Ba: Cu is 1: 2: 3 Membrane and Nd-TFA salt, Ba-TFA salt and Cu naphthenate have a Nd: Ba: Cu molar ratio of 1: 2: 3. In the same manner as in Example 1 except that the calcined film of the fourth superconducting layer formed on the calcined film of the third superconducting layer was sequentially formed using the mixed solution so as to be formed on the composite substrate. first superconducting layer 23a consisting of YBa 1.5 Cu 3 O y, the second superconducting layer 23b made of NdBa 1.5 Cu 3 O y, third superconducting layer 23c made of YBa 2.0 Cu 3 O y and NdBa 2.0 Cu 3 O y fourth oxide superconducting wire 20 having a superconducting layer 23d stacked consisting produced.

以上のようにして製造した超電導層の膜厚は1.1μmであった。この超電導線材20のJcを測定した結果、自己磁界(77K)中で[2.90×100TA/cm、3Tの外部磁界(B//c軸、77K)中で[1.75×103TA/cmの値を示した。 The film thickness of the superconducting layer manufactured as described above was 1.1 μm. The result of the Jc of the superconducting wire 20 was measured, self-field (77K) [2.90 × 10 4 ] Among 0T A / cm 2, 3T of the external magnetic field (B // c-axis, 77K) [1 in. 75 × 10 4 ] 3T A / cm 2 .

比較例1
Y―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をY:Ba:Cuのモル比が1:2:3となるように2―オクタノン中に混合した混合溶液のみを用い、他は実施例1と同様にして複合基板上にYBa2.0Cuからなる超電導層を形成して超電導線材を製造した。
Comparative Example 1
Only a mixed solution in which Y-TFA salt, Ba-TFA salt and Cu naphthenate were mixed in 2-octanone so that the molar ratio of Y: Ba: Cu was 1: 2: 3 was used. In the same manner as in Example 1, a superconducting wire made of YBa 2.0 Cu 3 O y was formed on the composite substrate to produce a superconducting wire.

以上のようにして製造した超電導層の膜厚は1.1μmであった。この超電導線材のJcを測定した結果、自己磁界(77K)中で[114×100TA/cm、3Tの外部磁界(B//c軸、77K)中で[0.50×103TA/cmの値を示した。 The film thickness of the superconducting layer manufactured as described above was 1.1 μm. As a result of measuring Jc of this superconducting wire, [0.50 × 10 4 ] in a self-magnetic field (77K) [114 × 10 4 ] 0T A / cm 2 and 3T in an external magnetic field (B // c axis, 77K). 4 ] A value of 3T A / cm 2 was shown.

比較例2
Sm―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をSm:Ba:Cuのモル比が1:2:3となるように2―オクタノン中に混合した混合溶液のみを用い、他は実施例1と同様にして複合基板上にSmBa2.0Cuからなる超電導層を形成して超電導線材を製造した。
Comparative Example 2
Only the mixed solution in which Sm-TFA salt, Ba-TFA salt and Cu naphthenate were mixed in 2-octanone so that the molar ratio of Sm: Ba: Cu was 1: 2: 3 was used. In the same manner as in Example 1, a superconducting layer made of SmBa 2.0 Cu 3 O y was formed on the composite substrate to produce a superconducting wire.

以上のようにして製造した超電導層の膜厚は1.1μmであった。この超電導線材のJcを測定した結果、自己磁界(77K)中で[2.10×100TA/cm、3Tの外部磁界(B//c軸、77K)中で[1.50×103TA/cmの値を示した。 The film thickness of the superconducting layer manufactured as described above was 1.1 μm. As a result of measuring Jc of this superconducting wire, [1.50 × 10 4 ] 0T A / cm 2 in a self magnetic field (77K) and [1.50 in an external magnetic field (B // c axis, 77K) of 3T. × 10 4 ] 3T A / cm 2 was shown.

比較例3
Nd―TFA塩、Ba―TFA塩及びCuのナフテン酸塩をNd:Ba:Cuのモル比が1:2:3となるように2―オクタノン中に混合した混合溶液のみを用い、他は実施例1と同様にして複合基板上にNdBa2.0Cuからなる超電導層を形成して超電導線材を製造した。
Comparative Example 3
Only Nd-TFA salt, Ba-TFA salt and Cu naphthenate were mixed in 2-octanone so that the molar ratio of Nd: Ba: Cu was 1: 2: 3. In the same manner as in Example 1, a superconducting layer made of NdBa 2.0 Cu 3 O y was formed on the composite substrate to produce a superconducting wire.

以上のようにして製造した超電導層の膜厚は1.1μmであった。この超電導線材のJcを測定した結果、自己磁界(77K)中で[1.65×100TA/cm、3Tの外部磁界(B//c軸、77K)中で[4.00×103TA/cmの値を示した。 The film thickness of the superconducting layer manufactured as described above was 1.1 μm. The result of the Jc of the superconducting wire was measured, self-field (77K) [1.65 × 10 4 ] Among 0T A / cm 2, 3T of the external magnetic field (B // c-axis, 77K) in [4.00 × 10 4 ] 3T A / cm 2 was shown.

以上の実施例及び比較例の結果から明らかなように、自己磁界中でのYBCO超電導体の高いJcが外部磁界の増加とともに急激に低下する大きな磁界依存性(比較例1)が、高外部磁界中で高いJcを有するSm系又はNd系のRe系超電導体と積層することにより(実施例1乃至3)著しく改善される。   As is clear from the results of the above examples and comparative examples, the large magnetic field dependency (Comparative Example 1) in which the high Jc of the YBCO superconductor in the self magnetic field rapidly decreases with the increase of the external magnetic field has a high external magnetic field. By laminating with an Sm-based or Nd-based Re-based superconductor having a high Jc (Examples 1 to 3), it is remarkably improved.

また、自己磁界中でYBCO超電導体より低いJcを有するSmBCOやNdBCO(比較例2及び3)のJcが、自己磁界中で高いJcを有するYBCO超電導体と積層することにより(実施例1乃至3)著しく改善される。   In addition, SmBCO or NdBCO (Comparative Examples 2 and 3) having a lower Jc than the YBCO superconductor in the self magnetic field is laminated with the YBCO superconductor having the higher Jc in the self magnetic field (Examples 1 to 3). ) Significant improvement.

本発明によれば、非真空で低コストプロセスであるTFA―MOD法に適した酸化物超電導線材の磁界依存性を向上させることができるため、超電導マグネット、超電導変圧器、超電導電力貯蔵装置等の超電導機器への応用が可能である。   According to the present invention, the magnetic field dependence of an oxide superconducting wire suitable for the TFA-MOD method, which is a non-vacuum and low-cost process, can be improved, so that a superconducting magnet, a superconducting transformer, a superconducting power storage device, etc. Application to superconducting equipment is possible.

本発明のReBaCu酸化物超電導層を有する酸化物超電導線材の一具体例を示す軸方向に垂直な断面図である。It is a cross-sectional view perpendicular to the axial direction showing a specific example of the oxide superconducting wire having a ReBa x Cu 3 O y oxide superconducting layer of the present invention. 本発明のReBaCu酸化物超電導層を有する酸化物超電導線材の他の具体例を示す軸方向に垂直な断面図である。It is a cross-sectional view perpendicular to the axial direction showing another specific example of the oxide superconducting wire having a ReBa x Cu 3 O y oxide superconducting layer of the present invention. 本発明のReBaCu酸化物超電導層を有する酸化物超電導線材の一実施例を示す軸方向に垂直な断面図である。It is a cross-sectional view perpendicular to the axial direction showing an embodiment of the oxide superconducting wire having a ReBa x Cu 3 O y oxide superconducting layer of the present invention. 本発明のReBaCu酸化物超電導層を有する酸化物超電導線材の他の実施例を示す軸方向に垂直な断面図である。It is a cross-sectional view perpendicular to the axial direction showing another embodiment of the oxide superconducting wire having a ReBa x Cu 3 O y oxide superconducting layer of the present invention.

符号の説明Explanation of symbols

10、20 酸化物超電導線材
11 配向金属基板
12 中間層
12a 第1の中間層
12b 第2の中間層
13 超電導層
13a、23a 第1の超電導層
13b、23b 第2の超電導層
13c、23c 第3の超電導層13c
23d 第4の超電導層
30、40、50、60 酸化物超電導線材
31 基板
32 中間層
33、43、53、63 超電導層
33a、43a、53a、63a 第1の超電導層
33b、43b、53b、63b 第2の超電導層
33c 第3の超電導層
53c、63c 第3の超電導層
63d 第4の超電導層
10, 20 Oxide superconducting wire 11 Oriented metal substrate 12 Intermediate layer 12a First intermediate layer 12b Second intermediate layer 13 Superconducting layer 13a, 23a First superconducting layer 13b, 23b Second superconducting layer 13c, 23c Third Superconducting layer 13c
23d Fourth superconducting layer 30, 40, 50, 60 Oxide superconducting wire 31 Substrate 32 Intermediate layer 33, 43, 53, 63 Superconducting layer 33a, 43a, 53a, 63a First superconducting layer 33b, 43b, 53b, 63b Second superconducting layer 33c Third superconducting layer 53c, 63c Third superconducting layer 63d Fourth superconducting layer

Claims (14)

基板上に1層又は2層以上の中間層を介して酸化物超電導層を形成した酸化物超電導線材において、前記酸化物超電導層は、ReBaCu(Reは、Y、Yb、Tm、Er、Ho、Dy、Gd、Eu、Sm、Nd又はLaから選択された少なくとも1種以上の元素を示し、x≦2及びy=6.2〜7である。以下同じ。)超電導体からなる超電導層の複数を積層した積層体により形成され、隣接する前記各超電導層を構成するRe元素の種類及び/又は組成を異なるようにしたことを特徴とする酸化物超電導線材。 In an oxide superconducting wire in which an oxide superconducting layer is formed on a substrate via one or more intermediate layers, the oxide superconducting layer is made of ReBa x Cu 3 O y (Re is Y, Yb, Tm). And at least one element selected from Er, Ho, Dy, Gd, Eu, Sm, Nd or La, where x ≦ 2 and y = 6.2 to 7. The same applies hereinafter.) From a superconductor An oxide superconducting wire characterized in that it is formed of a laminate in which a plurality of superconducting layers are laminated and the type and / or composition of the Re element constituting each adjacent superconducting layer is different. 酸化物超電導層は、中間層上に形成されたReBaCu超電導体のRe元素中に少なくともYを含む超電導層を有することを特徴とする請求項1記載の酸化物超電導線材。 The oxide superconducting wire according to claim 1, wherein the oxide superconducting layer has a superconducting layer containing at least Y in the Re element of the ReBa x Cu 3 O y superconductor formed on the intermediate layer. 酸化物超電導層は、中間層上に形成されたYBaCu超電導体からなる超電導層を有することを特徴とする請求項1記載の酸化物超電導線材。 The oxide superconducting wire according to claim 1, wherein the oxide superconducting layer has a superconducting layer made of a YBa x Cu 3 O y superconductor formed on the intermediate layer. Ba元素のモル比は、1.3≦x≦2.0の範囲内であることを特徴とする請求項1乃至3いずれか1項記載の酸化物超電導線材。   4. The oxide superconducting wire according to claim 1, wherein a molar ratio of the Ba element is in a range of 1.3 ≦ x ≦ 2.0. 5. Ba元素のモル比は、1.3≦x≦1.8の範囲内であることを特徴とする請求項4記載の酸化物超電導線材。   5. The oxide superconducting wire according to claim 4, wherein the molar ratio of Ba element is in the range of 1.3 ≦ x ≦ 1.8. 酸化物超電導層は、金属有機酸塩堆積法(MOD法)により形成されていることを特徴とする請求項1乃至5いずれか1項記載の酸化物超電導線材。   The oxide superconducting wire according to any one of claims 1 to 5, wherein the oxide superconducting layer is formed by a metal organic acid salt deposition method (MOD method). 酸化物超電導層は、TFA塩(トリフルオロ酢酸塩)を出発原料とするTFA―MOD法により形成されていることを特徴とする請求項6記載の酸化物超電導線材。   The oxide superconducting wire according to claim 6, wherein the oxide superconducting layer is formed by a TFA-MOD method using a TFA salt (trifluoroacetate) as a starting material. 基板上に1層又は2層以上の中間層を介してReBaCu超電導体の原料溶液をMOD法により塗布後、熱処理を施す工程を繰り返して複数の仮焼膜を形成した後、結晶化熱処理を施すことにより酸化物超電導線材を製造する方法において、前記各仮焼膜を構成するRe元素の種類及び/又は組成を少なくとも一部の仮焼膜において異なるようにしたことを特徴とする酸化物超電導線材の製造方法。 After a raw solution of ReBa x Cu 3 O y superconductor is applied by MOD method on a substrate through one or more intermediate layers, a plurality of calcined films are formed by repeating a heat treatment step. In the method of manufacturing an oxide superconducting wire by performing a crystallization heat treatment, the type and / or composition of the Re element constituting each calcined film is different in at least a part of the calcined film. A method of manufacturing an oxide superconducting wire. 中間層上の仮焼膜は、Re元素中に少なくともYを含むReBaCu超電導体の前駆体よりなることを特徴とする請求項8記載の酸化物超電導線材の製造方法。 The method for producing an oxide superconducting wire according to claim 8, wherein the calcined film on the intermediate layer is made of a precursor of a ReBa x Cu 3 O y superconductor containing at least Y in the Re element. 中間層上の仮焼膜は、YBaCu超電導体の前駆体よりなることを特徴とする請求項8記載の酸化物超電導線材の製造方法。 The method for producing an oxide superconducting wire according to claim 8, wherein the calcined film on the intermediate layer is made of a precursor of a YBa x Cu 3 O y superconductor. Ba元素のモル比は、1.3≦x≦2.0の範囲内であることを特徴とする請求項8乃至10いずれか1項記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to any one of claims 8 to 10, wherein a molar ratio of the Ba element is in a range of 1.3? X? 2.0. Ba元素のモル比は、1.3≦x≦1.8の範囲内であることを特徴とする請求項11記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to claim 11, wherein the molar ratio of the Ba element is in the range of 1.3 ≦ x ≦ 1.8. 複数の仮焼膜は、TFA塩を出発原料とするTFA―MOD法により形成されることを特徴とする請求項8乃至12いずれか1項記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to any one of claims 8 to 12, wherein the plurality of calcined films are formed by a TFA-MOD method using a TFA salt as a starting material. 結晶化熱処理は、Ptotal=1〜760Torrの圧力、PH2O=1〜7.5%の水蒸気分圧及びTmax=700〜800°Cの最大温度の範囲内で施されることを特徴とする請求項8乃至13いずれか1項記載の酸化物超電導線材の製造方法。 The crystallization heat treatment is characterized by being performed within a range of a pressure of P total = 1 to 760 Torr, a water vapor partial pressure of P H2O = 1 to 7.5% and a maximum temperature of T max = 700 to 800 ° C. The method for producing an oxide superconducting wire according to any one of claims 8 to 13.
JP2008251135A 2008-09-29 2008-09-29 Oxide superconducting wire and method of manufacturing the same Withdrawn JP2010086666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251135A JP2010086666A (en) 2008-09-29 2008-09-29 Oxide superconducting wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251135A JP2010086666A (en) 2008-09-29 2008-09-29 Oxide superconducting wire and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010086666A true JP2010086666A (en) 2010-04-15

Family

ID=42250445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251135A Withdrawn JP2010086666A (en) 2008-09-29 2008-09-29 Oxide superconducting wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010086666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151018A (en) * 2011-01-20 2012-08-09 National Institute Of Advanced Industrial & Technology Method of manufacturing superconductive film, and calcination deposition and superconductive film available by the same
CN105671485A (en) * 2016-01-26 2016-06-15 上海交通大学 CeO2-x nano film based on flexible metal base band and preparation method of CeO2-x nano film based on flexible metal base band

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151018A (en) * 2011-01-20 2012-08-09 National Institute Of Advanced Industrial & Technology Method of manufacturing superconductive film, and calcination deposition and superconductive film available by the same
CN105671485A (en) * 2016-01-26 2016-06-15 上海交通大学 CeO2-x nano film based on flexible metal base band and preparation method of CeO2-x nano film based on flexible metal base band

Similar Documents

Publication Publication Date Title
JP5270176B2 (en) Re-based oxide superconducting wire and method for producing the same
JP4800740B2 (en) Rare earth tape-shaped oxide superconductor and method for producing the same
JP4643522B2 (en) Tape-like thick film YBCO superconductor manufacturing method
US8409657B2 (en) Process for producing thick-film tape-shaped re-type (123) superconductor
JP4268645B2 (en) Rare earth tape oxide superconductor and composite substrate used therefor
JP2007165153A6 (en) A method for producing a thick film tape-shaped RE (123) superconductor.
JP4602911B2 (en) Rare earth tape oxide superconductor
JP5244337B2 (en) Tape-shaped oxide superconductor
JP5757718B2 (en) Manufacturing method of oxide superconducting wire
JP5027054B2 (en) Y-based oxide superconducting wire
JP2004171841A (en) Tape-shaped rare earth group oxide superconductor and manufacturing method of the same
JP2003034527A (en) Thick film of tape-like oxide superconductor and method for manufacturing it
JP2010238634A (en) Oxide superconducting wire, method of manufacturing the same, and manufacturing device of substrate used for the same
JP5562615B2 (en) Rare earth oxide superconducting wire manufacturing method
JP4579909B2 (en) Rare earth oxide superconductor and manufacturing method thereof
JP2010086666A (en) Oxide superconducting wire and method of manufacturing the same
JP5380250B2 (en) Rare earth oxide superconducting wire and method for producing the same
JP5503252B2 (en) Rare earth oxide superconducting wire
JP2009289667A (en) Oxide superconductive wire rod
JP5731236B2 (en) Manufacturing method of oxide superconducting wire
JP5591900B2 (en) Method for manufacturing thick film tape-shaped RE (123) superconductor
JP2010238633A (en) Method of manufacturing rare earth-based thick film oxide superconducting wire
JP5477395B2 (en) Oxide superconducting thin film, manufacturing method thereof, and oxide superconducting thin film wire
WO2002093590A1 (en) Oxide supercoductor in the form of tape and method for preparation thereof
JP2012174567A (en) Oxide superconductive wire material and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206