JP2012151018A - Method of manufacturing superconductive film, and calcination deposition and superconductive film available by the same - Google Patents

Method of manufacturing superconductive film, and calcination deposition and superconductive film available by the same Download PDF

Info

Publication number
JP2012151018A
JP2012151018A JP2011009535A JP2011009535A JP2012151018A JP 2012151018 A JP2012151018 A JP 2012151018A JP 2011009535 A JP2011009535 A JP 2011009535A JP 2011009535 A JP2011009535 A JP 2011009535A JP 2012151018 A JP2012151018 A JP 2012151018A
Authority
JP
Japan
Prior art keywords
film
superconducting
metal
superconducting film
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011009535A
Other languages
Japanese (ja)
Other versions
JP5729592B2 (en
Inventor
Hiroaki Matsui
浩明 松井
Toshiya Kumagai
俊弥 熊谷
Kenichi Tsukada
謙一 塚田
Tetsuo Tsuchiya
哲男 土屋
Takaaki Manabe
高明 真部
Iwao Yamaguchi
巌 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011009535A priority Critical patent/JP5729592B2/en
Publication of JP2012151018A publication Critical patent/JP2012151018A/en
Application granted granted Critical
Publication of JP5729592B2 publication Critical patent/JP5729592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a thick film, high orientation, and high critical current at a low cost, relating to thermal-treatment formation of a superconductive film by thermal decomposition of metal organic compound.SOLUTION: In manufacturing a superconductive film material having thickness around 0.6 μm to several μm, a calcination film is interposed, which has a multilayer structure in which the calcination film having such composition as corresponds to at least one RE'123 is interposed between calcination films having such composition as correspond to a plurality of RE123. As a result, a superconductive film is manufactured which has a thick film, high orientation, and high critical current exceeding 200A per 1 cm width, containing many lamination defects. Further, by replacing a part of calcination step in an applied thermal decomposition method with the irradiation treatment under the light of ultraviolet excimer lamp having a specified wavelength and intensity, a high orientation and a high critical current are available with a film thickness that is larger than in the case where all steps are performed with thermal energy.

Description

本発明は、電力輸送、電力機器、情報機器材料等の分野で用いる、超電導物質の製造方法、より詳しくは、限流器、マイクロ波フィルタ、テープ材料、線材などへの応用を目指して支持体上に超電導物質をコーティングした超電導膜の製造方法並びに該方法により得られる仮焼成膜及び超電導膜に関する。   The present invention relates to a method for producing a superconducting material used in the fields of electric power transportation, electric power equipment, information equipment, and the like, and more specifically, a support for the purpose of application to a current limiter, a microwave filter, a tape material, a wire, etc. The present invention relates to a method for producing a superconducting film coated with a superconducting material, and a temporarily fired film and a superconducting film obtained by the method.

従来、超電導膜を製造する方法として、(1)一般式(RE)BaCu(式中、REは、希土類元素を表す。)で表される高温超電導酸化物(以下、「RE123」と略称する)を構成する希土類元素を含む有機化合物溶液を、基板に塗った後に乾燥する工程、及び(2)有機成分を分解する工程(仮焼成工程)、及び(3)超電導物質を作製する工程(本焼成工程)を全て熱エネルギーにより行う、所謂塗布熱分解法が知られている(特許文献1等参照)。
しかしながら、この方法においては、0.6μm程度以下の膜厚については高い配向性が得られる一方で、0.6〜数μm程度の膜厚では配向性の制御が困難だった。
Conventionally, as a method for producing a superconducting film, (1) a high-temperature superconducting oxide (hereinafter referred to as “RE123”) represented by the general formula (RE) Ba 2 Cu 3 O 7 (wherein RE represents a rare earth element) (Hereinafter abbreviated as “)”, a step of drying an organic compound solution containing a rare earth element that is applied to a substrate, and (2) a step of decomposing organic components (preliminary firing step), and (3) producing a superconducting material. There is known a so-called coating pyrolysis method in which all the steps (main baking step) are performed by thermal energy (see Patent Document 1, etc.).
However, in this method, high orientation is obtained for a film thickness of about 0.6 μm or less, but it is difficult to control the orientation with a film thickness of about 0.6 to several μm.

そこで、本発明者らは、0.6〜数μm程度の膜厚の超電導膜の製造において、前記塗布熱分解法における仮焼成工程の一部を特定の波長と強度を持った紫外エキシマランプ光の照射処理工程(4)で置き換えることにより、仮焼成工程(2)で得られる仮焼成膜の元素分布の均一性が著しく向上し、その後の本焼成工程(3)を経て、大きい膜厚と配向性をもつ超電導膜を製造することを提案している(特許文献2参照)。
しかしながらこの方法によって得られた膜厚1μmの超電導膜の液体窒素温度での臨界電流密度(Jc)は、1.2MA/cm程度に向上したものの、この臨界電流密度と膜厚(d)との積である1cm幅あたりの臨界電流(Ic=Jc×d)として200Aは超えられなかった。
Therefore, the inventors of the present invention, in the manufacture of a superconducting film having a thickness of about 0.6 to several μm, used an ultraviolet excimer lamp light having a specific wavelength and intensity as part of the preliminary baking step in the coating pyrolysis method. By replacing with the irradiation treatment step (4), the uniformity of the elemental distribution of the pre-baked film obtained in the pre-baking step (2) is remarkably improved. It has been proposed to produce a superconducting film having orientation (see Patent Document 2).
However, although the critical current density (Jc) at the liquid nitrogen temperature of the 1 μm-thick superconducting film obtained by this method was improved to about 1.2 MA / cm 2 , the critical current density and the film thickness (d) As a critical current (Ic = Jc × d) per 1 cm width, which is a product of

一方、最近、パルスレーザー堆積(PLD)法を用いて厚膜の超電導膜を製造する方法においては、RE123超電導膜を成膜する際に、間に、RE123中の希土類金属原子とは異なる希土類金属原子(RE’)を用いた(RE’)BaCuで表される高温超電導酸化物(以下、「RE’123」と略称)あるいはCeOの薄膜を挟んで多層構造とすることにより、大きい膜厚、高い配向性及び高い臨界電流が得られている。(特許文献3、非特許文献1〜3参照) On the other hand, recently, in the method of manufacturing a thick superconducting film using the pulse laser deposition (PLD) method, when forming the RE123 superconducting film, a rare earth metal different from the rare earth metal atoms in the RE123 is interposed therebetween. A high-temperature superconducting oxide (hereinafter referred to as “RE′123”) represented by (RE ′) Ba 2 Cu 3 O 7 using atoms (RE ′) or a thin film of CeO 2 is used to form a multilayer structure. As a result, a large film thickness, high orientation, and a high critical current are obtained. (See Patent Document 3 and Non-Patent Documents 1 to 3)

特公平7−106905号公報Japanese Patent Publication No. 7-106905 特願2010−38072Japanese Patent Application No. 2010-38072 特開2008−140789号公報JP 2008-140789 A

S.R.Foltyn et al. Appl.Phys.Lett.87(2005)162505S. R. Foltyn et al. Appl. Phys. Lett. 87 (2005) 162505 A.V.Pan et al. Physica C 460−462(2007)1379A. V. Pan et al. Physica C 460-462 (2007) 1379 S.V.Pysarenko et al. Intern.J.Mod.Phys. 23(2009)3526S. V. Pysarenko et al. Intern. J. et al. Mod. Phys. 23 (2009) 3526

前述のとおり、従来の金属有機化合物の熱分解を用いた超電導膜の製造方法においては、0.6μm程度以下の膜厚については高い配向性が得られる一方で、0.6〜数μm程度の膜厚では配向性の制御が困難だった。また、塗布熱分解法における仮焼成工程の一部を特定の波長と強度を持った紫外エキシマランプ光の照射処理で置き換えることにより、大きい膜厚と配向性を得ることができたが、臨界電流は低いままであった。
一方、これまでは、0.6〜数μm程度の膜厚で、高い配向性と高い臨界電流をもつRE123層とRE’123層とが交互に積層した多層構造からなる超電導膜を得ようとした場合、その製造方法は高コストなパルスレーザー堆積法に限られていた。
As described above, in the conventional method for manufacturing a superconducting film using thermal decomposition of a metal organic compound, a high orientation is obtained for a film thickness of about 0.6 μm or less, while it is about 0.6 to several μm. It was difficult to control the orientation with the film thickness. In addition, by replacing part of the pre-baking process in the coating pyrolysis method with irradiation processing of ultraviolet excimer lamp light having a specific wavelength and intensity, a large film thickness and orientation could be obtained. Remained low.
On the other hand, until now, a superconducting film having a film thickness of about 0.6 to several μm and a multilayer structure in which RE123 layers and RE′123 layers having high orientation and high critical current are alternately laminated is obtained. In this case, the manufacturing method is limited to the high-cost pulse laser deposition method.

本発明は、こうした現状を鑑みてなされたものであって、金属有機化合物の熱分解による超電導膜の熱処理工程において、低コストで大きい膜厚、高い配向性及び1cm幅あたり200Aを超える高い臨界電流をもつ、2種類以上の希土類金属、バリウム、及び銅からなる各金属成分を必須成分として含有する酸化物超電導膜を得るための製造方法を提供することを目的とするものである。   The present invention has been made in view of the above situation, and in a heat treatment process of a superconducting film by thermal decomposition of a metal organic compound, it is low cost, has a large film thickness, high orientation, and a high critical current exceeding 200 A per 1 cm width. It is an object of the present invention to provide a production method for obtaining an oxide superconducting film containing, as essential components, two or more kinds of rare earth metals, barium, and copper.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、0.6〜数μm程度の膜厚の超電導膜の製造において、複数のRE123に対応する組成の仮焼成膜の間に、少なくとも1つのRE’123に対応する組成の仮焼成膜が介在した多層構造からなる仮焼成膜を経由することにより、大きい膜厚、高い配向性、及び1cm幅あたり200Aを超える高い臨界電流をもつ超電導膜が製造されること、及び得られた超電導膜が、PLD法で製造した多層構造からなる超電導膜とは異なる構造をもつことが判明した。すなわち、PLD法で製造した多層構造からなる超電導膜では、RE123組成とRE’123組成が分離し、両者の界面において結晶性の乱れが存在するのに対して、本発明の方法で製造した超電導膜では、REとRE’が膜全体にわたって拡散、混合した、高い密度の積層欠陥が膜中の広い範囲で存在した構造が得られる。さらに、塗布熱分解法における仮焼成工程の一部を特定の波長と強度を持った紫外エキシマランプ光の照射処理で置き換えることにより、全工程を熱エネルギーで行った場合より大きい膜厚で、より高い配向性及びより高い臨界電流が得られることが明らかとなった。   As a result of intensive studies to achieve the above object, the present inventors, as a result, produced a superconducting film having a thickness of about 0.6 to several μm between pre-fired films having a composition corresponding to a plurality of RE123. By passing through a calcined film having a multilayer structure in which a calcined film having a composition corresponding to at least one RE'123 is interposed, a large film thickness, high orientation, and a high critical current exceeding 200 A per 1 cm width are obtained. It has been found that a superconducting film having a multilayer structure is manufactured, and that the obtained superconducting film has a structure different from a superconducting film having a multilayer structure manufactured by the PLD method. That is, in the superconducting film having a multilayer structure manufactured by the PLD method, the RE123 composition and the RE′123 composition are separated, and there is a disorder of crystallinity at the interface between them. In the film, a structure in which RE and RE ′ are diffused and mixed throughout the film and a high density stacking fault exists in a wide range in the film is obtained. Furthermore, by replacing a part of the pre-baking process in the coating pyrolysis method with an irradiation process of ultraviolet excimer lamp light having a specific wavelength and intensity, the film thickness is larger than when the entire process is performed with thermal energy. It was found that high orientation and higher critical current can be obtained.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]基板上に、一般式(RE)BaCu(式中、REは、希土類元素を表す。)で表される高温超電導酸化物(以下、「RE123」とする。)に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程、及び形成された塗布膜中の有機成分を熱分解させる仮焼成工程を複数回繰り返した後、得られた仮焼成膜から超電導物質への変換を行う本焼成工程を経てエピタキシャル成長させた超電導膜を製造する方法において、
前記複数回の繰り返し中に、一般式(RE’)BaCu(式中、RE’は、RE123中の希土類原子とは異なる希土類元素を表す。)で表される高温超電導酸化物(以下、「RE’123」とする。)に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程、及び形成された塗布膜中の有機成分を熱分解させる仮焼成工程を、少なくとも1回挿入することにより、
複数のRE123に対応する組成の仮焼成膜の間に、少なくとも1つのRE’123に対応する組成の仮焼成膜が介在した多層構造からなる仮焼成膜を経由することを特徴とする超電導膜の製造方法。
[2]前記RE123層とRE’123層との一部が固溶体を形成していることを特徴とする前記[1]の超電導膜の製造方法。
[3]前記RE123層のREがYであり、RE’123層のRE’がGdである前記[1]又は[2]の超電導膜の製造方法。
[4]前記仮焼成工程の前に、KrCl紫外エキシマランプ光を15mW/cm以上の照度で照射する工程を行うことを特徴とする前記[1]〜[3]のいずれかの超電導膜の製造方法。
[5]前記のRE’123に対応する組成の仮焼成膜の膜厚が0.01〜0.1μmであることを特徴とする前記[1]〜[4]のいずれかの超電導膜の製造方法。
[6]前記超電導膜が、膜厚0.6μm以上の厚膜であることを特徴とする前記[1]〜[5]のいずれかの超電導膜の製造方法。
[7]前記仮焼成工程を、露点が20℃以上の水蒸気を含む雰囲気中で行うことを特徴とする前記[1]〜[6]のいずれかの超電導膜の製造方法。
[8]前記金属含有化合物の有機溶媒溶液が、希土類元素、バリウム、及び銅からなる各金属成分を必須成分として含有することを特徴とする前記[1]〜[7]のいずれかの超電導厚膜の製造方法。
[9]前記金属含有化合物の有機溶媒溶液が、希土類元素、バリウム、及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解して調製された均一な溶液であることを特徴とする前記[1]〜[8]のいずれかの超電導膜の製造方法。
[10]前記の金属カルボン酸塩、金属アセチルアセトナト、及びカルボン酸のうち少なくとも1種がハロゲンを含むことを特徴とする前記[9]の超電導膜の製造方法。
[11]前記基板が、金属酸化物の単結晶あるいは単結晶に、中間層として前者と異なる少なくとも1種の金属酸化物薄膜を形成した複合体であることを特徴とする前記[1]〜[10]のいずれかの超電導膜の製造方法。
[12]前記基板が、チタン酸ストロンチウム、ランタンアルミネート、ネオジムガレート、イットリウムアルミネート、酸化ランタンストロンチウムタンタルアルミニウムなどのペロブスカイト関連化合物、イットリア安定化ジルコニア、サファイア、及び酸化マグネシウムから選ばれることを特徴とする前記[11]の超電導膜の製造方法。
[13]前記中間層が、酸化セリウム、酸化イットリウム、酸化ジルコニウム、ランタンマンガネート及びガドリニウムジルコネートのうち少なくとも1種からなることを特徴とする前記[11]又は[12]に記載の超電導膜の製造方法。
[14]前記[1]〜[13]のいずれかの超電導膜の製造方法における仮焼成工程の後に得られる、各層内で元素分布の均一な多層構造からなることを特徴とする仮焼成膜。
[15]前記[1]〜[13]のいずれかの超電導膜の製造方法における本焼成工程の後に得られる、多数の積層欠陥を含むことを特徴とする超電導膜。
[16]CuKα線を用いたX線回折ピーク2θ=12.9±0.1°の強度が、RE123 001ピークに対して5%以上であることを特徴とする前記[15]の超電導膜。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A high-temperature superconducting oxide (hereinafter referred to as “RE123”) represented by a general formula (RE) Ba 2 Cu 3 O 7 (wherein RE represents a rare earth element) on a substrate. After repeating the process of applying and drying an organic solvent solution of a metal-containing compound formulated so as to have a corresponding metal seed composition, and the pre-baking process of thermally decomposing organic components in the formed coating film, multiple times In the method for producing a superconducting film epitaxially grown through a main firing step for converting the obtained pre-fired film into a superconducting material,
The high temperature superconducting oxide represented by the general formula (RE ′) Ba 2 Cu 3 O 7 (wherein RE ′ represents a rare earth element different from the rare earth atom in RE123) during the plurality of repetitions. (Hereinafter referred to as “RE'123”) a step of applying and drying an organic solvent solution of a metal-containing compound formulated so as to have a metal seed composition, and an organic component in the formed coating film By inserting a pre-baking step for thermally decomposing at least once,
A superconducting film having a multilayer structure in which at least one temporary fired film having a composition corresponding to RE′123 is interposed between the temporary fired films having a composition corresponding to a plurality of RE123. Production method.
[2] The method for manufacturing a superconducting film according to [1], wherein a part of the RE123 layer and the RE′123 layer forms a solid solution.
[3] The method of manufacturing a superconducting film according to [1] or [2], wherein RE of the RE123 layer is Y and RE ′ of the RE′123 layer is Gd.
[4] The superconducting film according to any one of [1] to [3], wherein a step of irradiating KrCl ultraviolet excimer lamp light with an illuminance of 15 mW / cm 2 or more is performed before the preliminary baking step. Production method.
[5] Manufacture of a superconducting film according to any one of [1] to [4], wherein the pre-fired film having a composition corresponding to RE′123 has a thickness of 0.01 to 0.1 μm. Method.
[6] The method for producing a superconducting film according to any one of [1] to [5], wherein the superconducting film is a thick film having a thickness of 0.6 μm or more.
[7] The method for producing a superconducting film according to any one of [1] to [6], wherein the temporary baking step is performed in an atmosphere containing water vapor having a dew point of 20 ° C. or higher.
[8] The superconducting thickness according to any one of [1] to [7], wherein the organic solvent solution of the metal-containing compound contains each metal component composed of rare earth elements, barium, and copper as essential components. A method for producing a membrane.
[9] An organic solvent solution of the metal-containing compound is mixed with a metal carboxylate having 1 to 8 carbon atoms and / or metal acetylacetonate powder of a metal species containing rare earth elements, barium, and copper, and pyridine and After adding at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to produce a metal complex and volatilizing an excess solvent, 1 having 1 to 8 carbon atoms The method for producing a superconducting film according to any one of the above [1] to [8], which is a homogeneous solution prepared by dissolving in a monovalent linear alcohol and / or water.
[10] The method for producing a superconducting film according to [9], wherein at least one of the metal carboxylate, metal acetylacetonate, and carboxylic acid contains halogen.
[11] The above-mentioned [1] to [1], wherein the substrate is a metal oxide single crystal or a composite in which at least one metal oxide thin film different from the former is formed as an intermediate layer on a single crystal. [10] The method for producing a superconducting film according to any one of [10].
[12] The substrate is selected from perovskite related compounds such as strontium titanate, lanthanum aluminate, neodymium gallate, yttrium aluminate, lanthanum strontium tantalum aluminum oxide, yttria stabilized zirconia, sapphire, and magnesium oxide. [11] The method for producing a superconducting film according to [11].
[13] The superconducting film according to [11] or [12], wherein the intermediate layer is made of at least one of cerium oxide, yttrium oxide, zirconium oxide, lanthanum manganate, and gadolinium zirconate. Production method.
[14] A temporarily fired film comprising a multilayer structure having a uniform element distribution in each layer, which is obtained after the temporary firing step in the method for producing a superconducting film according to any one of [1] to [13].
[15] A superconducting film comprising a number of stacking faults obtained after the main firing step in the method for producing a superconducting film according to any one of [1] to [13].
[16] The superconducting film according to [15], wherein an intensity of an X-ray diffraction peak 2θ = 12.9 ± 0.1 ° using CuKα ray is 5% or more with respect to a RE123001 peak.

本発明の超電導膜の製造方法によれば、複数のRE123に対応する組成の仮焼成膜の間に、少なくとも1つのRE’123に対応する組成の仮焼成膜が介在した多層構造からなる仮焼成膜を経由することによって、仮焼成工程後は、各仮焼成膜内で元素分布が均一な多層構造からなる仮焼成膜が得られるとともに、本焼成工程の後では、多数の積層欠陥が含まれるようになるので、膜厚が大きい場合でも、超電導特性が優れた配向性の高い超電導膜を、低コストで、製造効率よく、大量に生産できる。また、仮焼成工程における雰囲気に水蒸気を含ませることにより、より高い臨界電流密度を有する超電導膜を得ることができる。   According to the method of manufacturing a superconducting film of the present invention, a pre-baked film having a multilayer structure in which at least one pre-baked film having a composition corresponding to RE′123 is interposed between a plurality of pre-baked films having a composition corresponding to RE123. By passing through the film, after the preliminary firing step, a temporary fired film having a multilayer structure in which the element distribution is uniform in each temporary fired film is obtained, and after the main firing step, many stacking faults are included. Therefore, even when the film thickness is large, a superconducting film with excellent superconducting properties and high orientation can be produced in large quantities at low cost with high production efficiency. In addition, a superconducting film having a higher critical current density can be obtained by including water vapor in the atmosphere in the preliminary firing step.

本発明における超電導膜の製造プロセス概略図Schematic diagram of manufacturing process of superconducting film in the present invention 本発明における仮焼成膜の例を示す概略図Schematic showing an example of a pre-fired film in the present invention 実施例3における、RE(=Y)123とRE’(=Gd)123とに対応する組成の仮焼成膜が交互に積層した多層構造からなる仮焼成膜の断面EDS像A cross-sectional EDS image of the pre-fired film having a multilayer structure in which the pre-fired films having compositions corresponding to RE (= Y) 123 and RE ′ (= Gd) 123 are alternately stacked in Example 3. 実施例3における、RE(=Y)123とRE’(=Gd)123とに対応する組成の仮焼成膜が交互に積層した多層構造からなる仮焼成膜を経由して作製した超電導膜のX線回折パターン(上段)と、比較例2における、RE(=Y)123のみに対応する組成の仮焼成膜を用いて作製した超電導膜のX線回折パターン(下段)との比較X of the superconducting film produced through the pre-fired film having a multilayer structure in which the pre-fired films having the compositions corresponding to RE (= Y) 123 and RE ′ (= Gd) 123 are alternately laminated in Example 3. Comparison between the line diffraction pattern (upper stage) and the X-ray diffraction pattern (lower stage) of a superconducting film produced using a pre-fired film having a composition corresponding to only RE (= Y) 123 in Comparative Example 2 実施例3における、RE(=Y)123とRE’(=Gd)123とに対する組成の仮焼成膜が交互に積層した多層構造からなる仮焼成膜を経由して作製した超電導膜の断面TEM像(左側)と、比較例2における、RE(=Y)123のみに対応する組成の仮焼成膜を用いて作製した超電導膜の断面TEM像(右側)との比較A cross-sectional TEM image of a superconducting film produced through a pre-fired film having a multilayer structure in which pre-fired films having compositions corresponding to RE (= Y) 123 and RE ′ (= Gd) 123 are alternately laminated in Example 3. Comparison between (left side) and a cross-sectional TEM image (right side) of a superconducting film manufactured using a pre-fired film having a composition corresponding to only RE (= Y) 123 in Comparative Example 2

図1は、本発明による超電導膜の製造プロセスを示す概略図である。
図1に示すように、本発明の方法は、(1)支持体上に、RE123に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程(塗布/乾燥工程)、及び(2)形成された塗布膜中の有機成分を熱分解させる仮焼成工程を複数回繰り返した後、(3)得られた仮焼成膜から超電導物質への変換を行う本焼成工程を経てエピタキシャル成長させた超電導膜を製造する方法において、
前記複数回の繰り返し中に、(1’)RE’123に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程、及び形成された塗布膜中の有機成分を熱分解させる仮焼成工程(2)を、少なくとも1回挿入することにより、複数のRE123に対応する組成の仮焼成膜の間に、少なくとも1つのRE’123に対応する組成の仮焼成膜が介在した多層構造からなる仮焼成膜を経由することを特徴とするものである。
そして、該多層構造からなる仮焼成膜を経由することによって、仮焼成工程(2)の後では、各層内で元素分布が均一な多層構造からなる仮焼成膜が得られるとともに、本焼成工程(3)の後では、多数の構造欠陥を含むようになるので、膜厚が大きい場合でも、超電導特性が優れた配向性の高い超電導膜を、低コストで、製造効率よく、大量に生産できる。
また、工程(2)の前に、KrClエキシマランプ光を15mW/cm以上の照度で照射する工程(4)を行うこと、および工程(2)を、露点が20℃以上の水蒸気を含む雰囲気中で行うことにより、高い臨界電流を有する超電導膜を得ることができる。
FIG. 1 is a schematic view showing a manufacturing process of a superconducting film according to the present invention.
As shown in FIG. 1, in the method of the present invention, (1) a step of applying an organic solvent solution of a metal-containing compound formulated so as to have a metal seed composition corresponding to RE123 on a support and drying ( (Applying / drying step) and (2) Pre-baking step of thermally decomposing organic components in the formed coating film is repeated a plurality of times, and (3) Conversion of the obtained pre-baked film to a superconducting material is performed. In the method of manufacturing a superconducting film epitaxially grown through the main firing step,
Applying and drying an organic solvent solution of a metal-containing compound formulated so as to have a metal seed composition corresponding to (1 ′) RE′123 during the plurality of repetitions, and in the formed coating film The provisional baking step (2) for thermally decomposing the organic component of at least one is inserted at least once, so that the temporary baking film having the composition corresponding to at least one RE′123 is interposed between the temporary baking films having the composition corresponding to the plurality of RE123. It is characterized by going through a temporary fired film having a multilayer structure with a fired film interposed.
Then, by passing through the provisionally fired film having the multilayer structure, after the provisional firing step (2), a provisionally fired film having a multilayer structure in which the element distribution is uniform in each layer is obtained, and the firing step ( After 3), a large number of structural defects are included. Therefore, even when the film thickness is large, a highly oriented superconducting film having excellent superconducting characteristics can be produced in a large amount at a low cost with high production efficiency.
Further, before step (2), performing step (4) of irradiating KrCl excimer lamp light with an illuminance of 15 mW / cm 2 or more, and performing step (2) in an atmosphere containing water vapor with a dew point of 20 ° C. or more By performing the process in a superconducting film having a high critical current can be obtained.

図2は、本発明の製造方法により得られる、多層構造からなる仮焼成膜の例を模式的に示す概略図である。
図2の左側に示す例では、(1)塗布/乾燥工程、及び(2)仮焼成工程を3回繰り返した後、(1’)塗布/乾燥工程、及び(2)仮焼成工程を挿入し、さらに、(1)塗布/乾燥工程、及び(2)仮焼成工程を3回繰り返して作製された、合計7層の多層構造からなる仮焼成膜の例を示している。
また、図2の右側に示す例では、(1)塗布/乾燥工程、及び(2)仮焼成工程を2回繰り返した後、(1’)塗布/乾燥工程、及び(2)仮焼成工程を挿入し、さらに、(1)塗布/乾燥工程、及び(2)仮焼成工程を2回繰り返した後、(1’)塗布/乾燥工程、及び(2)仮焼成工程を挿入し、最後に、(1)塗布/乾燥工程、及び(2)仮焼成工程を2回繰り返して作製された、合計8層の多層構造からなる仮焼成膜の例を示している。
FIG. 2 is a schematic view schematically showing an example of a temporarily fired film having a multilayer structure obtained by the production method of the present invention.
In the example shown on the left side of FIG. 2, (1) coating / drying step and (2) temporary baking step are repeated three times, and then (1 ′) coating / drying step and (2) temporary baking step are inserted. Further, an example of a temporarily fired film having a multilayer structure of a total of 7 layers, which is produced by repeating (1) the coating / drying step and (2) the temporary firing step three times is shown.
In the example shown on the right side of FIG. 2, after (1) coating / drying step and (2) temporary baking step are repeated twice, (1 ′) coating / drying step and (2) temporary baking step are performed. After further inserting (1) coating / drying step and (2) temporary baking step twice, (1 ′) coating / drying step and (2) temporary baking step are inserted, and finally, The example of the temporary baking film | membrane which consists of a multilayer structure of a total of 8 layers produced by repeating (1) application | coating / drying process and (2) temporary baking process twice is shown.

本発明の多層構造からなる仮焼成膜は、これらの例に限定されるものではなく、複数のRE123に対応する組成の仮焼成膜の間に、少なくとも1つのRE’123に対応する組成の仮焼成膜が介在した多層構造からなる仮焼成膜であればよく、例えば、図2において、(1’)塗布/乾燥工程、及び(2)仮焼成工程を続けて2回挿入することもできる。   The temporarily fired film having a multilayer structure of the present invention is not limited to these examples, and a temporary fired film having a composition corresponding to at least one RE′123 is interposed between the temporarily fired films having a composition corresponding to a plurality of RE123. A temporary fired film having a multilayer structure in which the fired film is interposed may be used. For example, in FIG. 2, (1 ′) the coating / drying process and (2) the temporary baking process can be inserted twice in succession.

本発明の多層構造からなる仮焼成膜において、仮焼成膜の層の数は特に限定されるものではなく、本発明の方法で得られる超電導膜の膜厚が、0.6μm以上の厚膜となるものであれば良い。
すなわち、仮焼成膜の数及び膜厚は、最終目的物である超電導膜の膜厚と、前記の繰り返し工程を何回行うかの関係で、適宜決定できる。しかしながら、前記のRE123に対応する組成の仮焼成膜の1回の工程で形成できる膜厚は、本焼成後の膜厚に相当する膜厚で表して(以下、本明細書等において、「膜厚」というときは、本焼成後の膜厚に相当する膜厚をいうものとする。)、最大1μmである。
また、前記のRE123に対応する組成の仮焼成膜の間に介在する前記のRE’123に対応する組成の仮焼成膜は、その膜厚が0.01〜0.1μmである。膜厚が、0.01μm未満では、目的とする効果が得られず、一方、0.1μmを超える場合には、臨界電流密度(Jc)が低下してしまう。
In the pre-fired film having the multilayer structure of the present invention, the number of layers of the pre-fired film is not particularly limited, and the superconducting film obtained by the method of the present invention has a thickness of 0.6 μm or more. If it becomes.
That is, the number and film thickness of the temporarily fired films can be determined as appropriate depending on the film thickness of the superconducting film, which is the final object, and how many times the above repeating process is performed. However, the film thickness that can be formed in one step of the pre-baked film having the composition corresponding to RE123 is expressed by the film thickness corresponding to the film thickness after the main baking (hereinafter referred to as “film” in this specification and the like). The term “thickness” refers to a film thickness corresponding to the film thickness after the main firing.), A maximum of 1 μm.
The pre-baked film having the composition corresponding to the RE ′ 123 interposed between the pre-baked films having the composition corresponding to the RE 123 has a film thickness of 0.01 to 0.1 μm. If the film thickness is less than 0.01 μm, the intended effect cannot be obtained. On the other hand, if the film thickness exceeds 0.1 μm, the critical current density (Jc) decreases.

以下、本発明の超電導膜の製造方法について、順に説明する。
[金属含有化合物の有機溶媒溶液の調製工程]
本発明の方法に用いられる、金属含有化合物の有機溶媒溶液には、希土類元素(RE)又は(RE’)、バリウム(Ba)、及び銅(Cu)からなる各金属成分を必須成分として含有する。この溶液は、酸化物超電導膜作製のために用いられるものであり、又、加熱処理を行って、これらの金属成分を含有する無機化合物を合成するために用いることができる。
Hereinafter, the superconducting film manufacturing method of the present invention will be described in order.
[Preparation process of organic solvent solution of metal-containing compound]
The organic solvent solution of the metal-containing compound used in the method of the present invention contains each metal component consisting of rare earth elements (RE) or (RE ′), barium (Ba), and copper (Cu) as essential components. . This solution is used for producing an oxide superconducting film, and can be used for synthesizing an inorganic compound containing these metal components by performing a heat treatment.

RE123層を構成する希土類元素(RE)には、イットリウム(Y)及びランタノイド元素である、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)が含有される。また、これらの希土類元素はこれらの中から選ばれる複数の金属を用いることもできる。
超電導膜を製造することを目的とする場合には、上記の希土類元素、バリウム及び銅の必須金属成分の他に、上記以外の希土類元素として例えばセリウム(Ce)やプラセオジム(Pr)等、カルシウム、又はストロンチウム等の他の成分を少量含ませることにより、得られる超電導膜の電気的特性を変化させることができる。
また、この他にも超電導膜を形成する際に用いることができる金属種として用いることができるものであれば、適宜用いることができる。
The rare earth element (RE) constituting the RE123 layer includes lanthanum (La), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium (Yt) and lanthanoid elements. Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) are contained. Moreover, these rare earth elements can also use the some metal chosen from these.
For the purpose of producing a superconducting film, in addition to the above-mentioned rare earth elements, barium and copper essential metal components, as rare earth elements other than the above, for example, cerium (Ce) or praseodymium (Pr), calcium, Alternatively, by including a small amount of other components such as strontium, the electrical characteristics of the resulting superconducting film can be changed.
In addition, any metal species that can be used as a metal species that can be used when forming a superconducting film can be used as appropriate.

一方、RE123層と積層させるRE’123層を構成する希土類元素(RE’)としては、上記のイットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のうち、REと異なる元素が選ばれる。これらの希土類元素はこれらの中から選ばれる複数の元素を用いることもできる。
また、RE123層の場合と同様にして、必須元素成分の他に、カルシウム、又はストロンチウム等の他の成分を少量含ませることにより、得られる超電導膜の電気的特性を変化させることができる。
さらに、この他にも超電導膜を製造する際に用いることができる金属種として用いることができるものであれば、適宜用いることができる。
On the other hand, as the rare earth element (RE ′) constituting the RE′123 layer laminated with the RE123 layer, the above yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), Of samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) Among them, an element different from RE is selected. A plurality of elements selected from these rare earth elements can be used.
Similarly to the RE123 layer, the electrical characteristics of the resulting superconducting film can be changed by adding a small amount of other components such as calcium or strontium in addition to the essential element components.
Furthermore, any other metal species can be used as long as it can be used as a metal species that can be used when manufacturing a superconducting film.

希土類元素、バリウム、銅からなる超電導膜を製造しようとする場合には、希土類元素、バリウム及び銅の比率として、1:2:3の割合の希土類123系(以下たとえば希土類元素がイットリウムの場合、Y123という)超電導膜、1:2:4の割合の希土類124系(以下たとえば希土類元素がイットリウムの場合、Y124という)超電導膜などが存在する。したがって、原料溶液における前記元素種の混合割合は、モル比で、1:2:3〜1:2:4のものが好ましいが、たとえばバリウムが欠損した組成などでも好ましい結果を得ることができるため、この割合にしばられるものではない。
又、上記溶液に銀などの1価金属、カルシウムやストロンチウムなどの2価金属、超電導相を構成する必須希土類元素以外の希土類元素などの3価金属、ジルコニウム、ハフニウムなどの4価金属を添加することにより、添加元素又はその化合物が含有された超電導体を作製することが可能である。カルシウムやストロンチウム等の添加元素又はその化合物が含有された超電導体は、それらが含有されない超電導体とは異なる電気的特性を有するため、溶液中の金属の比率を制御することで、超電導体の電気的特性、例えば臨界温度や臨界電流密度などの諸特性を制御することが可能となる。
When a superconducting film composed of rare earth elements, barium and copper is to be manufactured, the ratio of rare earth elements, barium and copper is 1: 2: 3 rare earth 123 series (for example, when the rare earth element is yttrium, A superconducting film having a ratio of 1: 2: 4 (hereinafter referred to as Y124 when the rare earth element is yttrium, for example). Therefore, the mixing ratio of the element species in the raw material solution is preferably a molar ratio of 1: 2: 3 to 1: 2: 4. However, for example, a preferable result can be obtained even in a composition lacking barium. , This ratio is not something that can be tied.
Moreover, monovalent metals such as silver, divalent metals such as calcium and strontium, trivalent metals such as rare earth elements other than essential rare earth elements constituting the superconducting phase, and tetravalent metals such as zirconium and hafnium are added to the above solution. Thus, it is possible to produce a superconductor containing an additive element or a compound thereof. Superconductors containing additive elements such as calcium and strontium or their compounds have different electrical characteristics from superconductors that do not contain them, so by controlling the ratio of metals in the solution, It is possible to control various characteristics such as critical temperature and critical current density.

本発明の製造方法に用いる前記溶液は、希土類元素、バリウム及び銅を含有する金属種の金属イオンに対して、ピリジン及び/又は少なくとも1種の三級アミンと、少なくとも1種の炭素数1〜8のカルボン酸基と、必要に応じてアセチルアセトナト基とが配位した金属錯体が、炭素数が1〜8の直鎖アルコール及び/又は水に溶解されて、均一溶液とされている。   The said solution used for the manufacturing method of this invention is a pyridine and / or at least 1 type of tertiary amine, and at least 1 type of C1-C1 with respect to the metal ion of the metal species containing rare earth elements, barium, and copper. A metal complex in which a carboxylic acid group of 8 and an acetylacetonato group are coordinated as necessary is dissolved in a linear alcohol having 1 to 8 carbon atoms and / or water to form a uniform solution.

該金属錯体における配位子の1つである「三級アミン」としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等が用いられ、また、「炭素数1〜8のカルボン酸基」のカルボン酸としては、例えば、2−エチルヘキサン酸、カプリル酸、酪酸、プロピオン酸、酢酸、シュウ酸、クエン酸、乳酸、安息香酸、サリチル酸等が挙げられる。   As the “tertiary amine” which is one of the ligands in the metal complex, for example, trimethylamine, triethylamine, tripropylamine, tributylamine and the like are used, and “a carboxylic acid group having 1 to 8 carbon atoms” is used. Examples of the carboxylic acid include 2-ethylhexanoic acid, caprylic acid, butyric acid, propionic acid, acetic acid, oxalic acid, citric acid, lactic acid, benzoic acid, and salicylic acid.

また、前記の炭素数1〜8の1価の直鎖アルコールとしては、メタノール、エタノール、n−プロパノール、n−ブタノール、n−ペンタノール等が上げられ、これらの混合物を用いることもできる。
また、金属錯体を溶解するのに、水を用いることもでき、また、1種類以上の前記の炭素数1〜8の1価の直鎖アルコールと水の混合物を用いることもできる。
Moreover, as said C1-C8 monovalent | monohydric linear alcohol, methanol, ethanol, n-propanol, n-butanol, n-pentanol etc. are raised, These mixtures can also be used.
Further, water can be used to dissolve the metal complex, and a mixture of one or more kinds of the monovalent linear alcohol having 1 to 8 carbon atoms and water can also be used.

また、本発明の製造に用いるこの均一溶液は、好ましくは、前記の炭素数が1〜8の直鎖アルコールに溶解した後、さらに、多価アルコール類を添加して、均一溶液とされているものが用いられる。多価アルコール類を添加することにより、前述の仮焼成工程、及び本焼成工程におけるクラックの発生を、防止することができるためである。
前記多価アルコール類としては、エチレングリコール、ヘキシレングリコール、オクチレングリコール、グリセリン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール等が挙げられる。
The homogeneous solution used in the production of the present invention is preferably made into a uniform solution by further adding polyhydric alcohols after dissolving in the linear alcohol having 1 to 8 carbon atoms. Things are used. This is because the addition of polyhydric alcohols can prevent the occurrence of cracks in the above-described preliminary firing step and main firing step.
Examples of the polyhydric alcohols include ethylene glycol, hexylene glycol, octylene glycol, glycerin, diethylene glycol, triethylene glycol, tetraethylene glycol, and propylene glycol.

本発明の超電導膜製造用溶液の調製は、具体的には、希土類元素、バリウム及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解し、好ましくは、さらに多価アルコール類を添加して、均一な溶液とすることにより調製される。
また、前記の金属カルボン酸塩、金属アセチルアセトナト、及びカルボン酸のうち少なくとも1種がハロゲンを含むものであってもよい。
Specifically, the preparation of the superconducting film manufacturing solution of the present invention is performed on a metal carboxylate having 1 to 8 carbon atoms and / or a metal acetylacetonate powder mixture of rare earth elements, barium and copper. , Pyridine and / or at least one tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms to produce a metal complex and volatilizing an excess solvent, It is prepared by dissolving in 8 monovalent linear alcohol and / or water, and preferably adding a polyhydric alcohol to obtain a uniform solution.
Moreover, at least 1 sort (s) among the said metal carboxylate, metal acetylacetonate, and carboxylic acid may contain a halogen.

〔原料溶液の塗布及び乾燥工程(=工程(1)、(1’))〕
この工程は、前記の溶液を、基材上に塗布して、金属含有化合物の溶液塗布膜を作製する工程である。この場合、その溶液塗布法としては、従来公知の方法、例えば、浸漬法、スピンコート法、スプレー法、ハケ塗り法等の各種の方法を用いることができる。
基材としては、各種形状の金属酸化物の単結晶あるいは単結晶に、中間層として前者と異なる少なくとも1種の金属酸化物薄膜が形成された複合体を用いることができる。この場合、基材の材料としては、チタン酸ストロンチウム、ランタンアルミネート、ネオジムガレート、イットリウムアルミネート、酸化ランタンストロンチウムタンタルアルミニウムなどのペロブスカイト関連化合物、イットリア安定化ジルコニア、サファイア、酸化マグネシウムなどが用いられる。また、中間層は、複合金属酸化物と基材との反応を防止するため及び/または両者の格子ミスマッチを緩和するために基材の表面にあらかじめ設けられるものであって、酸化セリウム、酸化イットリウム、酸化ジルコニウム、ランタンマンガネート及びガドリニウムジルコネートのうち少なくとも1種が用いられる。
このようにして基材上に作製された溶液塗布膜を、室温又は加温下で常圧又は減圧下で乾燥させる。この乾燥工程(1)又は(1’)後に続く、KrCl紫外エキシマランプ光の照射工程又は仮焼成工程の初期において乾燥を完結することができるため、この乾燥工程においては塗布膜を完全に乾燥させなくとも良い。
[Application of raw material solution and drying step (= step (1), (1 ′))]
In this step, the solution is applied onto a substrate to produce a solution-coated film of a metal-containing compound. In this case, as the solution coating method, conventionally known methods, for example, various methods such as a dipping method, a spin coating method, a spray method, and a brush coating method can be used.
As the substrate, it is possible to use various shapes of metal oxide single crystals or composites in which at least one metal oxide thin film different from the former is formed as an intermediate layer. In this case, perovskite-related compounds such as strontium titanate, lanthanum aluminate, neodymium gallate, yttrium aluminate, lanthanum strontium tantalum aluminum oxide, yttria-stabilized zirconia, sapphire, magnesium oxide and the like are used. Further, the intermediate layer is provided in advance on the surface of the base material in order to prevent the reaction between the composite metal oxide and the base material and / or to relieve the lattice mismatch between the two, and cerium oxide, yttrium oxide At least one of zirconium oxide, lanthanum manganate and gadolinium zirconate is used.
Thus, the solution coating film produced on the base material is dried under normal pressure or reduced pressure at room temperature or under heating. Since the drying can be completed at the initial stage of the irradiation step of the KrCl ultraviolet excimer lamp light or the preliminary baking step subsequent to the drying step (1) or (1 ′), the coating film is completely dried in this drying step. Not necessary.

〔KrCl紫外エキシマランプ光の照射工程(=工程(4)〕
特許文献2には、工程(2)の前の照射工程にKrCl紫外エキシマランプを用い、且つ、照度を15mW/cm以上とすることで、0.6〜数μm程度の膜厚であっても配向性のよい超電導膜が得られることが述べられているが、この照射条件はRE123とRE’123とに対応する組成の仮焼成膜が交互に積層した多層構造からなる仮焼成膜を作製する場合についても有効である。
[KrCl ultraviolet excimer lamp light irradiation step (= step (4)]
In Patent Document 2, a film thickness of about 0.6 to several μm is obtained by using a KrCl ultraviolet excimer lamp in the irradiation step before step (2) and setting the illuminance to 15 mW / cm 2 or more. It is stated that a superconducting film with good orientation can be obtained, but this irradiation condition is to produce a temporarily fired film having a multilayer structure in which temporarily fired films having compositions corresponding to RE123 and RE'123 are alternately laminated. This is also effective when

〔仮焼成工程(=工程(2)〕
この工程は、前記のようにして基材上に形成された金属含有化合物の膜を加熱焼成し、その膜を、炭酸バリウム、希土類金属酸化物及び銅酸化物からなる膜に変換させる工程である。
最高焼成温度としては、400〜650℃、好ましくは450〜550℃の温度が採用され、この温度まで徐々に昇温してこの温度に20〜600分間、膜厚が0.5μm以上の場合好ましくは150〜300分間保持したのち降温する。
[Temporary firing step (= step (2)]
This step is a step of heating and baking the metal-containing compound film formed on the substrate as described above, and converting the film into a film made of barium carbonate, rare earth metal oxide, and copper oxide. .
As the maximum baking temperature, a temperature of 400 to 650 ° C., preferably 450 to 550 ° C. is adopted. The temperature is gradually raised to this temperature, and this temperature is preferably 20 to 600 minutes, preferably when the film thickness is 0.5 μm or more. The temperature is lowered after holding for 150 to 300 minutes.

また、仮焼成における酸素分圧は0.2atm以上とする。酸素分圧がこれ以下では酸素の供給が不足するため、仮焼成後に炭素に富んだ有機成分が膜中に残りやすい。この仮焼成膜中の炭素に富んだ有機成分は、本焼成を低酸素分圧下で行う際に膜を部分的に還元性にするため、Y123が不均一に生成して臨界電流密度も低くなる。   Moreover, the oxygen partial pressure in temporary baking shall be 0.2 atm or more. When the oxygen partial pressure is lower than this, the supply of oxygen is insufficient, so that an organic component rich in carbon is likely to remain in the film after temporary firing. The carbon-rich organic component in the pre-fired film partially makes the film reducible when the main calcination is carried out under a low oxygen partial pressure, so that Y123 is generated non-uniformly and the critical current density is also lowered. .

さらに、仮焼成の雰囲気を、露点が20℃以上の水蒸気をふくむ雰囲気とすることにより、高い臨界電流密度が得られる。
水蒸気を含まない場合、及び水蒸気の露点が20℃以下の場合には、仮焼成後に炭素に富んだ有機成分が膜中に残りやすく、本焼成後のY123膜の臨界電流密度が低くなる。仮焼成工程において水蒸気は、式(1)で表す水性ガス反応による炭素成分のガス化と同様の機構により、膜中の炭素成分の除去を促進するものと考えられる。
C + HO → CO + H (1)
Furthermore, a high critical current density can be obtained by setting the pre-baking atmosphere to an atmosphere containing water vapor having a dew point of 20 ° C. or higher.
When water vapor is not contained, and when the dew point of water vapor is 20 ° C. or lower, an organic component rich in carbon tends to remain in the film after temporary baking, and the critical current density of the Y123 film after the main baking becomes low. In the calcination step, water vapor is considered to promote the removal of the carbon component in the film by the same mechanism as the gasification of the carbon component by the water gas reaction represented by the formula (1).
C + H 2 O → CO + H 2 (1)

〔本焼成工程(=工程(3))〕
この工程は、前記仮焼成工程で得られた仮焼成膜を焼成して炭酸バリウムから炭酸ガスを除去しつつ、炭酸バリウムと希土類金属酸化物と銅酸化物を反応させる工程である。本発明においては、この焼成工程は、酸素分圧0.01〜100Pa、特に1〜20Paにおいて実施することが好ましい。
このような焼成条件の採用により、前記仮焼成工程で得られた仮焼成膜中の炭酸バリウムの分解が促進されるとともに、複合金属酸化物膜が形成される。また、この焼成工程では、前記のように低酸素濃度又は低酸素分圧の条件を採用することから、炭酸バリウムの分解は低められた温度で円滑に実施することができるため、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この工程における一般的な焼成温度は650〜900℃である。本発明における前記のような焼成条件により、従来見られたような基材及び/又は中間層と複合金属酸化物との間の反応を実質的に防止することができる。
[Main firing step (= step (3))]
This step is a step of reacting barium carbonate, rare earth metal oxide, and copper oxide while firing the pre-fired film obtained in the pre-baking step to remove carbon dioxide from the barium carbonate. In the present invention, this firing step is preferably carried out at an oxygen partial pressure of 0.01 to 100 Pa, particularly 1 to 20 Pa.
By adopting such firing conditions, decomposition of barium carbonate in the temporarily fired film obtained in the temporary firing process is promoted, and a composite metal oxide film is formed. Further, in this firing step, since the conditions of low oxygen concentration or low oxygen partial pressure are adopted as described above, the decomposition of barium carbonate can be carried out smoothly at a reduced temperature. Alternatively, the reaction between the intermediate layer and the composite metal oxide can be substantially avoided. The general firing temperature in this step is 650 to 900 ° C. According to the firing conditions as described above in the present invention, it is possible to substantially prevent the reaction between the base material and / or the intermediate layer and the composite metal oxide as conventionally observed.

〔酸化工程〕
この工程は、前記本焼成工程で形成された複合金属酸化物膜を、分子状酸素を用いて酸化処理し、酸素を吸収させて、超電導性を有する複合金属酸化物膜とする工程である。
前記本焼成工程では、雰囲気中の酸素分圧が0.01〜100Paとなるように保持したため、得られる複合金属酸化物膜の超電導特性は不満足のものであるが、この酸化工程により超電導特性にすぐれた複合金属酸化物膜に変換することができる。
この酸素を吸収させる酸化工程は、酸素分圧0.2〜1.2atmで行わせることが好ましい。
分子状酸素としては、純酸素又は空気が用いられる。酸化剤として空気を用いる場合、その中に含まれる炭酸ガスによって膜の超電導特性が悪影響を受けることから、空気中の炭酸ガス分圧は、脱炭酸により、1Pa以下、好ましくは0.5Pa以下に調整するのがよい。
この酸化工程は、中高温で行われ、基材及び/又は中間層と複合金属酸化物との間の反応を実質的に回避させることができる。この酸化工程の温度は、一般には、300〜900℃である。本発明の方法を実施する場合、前記仮焼成工程、本焼成工程及び酸化工程は、同一装置内で連続的に実施することができる。
[Oxidation process]
This step is a step in which the composite metal oxide film formed in the main firing step is oxidized using molecular oxygen to absorb oxygen to form a composite metal oxide film having superconductivity.
In the main firing step, since the oxygen partial pressure in the atmosphere is maintained at 0.01 to 100 Pa, the superconducting properties of the obtained composite metal oxide film are unsatisfactory. It can be converted into an excellent composite metal oxide film.
The oxidation step for absorbing oxygen is preferably performed at an oxygen partial pressure of 0.2 to 1.2 atm.
As the molecular oxygen, pure oxygen or air is used. When air is used as the oxidant, the superconducting properties of the film are adversely affected by the carbon dioxide contained therein, so the carbon dioxide partial pressure in the air is reduced to 1 Pa or less, preferably 0.5 Pa or less by decarboxylation. It is good to adjust.
This oxidation step is performed at a medium to high temperature, and the reaction between the substrate and / or the intermediate layer and the composite metal oxide can be substantially avoided. The temperature of this oxidation process is generally 300 to 900 ° C. When implementing the method of this invention, the said temporary baking process, this baking process, and an oxidation process can be continuously implemented in the same apparatus.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
(実施例1)
市販品(和光純薬工業株式会社製)のイットリウム、バリウム及び銅のアセチルアセトナト粉末を、金属成分のモル比で1:2:3となるように秤量し、これらを混合して粉体混合物を得た。この混合物にピリジンおよびプロピオン酸を、粉体混合物がすべて溶解するまでの量を添加した。これを加熱処理し、過剰な前記溶媒成分(ピリジンおよびプロピオン酸)を除去し、非晶質乾固物のアセチルアセトナト基−プロピオン酸基−ピリジン配位金属錯体を得た。次に、これをメタノールに溶解させて、金属元素の割合がY:Ba:Cu=1:2:3の液体状の金属錯体(配位子としてアセチルアセトナト基、ピリジン、プロピオン酸基の3種類を含む)からなる塗布溶液(以下、「Y123溶液」とする。)を得た。溶液の濃度は、溶液1gあたり希土類金属種が0.1〜0.2ミリモル含まれる量とした。
上記の工程において、イットリウムをガドリニウムに置き換え、濃度を1gあたり希土類金属種が0.01〜0.05ミリモル含まれる量とした溶液(以下、「Gd123溶液」とする。)を調製した。
Y123溶液を、あらかじめ酸化セリウムバッファー層(膜厚0.04μm)を表面に蒸着させた1cm角のチタン酸ストロンチウム(100)基板の上にスピンコート法で塗布した。次に、スピンコートした試料を乾燥後(=工程(1))、マッフル炉で500℃まで昇温して有機成分を除去する仮焼成(=工程(2))を行った。上記工程(1)、(2)を2回繰り返した膜の上に、Gd123溶液を、上記と同様の工程で塗布・乾燥(=工程(1’))、仮焼成(=工程(2))した。その後、上記と同様の工程(1)、(2)によるY123溶液の塗布・乾燥、仮焼成を2回繰り返した。仮焼成膜中の各層の膜厚は、基板に近い順に、Y123=0.32μm、Gd123=0.02μm、Y123=0.32μmであった。なお、これらの膜厚は、断面TEM測定、および試料の重量増加とREBaCuの密度から求めた。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
Example 1
A commercially available product (manufactured by Wako Pure Chemical Industries, Ltd.) yttrium, barium and copper acetylacetonate powders are weighed so that the molar ratio of metal components is 1: 2: 3, and these are mixed to obtain a powder mixture. Got. To this mixture, pyridine and propionic acid were added in amounts until the powder mixture was completely dissolved. This was heat-treated to remove excess solvent components (pyridine and propionic acid) to obtain an amorphous dry solid acetylacetonate group-propionic acid group-pyridine coordination metal complex. Next, this is dissolved in methanol, and a liquid metal complex in which the ratio of the metal element is Y: Ba: Cu = 1: 2: 3 (3 of acetylacetonato group, pyridine, propionic acid group as a ligand) A coating solution (hereinafter referred to as “Y123 solution”) was obtained. The concentration of the solution was such that 0.1 to 0.2 mmol of rare earth metal species was contained per 1 g of the solution.
In the above steps, yttrium was replaced with gadolinium, and a solution having a concentration of 0.01 to 0.05 mmol of rare earth metal species per gram (hereinafter referred to as “Gd123 solution”) was prepared.
The Y123 solution was applied by spin coating on a 1 cm square strontium titanate (100) substrate on which a cerium oxide buffer layer (thickness: 0.04 μm) was previously deposited. Next, the spin-coated sample was dried (= step (1)), and then calcined (= step (2)) in which the temperature was raised to 500 ° C. in a muffle furnace to remove organic components. The Gd123 solution is applied and dried (= step (1 ′)) and pre-baked (= step (2)) on the film obtained by repeating the above steps (1) and (2) twice. did. Then, application | coating, drying, and temporary baking of Y123 solution by the process (1) and (2) similar to the above were repeated twice. The thickness of each layer in the pre-baked film was Y123 = 0.32 μm, Gd123 = 0.02 μm, and Y123 = 0.32 μm in the order closer to the substrate. These film thicknesses were obtained from cross-sectional TEM measurements, the increase in the weight of the sample, and the density of REBa 2 Cu 3 O 7 .

このようにY123とGd123とに対応する組成の仮焼成膜が交互に積層した多層構造からなる仮焼成膜について、本焼成工程(=工程(3))を760℃にて1時間酸素分圧10Paの気流中で行った後、大気圧で酸素を吸収させて膜厚0.66μmのY(Gd)123膜を作製した。   Thus, with respect to the temporarily fired film having a multilayer structure in which the temporarily fired films having the compositions corresponding to Y123 and Gd123 are alternately laminated, the main firing step (= step (3)) is performed at 760 ° C. for 1 hour with an oxygen partial pressure of 10 Pa. Then, oxygen was absorbed at atmospheric pressure to produce a Y (Gd) 123 film having a thickness of 0.66 μm.

得られた本焼成後の膜試料を、マックサイエンス社製X線回折装置MXP3を用いたX線回折により分析したところ、膜が(001)配向性をもつRE123構造の超電導体であり、2θ=12.9±0.1°の強度がRE123 001ピークに対して5%以上であることを確認した。
次に同装置を用いたX線極点測定によりRE123の面内配向性を調べたところ、単結晶基板上にエピタキシャル成長していることを確認した。
さらに、この膜の超電導特性を、有限会社 ハヤマ製の大面積超電導膜特性評価用コイル精密駆動装置(形式:HLN−2030)(誘導法)により評価したところ、液体窒素温度での臨界電流密度(Jc)として3.39MA/cm、1cm幅あたりの臨界電流(Ic)として224Aが得られた。
When the obtained film sample after the main firing was analyzed by X-ray diffraction using an X-ray diffractometer MXP3 manufactured by Mac Science, the film was a superconductor of RE123 structure having (001) orientation, and 2θ = It was confirmed that the intensity of 12.9 ± 0.1 ° was 5% or more with respect to the RE123001 peak.
Next, when the in-plane orientation of RE123 was examined by X-ray pole measurement using the same apparatus, it was confirmed that it was epitaxially grown on the single crystal substrate.
Furthermore, when the superconducting properties of this film were evaluated by a large-area superconducting membrane property evaluation coil precision drive device (type: HLN-2030) (induction method) manufactured by Hayama Co., Ltd., the critical current density at liquid nitrogen temperature ( Jc) was 3.39 MA / cm 2 , and 224A was obtained as the critical current (Ic) per 1 cm width.

(比較例1)
溶液としてY123溶液のみを用いた他は、実施例1と同様にして膜厚0.70μmのY123膜を作製したところ、液体窒素温度でのJcとして2.3MA/cm、1cm幅あたりのIcとして160Aが得られた。
X線回折ピークからこの膜は(001)配向性をもつRE123構造の超電導体であり、X線極点測定からエピタキシャル成長しることがわかった。しかし、X線回折パターンの2θ=12.9±0.1°の強度はRE123 001ピークに対して1%以下であった。
(Comparative Example 1)
A Y123 film having a film thickness of 0.70 μm was produced in the same manner as in Example 1 except that only the Y123 solution was used as the solution. As a result, Jc at the liquid nitrogen temperature was 2.3 MA / cm 2 and Ic per 1 cm width. As a result, 160A was obtained.
From the X-ray diffraction peak, it was found that this film is a superconductor having a RE001 structure having (001) orientation and is epitaxially grown by X-ray pole measurement. However, the intensity of 2θ = 12.9 ± 0.1 ° of the X-ray diffraction pattern was 1% or less with respect to the RE123 001 peak.

(実施例2)
原料として酢酸塩粉末を用い、粉体混合物を溶かす溶媒としてトリプロピルアミンとプロピオン酸の混合溶液を用いた他は、実施例1と同様にして膜厚0.70μmのY123膜を作製したところ、液体窒素温度でのJcとして3.14MA/cm、1cm幅あたりのIcとして222Aが得られた。
(Example 2)
When using an acetate powder as a raw material and using a mixed solution of tripropylamine and propionic acid as a solvent for dissolving the powder mixture, a Y123 film having a thickness of 0.70 μm was produced in the same manner as in Example 1, As the Jc at the liquid nitrogen temperature, 3.14 MA / cm 2 and 222 A as Ic per 1 cm width were obtained.

(実施例3)
有機成分を除去する仮焼成工程(2)の前に、KrClエキシマランプ照射(エム・ディ・エキシマ社製MEIR−S−1−200−222、照度:20mW/cm、照射時間:18分)を実施し、かつ仮焼成工程(2)において、気流に露点24℃の水蒸気を含ませた赤外炉を用いた他は、実施例2と同様にして膜厚0.81μmのY(Gd)123膜を作製したところ、液体窒素温度でのJcとして3.0MA/cm、1cm幅あたりのIcとして243Aが得られた。
また、工程(2)終了後の仮焼成膜について断面EDS測定を行ったところ、Y123層とGd123層が積層していることが確認された。図3に、本実施例で得られた多層構造からなる仮焼成膜の断面EDS像を示す。左図と右図の明るい部分は、それぞれ膜中でのY元素とGd元素の分布領域に対応する。右図で、CeO中間層にあたる領域が明るく表示されているのは、Ce元素とGd元素の特性X線の波長が近いことに起因する。仮焼成膜中の各層の膜厚は、基板に近い順に、Y123=0.39μm、Gd123=0.02μm、Y123=0.39μmであった。
(Example 3)
Irradiation with KrCl excimer lamp (MEIR-S-1-200-222, illuminance: 20 mW / cm 2 , irradiation time: 18 minutes) before the preliminary firing step (2) for removing organic components And in the pre-baking step (2), an Y (Gd) film having a thickness of 0.81 μm was obtained in the same manner as in Example 2 except that an infrared furnace in which water vapor was included in the airflow was 24 ° C. was used. When 123 films were produced, 3.0 MA / cm 2 as Jc at the liquid nitrogen temperature and 243 A as Ic per 1 cm width were obtained.
Moreover, when the cross-sectional EDS measurement was performed about the temporary baking film | membrane after completion | finish of a process (2), it was confirmed that Y123 layer and Gd123 layer have laminated | stacked. FIG. 3 shows a cross-sectional EDS image of the temporarily fired film having a multilayer structure obtained in this example. The bright portions in the left and right diagrams correspond to the distribution regions of the Y element and Gd element in the film, respectively. In the right figure, the region corresponding to the CeO 2 intermediate layer is brightly displayed because the characteristic X-ray wavelengths of the Ce element and the Gd element are close. The film thicknesses of the respective layers in the temporarily fired film were Y123 = 0.39 μm, Gd123 = 0.02 μm, and Y123 = 0.39 μm in the order closer to the substrate.

次に、工程(3)終了後に得られた本焼成膜について、X線回折および極点測定により分析したところ、膜が(001)配向性をもつRE123構造のエピタキシャル成長した超電導膜であり、2θ=12.9±0.1°の強度がRE123 001ピークに対して20%であった。図4の上段に、本実施例で得られた超電導膜のX線回折パターンを示す。
さらにこの膜の断面TEM像を撮影した。その結果を図5の左側に示す。
該図から明らかなように、REとRE’が膜全体にわたって拡散、混合した、高い密度の積層欠陥が膜中の広い範囲で存在した構造が得られていることがかわる。このような膜中に多数の積層欠陥を有する構造は、従来のPLD法で製造した多層構造からなる超電導膜ではみられない構造である。
Next, the fired film obtained after the completion of step (3) was analyzed by X-ray diffraction and pole measurement. As a result, the film was an epitaxially grown superconducting film of RE123 structure having (001) orientation, and 2θ = 12. The intensity of .9 ± 0.1 ° was 20% with respect to the RE123001 peak. The upper part of FIG. 4 shows the X-ray diffraction pattern of the superconducting film obtained in this example.
Further, a cross-sectional TEM image of this film was taken. The result is shown on the left side of FIG.
As is apparent from the figure, it can be seen that a structure in which RE and RE ′ are diffused and mixed throughout the film and high density stacking faults exist in a wide range in the film is obtained. Such a structure having a large number of stacking faults in the film is a structure that cannot be found in a superconducting film having a multilayer structure manufactured by a conventional PLD method.

(比較例2)
溶液にY123溶液のみを用いた他は、実施例3と同様にして膜厚0.65μmのY123膜を作製したところ、液体窒素温度でのJcとして2.6MA/cm、1cm幅あたりのIcとして170Aが得られた。
また、得られた本焼成膜のX線回折法および極点測定により分析したところ、膜が(001)配向性をもつRE123構造のエピタキシャル成長した超電導膜であり、2θ=12.9±0.1°の強度がRE123 001ピークに対して1%以下であった。図4の下段に、本比較例で得られた超電導膜のX線回折パターンを示す。
さらに、この超電導膜の断面TEM像を撮影した。その結果を図5の右側に示す。
図5の左右両図の比較から明らかなように、本比較例で得られた超電導膜において観測された膜中の積層欠陥は実施例3と比較して少数であった。
(Comparative Example 2)
A Y123 film having a film thickness of 0.65 μm was produced in the same manner as in Example 3 except that only the Y123 solution was used as the solution. As a result, Jc at the liquid nitrogen temperature was 2.6 MA / cm 2 and Ic per 1 cm width. As a result, 170A was obtained.
The obtained fired film was analyzed by X-ray diffractometry and pole measurement, and it was found that the film was an epitaxially grown superconducting film having an RE123 structure having (001) orientation and 2θ = 12.9 ± 0.1 °. Was 1% or less with respect to the RE123 001 peak. The lower part of FIG. 4 shows the X-ray diffraction pattern of the superconducting film obtained in this comparative example.
Further, a cross-sectional TEM image of this superconducting film was taken. The result is shown on the right side of FIG.
As is clear from the comparison between the left and right diagrams in FIG. 5, the number of stacking faults observed in the superconducting film obtained in this comparative example was smaller than that in Example 3.

(比較例3)
溶液に、YとGdのモル比が実施例3で作製した超電導膜全体に含まれるYとGdのモル比(Y:Gd=97:3)と同等になるように調製した(Y,Gd)123溶液を用いた他は、実施例3と同様にして膜厚0.70μmの超電導膜を作製したところ、液体窒素温度でのJcとして1.4MA/cm、1cm幅あたりのIcとして98Aが得られた。
また、得られた本焼成膜のX線回折法および極点測定により分析したところ、X線回折ピークからこの膜は(001)配向性をもつRE123構造の超電導体であり、X線極点測定からエピタキシャル成長していることがわかった。X線回折パターンの2θ=12.9±0.1°の強度はRE123 001ピークに対して1%以下であった。
本比較例から、本発明で見いだした、異なるREを用いることによる超電導膜のJcの向上は、塗布溶液の段階で異なるREおよびRE’元素を混合する方法によっては達成できないものであり、実施例1〜3の様に異なるRE123およびRE’123溶液を別々に塗布、乾燥、仮焼成することによってはじめて達成できることが明らかになった。
(Comparative Example 3)
The solution was prepared so that the molar ratio of Y and Gd was equivalent to the molar ratio of Y and Gd (Y: Gd = 97: 3) contained in the whole superconducting film produced in Example 3 (Y, Gd). A superconducting film having a thickness of 0.70 μm was produced in the same manner as in Example 3 except that the 123 solution was used. As a result, Jc at a liquid nitrogen temperature was 1.4 MA / cm 2 and 98 A was obtained as Ic per 1 cm width. Obtained.
Further, when the obtained fired film was analyzed by X-ray diffraction method and pole measurement, it was found from the X-ray diffraction peak that this film was a superconductor of RE123 structure having (001) orientation, and epitaxial growth from X-ray pole measurement. I found out. The intensity of 2θ = 12.9 ± 0.1 ° of the X-ray diffraction pattern was 1% or less with respect to the RE123 001 peak.
From this comparative example, the improvement of Jc of the superconducting film by using different REs found in the present invention cannot be achieved by the method of mixing different RE and RE ′ elements at the coating solution stage. It became clear that it can be achieved only by separately applying different RE123 and RE′123 solutions such as 1 to 3, separately, and pre-baking.

(比較例4)
Gd層の膜厚を0.15μmにした他は、実施例3と同様にして膜厚0.69μmの超電導膜を作製したところ、液体窒素温度でのJcとして1.5MA/cm、1cm幅あたりのIcとして103.5Aが得られた。
また、得られた本焼成膜のX線回折法および極点測定により分析したところ、X線回折ピークからこの膜は(001)配向性をもつRE123構造の超電導体であり、X線極点測定からエピタキシャル成長していることがわかった。X線回折パターンの2θ=12.9±0.1°の強度はRE123 001ピークに対して1%以下であった。
本比較例から、本発明で見いだした、異なるREおよびRE’を用いることによる超電導膜のJcの向上は、RE’123層の膜厚を制御することではじめて達成されるものであり、膜厚が適当でない場合はJcがむしろ低下することが明らかになった。
(Comparative Example 4)
A superconducting film having a thickness of 0.69 μm was produced in the same manner as in Example 3 except that the thickness of the Gd layer was changed to 0.15 μm. As a result, Jc at the liquid nitrogen temperature was 1.5 MA / cm 2 , 1 cm width. 103.5A was obtained as Ic per unit.
Further, when the obtained fired film was analyzed by X-ray diffraction method and pole measurement, it was found from the X-ray diffraction peak that this film was a superconductor of RE123 structure having (001) orientation, and epitaxial growth from X-ray pole measurement. I found out. The intensity of 2θ = 12.9 ± 0.1 ° of the X-ray diffraction pattern was 1% or less with respect to the RE123 001 peak.
From this comparative example, the improvement of Jc of the superconducting film by using different RE and RE ′ found in the present invention can be achieved only by controlling the film thickness of the RE′123 layer. It became clear that Jc would rather decrease if is not appropriate.

Claims (16)

基板上に、一般式(RE)BaCu(式中、REは、希土類元素を表す。)で表される高温超電導酸化物(以下、「RE123」とする。)に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程、及び形成された塗布膜中の有機成分を熱分解させる仮焼成工程を複数回繰り返した後、得られた仮焼成膜から超電導物質への変換を行う本焼成工程を経てエピタキシャル成長させた超電導膜を製造する方法において、
前記複数回の繰り返し中に、一般式(RE’)BaCu(式中、RE’は、RE123中の希土類原子とは異なる希土類元素を表す。)で表される高温超電導酸化物(以下、「RE’123」とする。)に対応する金属種組成になるように配合された金属含有化合物の有機溶媒溶液を塗布し、乾燥させる工程、及び形成された塗布膜中の有機成分を熱分解させる仮焼成工程を、少なくとも1回挿入することにより、
複数のRE123に対応する組成の仮焼成膜の間に、少なくとも1つのRE’123に対応する組成の仮焼成膜が介在した多層構造からなる仮焼成膜を経由することを特徴とする超電導膜の製造方法。
A metal corresponding to a high-temperature superconducting oxide (hereinafter referred to as “RE123”) represented by a general formula (RE) Ba 2 Cu 3 O 7 (wherein RE represents a rare earth element) on a substrate. Obtained after repeating the process of applying and drying an organic solvent solution of a metal-containing compound formulated so as to have a seed composition and the pre-baking process of thermally decomposing the organic components in the formed coating film multiple times. In the method of manufacturing the superconducting film epitaxially grown through the main firing step for converting the temporarily fired film to the superconducting material,
The high temperature superconducting oxide represented by the general formula (RE ′) Ba 2 Cu 3 O 7 (wherein RE ′ represents a rare earth element different from the rare earth atom in RE123) during the plurality of repetitions. (Hereinafter referred to as “RE'123”) a step of applying and drying an organic solvent solution of a metal-containing compound formulated so as to have a metal seed composition, and an organic component in the formed coating film By inserting a pre-baking step for thermally decomposing at least once,
A superconducting film having a multilayer structure in which at least one temporary fired film having a composition corresponding to RE′123 is interposed between the temporary fired films having a composition corresponding to a plurality of RE123. Production method.
前記RE123層とRE’123層との一部が固溶体を形成していることを特徴とする請求項1に記載の超電導膜の製造方法。   The method of manufacturing a superconducting film according to claim 1, wherein a part of the RE123 layer and the RE'123 layer forms a solid solution. 前記RE123層のREがYであり、RE’123層のRE’がGdである請求項1又は2に記載の超電導膜の製造方法。   The method of manufacturing a superconducting film according to claim 1 or 2, wherein RE of the RE123 layer is Y and RE 'of the RE'123 layer is Gd. 前記仮焼成工程の前に、KrCl紫外エキシマランプ光を15mW/cm以上の照度で照射する工程を行うことを特徴とする請求項1〜3のいずれか1項に記載の超電導膜の製造方法。 The method of manufacturing a superconducting film according to any one of claims 1 to 3, wherein a step of irradiating KrCl ultraviolet excimer lamp light with an illuminance of 15 mW / cm 2 or more is performed before the preliminary baking step. . 前記のRE’123に対応する組成の仮焼成膜の膜厚が0.01〜0.1μmであることを特徴とする請求項1〜4のいずれか1項に記載の超電導膜の製造方法。   5. The method of manufacturing a superconducting film according to claim 1, wherein a film thickness of the temporarily fired film having a composition corresponding to the RE ′ 123 is 0.01 to 0.1 μm. 前記超電導膜が、膜厚0.6μm以上の厚膜であることを特徴とする請求項1〜5のいずれか1項に記載の超電導膜の製造方法。   The method for manufacturing a superconducting film according to claim 1, wherein the superconducting film is a thick film having a thickness of 0.6 μm or more. 前記仮焼成工程を、露点が20℃以上の水蒸気を含む雰囲気中で行うことを特徴とする請求項1〜6のいずれか1項に記載の超電導膜の製造方法。   The method for producing a superconducting film according to any one of claims 1 to 6, wherein the pre-baking step is performed in an atmosphere containing water vapor having a dew point of 20 ° C or higher. 前記金属含有化合物の有機溶媒溶液が、希土類元素、バリウム、及び銅からなる各金属成分を必須成分として含有することを特徴とする請求項1〜7のいずれか1項に記載の超電導厚膜の製造方法。   The superconducting thick film according to any one of claims 1 to 7, wherein the organic solvent solution of the metal-containing compound contains, as essential components, metal components composed of rare earth elements, barium, and copper. Production method. 前記金属含有化合物の有機溶媒溶液が、希土類元素、バリウム、及び銅を含有する金属種の、炭素数1〜8の金属カルボン酸塩及び/又は金属アセチルアセトナト粉末混合物に、ピリジン及び/又は少なくとも1種の三級アミン、及び少なくとも1種の炭素数1〜8のカルボン酸を添加して、金属錯体を製造し、過剰の溶媒を揮発させた後、炭素数1〜8の1価の直鎖アルコール及び/または水に溶解して調製された均一な溶液であることを特徴とする請求項1〜8のいずれか1項に記載の超電導膜の製造方法。   The organic solvent solution of the metal-containing compound is mixed with 1 to 8 carbon carboxylate and / or metal acetylacetonate powder of a metal species containing rare earth elements, barium and copper, pyridine and / or at least One tertiary amine and at least one carboxylic acid having 1 to 8 carbon atoms are added to produce a metal complex, and an excess solvent is volatilized. The method for producing a superconducting film according to any one of claims 1 to 8, which is a uniform solution prepared by dissolving in a chain alcohol and / or water. 前記の金属カルボン酸塩、金属アセチルアセトナト、及びカルボン酸のうち少なくとも1種がハロゲンを含むことを特徴とする請求項9に記載の超電導膜の製造方法。   The method for producing a superconducting film according to claim 9, wherein at least one of the metal carboxylate, metal acetylacetonate, and carboxylic acid contains halogen. 前記基板が、金属酸化物の単結晶あるいは単結晶に、中間層として前者と異なる少なくとも1種の金属酸化物薄膜を形成した複合体であることを特徴とする請求項1〜10のいずれか1項に記載の超電導膜の製造方法。   11. The substrate according to any one of claims 1 to 10, wherein the substrate is a metal oxide single crystal or a composite in which at least one metal oxide thin film different from the former is formed as an intermediate layer on a single crystal. The manufacturing method of the superconducting film as described in an item. 前記基板が、チタン酸ストロンチウム、ランタンアルミネート、ネオジムガレート、イットリウムアルミネート、酸化ランタンストロンチウムタンタルアルミニウムなどのペロブスカイト関連化合物、イットリア安定化ジルコニア、サファイア、及び酸化マグネシウムから選ばれることを特徴とする請求項11に記載の超電導膜の製造方法。   The substrate is selected from perovskite related compounds such as strontium titanate, lanthanum aluminate, neodymium gallate, yttrium aluminate, lanthanum strontium tantalum aluminum oxide, yttria stabilized zirconia, sapphire, and magnesium oxide. 11. A method for producing a superconducting film according to 11. 前記中間層が、酸化セリウム、酸化イットリウム、酸化ジルコニウム、ランタンマンガネート及びガドリニウムジルコネートのうち少なくとも1種からなることを特徴とする請求項11に記載の超電導膜の製造方法。   The method for producing a superconducting film according to claim 11, wherein the intermediate layer is made of at least one of cerium oxide, yttrium oxide, zirconium oxide, lanthanum manganate, and gadolinium zirconate. 前記請求項1〜13のいずれか1項に記載の超電導膜の製造方法における仮焼成工程の後に得られる、各層内で元素分布の均一な多層構造からなることを特徴とする仮焼成膜。   A temporary fired film comprising a multilayer structure having a uniform element distribution in each layer, obtained after the temporary firing step in the method for producing a superconducting film according to any one of claims 1 to 13. 前記請求項1〜13のいずれか1項に記載の超電導膜の製造方法における本焼成工程の後に得られる、多数の積層欠陥を含むことを特徴とする超電導膜。   A superconducting film comprising a number of stacking faults obtained after the main firing step in the method for producing a superconducting film according to any one of claims 1 to 13. CuKα線を用いたX線回折ピーク2θ=12.9±0.1°の強度が、RE123 001ピークに対して5%以上であることを特徴とする請求項15に記載の超電導膜。   The superconducting film according to claim 15, wherein the intensity of the X-ray diffraction peak 2θ = 12.9 ± 0.1 ° using CuKα rays is 5% or more with respect to the RE123 001 peak.
JP2011009535A 2011-01-20 2011-01-20 Superconducting film manufacturing method, pre-fired film obtained by the method, and superconducting film Active JP5729592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009535A JP5729592B2 (en) 2011-01-20 2011-01-20 Superconducting film manufacturing method, pre-fired film obtained by the method, and superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009535A JP5729592B2 (en) 2011-01-20 2011-01-20 Superconducting film manufacturing method, pre-fired film obtained by the method, and superconducting film

Publications (2)

Publication Number Publication Date
JP2012151018A true JP2012151018A (en) 2012-08-09
JP5729592B2 JP5729592B2 (en) 2015-06-03

Family

ID=46793103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009535A Active JP5729592B2 (en) 2011-01-20 2011-01-20 Superconducting film manufacturing method, pre-fired film obtained by the method, and superconducting film

Country Status (1)

Country Link
JP (1) JP5729592B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528397A (en) * 2014-06-24 2017-09-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing a composite comprising a high temperature superconductor (HTS) layer
US11482593B2 (en) * 2019-10-10 2022-10-25 Samsung Sdi Co., Ltd. Composition for depositing thin film, manufacturing method for thin film using the composition, thin film manufactured from the composition, and semiconductor device including the thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284526A (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for producing superconductive thin film
JP2007070216A (en) * 2005-08-10 2007-03-22 National Institute Of Advanced Industrial & Technology Method for producing superconducting material
JP2010086666A (en) * 2008-09-29 2010-04-15 International Superconductivity Technology Center Oxide superconducting wire and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284526A (en) * 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology Solution composition containing metal complex coordinated with specific ligands onto specific metal species, solution composition for producing superconductive film of rare earths, amorphous solid of specific metal complex, method for producing solution containing metal complex coordinated with specific ligands onto specific metal species, method for producing solution for producing superconductive film of rare earths, and method for producing superconductive thin film
JP2007070216A (en) * 2005-08-10 2007-03-22 National Institute Of Advanced Industrial & Technology Method for producing superconducting material
JP2010086666A (en) * 2008-09-29 2010-04-15 International Superconductivity Technology Center Oxide superconducting wire and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017528397A (en) * 2014-06-24 2017-09-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing a composite comprising a high temperature superconductor (HTS) layer
US10333050B2 (en) 2014-06-24 2019-06-25 Basf Se Method for producing a composite comprising a high-temperature superconductor (HTS) layer
US11482593B2 (en) * 2019-10-10 2022-10-25 Samsung Sdi Co., Ltd. Composition for depositing thin film, manufacturing method for thin film using the composition, thin film manufactured from the composition, and semiconductor device including the thin film

Also Published As

Publication number Publication date
JP5729592B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5445982B2 (en) Rare earth superconducting film forming solution and method for producing the same
JP5736603B2 (en) REBCO oxide superconducting thin film and manufacturing method thereof
JP5421561B2 (en) Method for manufacturing oxide superconducting thin film
JP3851948B2 (en) Superconductor manufacturing method
JP5729592B2 (en) Superconducting film manufacturing method, pre-fired film obtained by the method, and superconducting film
JP2013235766A (en) Oxide superconducting thin film and method for manufacturing the same
JP5605750B2 (en) Raw material solution for oxide superconducting thin film production
JP5273561B2 (en) Manufacturing method of superconducting film
JP5740795B2 (en) Manufacturing method of oxide superconducting wire
JP2013235765A (en) Oxide superconducting wire material and method for manufacturing the same
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
JP2011195435A (en) Method for producing superconducting film, and calcination film and firing film obtained by the method
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
JP4547540B2 (en) Method for producing rare earth 123 type superconducting film oriented on yttrium aluminate single crystal
JP4613349B2 (en) Method for producing rare earth 123 type superconducting film oriented on neodymium gallate single crystal
WO2013179443A1 (en) Oxide superconducting thin film and method for manufacturing same
JP2012064394A (en) Method for manufacturing oxide superconductive thin film
JP5556410B2 (en) Method for manufacturing oxide superconducting thin film
JP2011159453A (en) Method of manufacturing oxide superconducting thin film
JP2013218799A (en) Oxide superconducting wire material and method for manufacturing the same
JP2012003962A (en) Manufacturing method of oxide superconducting thin film
JP5477395B2 (en) Oxide superconducting thin film, manufacturing method thereof, and oxide superconducting thin film wire
JP2012123998A (en) Oxide superconducting thin film wire rod and manufacturing method thereof
JP2002068892A (en) Superconductor comprising superconducting thin film formed on surface of alumina single crystal substrate and method of forming superconducting thin film on surface of alumina single crystal substrate
JP2014207056A (en) Method for manufacturing an oxide superconductive wire and oxide superconductive wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150325

R150 Certificate of patent or registration of utility model

Ref document number: 5729592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250