JPH03137050A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH03137050A
JPH03137050A JP1272434A JP27243489A JPH03137050A JP H03137050 A JPH03137050 A JP H03137050A JP 1272434 A JP1272434 A JP 1272434A JP 27243489 A JP27243489 A JP 27243489A JP H03137050 A JPH03137050 A JP H03137050A
Authority
JP
Japan
Prior art keywords
oxide superconductor
powder
oxide
pressure
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1272434A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sadakata
伸行 定方
Tsukasa Kono
河野 宰
Toshio Usui
俊雄 臼井
Shinya Aoki
青木 伸哉
Toshio Koide
小出 年男
Kenji Goto
謙次 後藤
Atsushi Kume
篤 久米
Kazutomi Kakimoto
一臣 柿本
Masaki Tange
丹下 雅喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP1272434A priority Critical patent/JPH03137050A/en
Publication of JPH03137050A publication Critical patent/JPH03137050A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain the oxide superconductor having high degree of orientation and excellent in superconducting characteristics such as critical current density by pressurizing oxide superconducting powder in a uniaxial direction under the pressure in a specified range. CONSTITUTION:Oxide superconducting powder is pressurized in a uniaxial direction under the pressure in the range of >=2 to <7 ton/cm<2>. The pressurizing time is preferably regulated to about 1 to 10 min. By the pressure compacting, a (c)-axis in the crystals of a green compact (an oxide superconductor) is oriented along the pressurizing direction, and an (a)-axis and a (b)-axis in the crystals of the oxide superconductor are oriented in the direction orthogonal to the pressurizing direction. The oxide superconductor after subjected to the pressure compacting is preferably subjected to heat treatment as well to arrange the crystalline structure. For example, the method of heating at about 600 to 1,000 deg.C for several hr to several tens hr and executing slow cooling is adopted.

Description

【発明の詳細な説明】 「産業上の利用分野J 本発明は、超電導発電機、超電導送電、磁気浮上輸送、
磁気シールド、エネルギー貯蔵、超電導磁石、粒子加速
器などに適用される酸化物超電導体の製造方法に関する
Detailed Description of the Invention "Industrial Application Field J The present invention is applicable to superconducting generators, superconducting power transmission, magnetic levitation transport,
This invention relates to a method for manufacturing oxide superconductors that are applied to magnetic shields, energy storage, superconducting magnets, particle accelerators, etc.

「従来の技術」 近年、常電導状態から超電導状態へ繊維する臨海温度(
T c)が極めて高い値を示す酸化物系の超電導体が種
々発見されつつある。
"Conventional technology" In recent years, the critical temperature (
Various oxide-based superconductors exhibiting extremely high values of Tc) are being discovered.

ところで、このような酸化物超電導体粉末を用いて電流
輸送用の導体を作製した場合、この酸化物超電導体材料
固有の特質である結晶構造の異方性に起因して、臨界電
流密度が著しく低下してしまうといった問題がある。す
なわち酸化物超電導体は、その結晶構造においてa軸、
b軸方向の臨界電流値がC軸方向の臨界電流値に比べて
1桁以上も大きく、よって結晶構造における軸方向がラ
ンダムに配列した酸化物超電導体にあっては十分に高い
臨界電流密度が得られないのである。
By the way, when a conductor for current transport is made using such oxide superconductor powder, the critical current density is significantly reduced due to the anisotropy of the crystal structure, which is a unique characteristic of this oxide superconductor material. There is a problem that the value decreases. In other words, in the crystal structure of an oxide superconductor, the a-axis,
The critical current value in the b-axis direction is more than an order of magnitude larger than the critical current value in the c-axis direction, and therefore an oxide superconductor in which the axial directions in the crystal structure are randomly arranged has a sufficiently high critical current density. It cannot be obtained.

したがって高臨界電流密度を得るためには、電流を流す
方向に結晶の向き(a軸、b軸方向)を揃える、すなわ
ち配向させる必要がある。
Therefore, in order to obtain a high critical current density, it is necessary to align the orientation of the crystals (a-axis, b-axis directions), that is, to align them in the direction in which the current flows.

「発明が解決しようとする課題」 しかしながら、酸化物超電導体粉末から酸化物超電導体
を作製する方法にあっては、上記粉末を加圧して圧粉体
を形成した場合に、その表面か電流の流れ易い向きに配
向することが予測されるものの、その具体的条件等につ
いては解明されておらず、したがって現在のところ十分
に配向した超電導体を得るまでには至っていないのが実
状である。
"Problem to be Solved by the Invention" However, in the method of producing an oxide superconductor from oxide superconductor powder, when the powder is pressed to form a green compact, the surface of the compact is Although it is predicted that superconductors will be oriented in a direction that facilitates flow, the specific conditions for this have not been elucidated, and therefore, the reality is that a sufficiently oriented superconductor has not yet been obtained.

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、配向度が高く、したがって臨界電流密度
などの超電導特性に優れた酸化物超電導体の製造方法を
提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a method for producing an oxide superconductor that has a high degree of orientation and therefore has excellent superconducting properties such as critical current density.

口課題を解決するための手段」 本発明の酸化物超電導の製造方法では、酸化物超電導体
粉末を、2 ton/ ax”以上7 ton/ cm
’未満の範囲の圧力で一軸方向に加圧することを上記課
題の解決手段とした。
In the method for producing oxide superconductor of the present invention, the oxide superconductor powder is prepared in an amount of 2 ton/ax" or more and 7 ton/cm
The solution to the above problem was to pressurize in a uniaxial direction with a pressure in the range below .

以下、この発明をY −B a−Cu−○系の酸化物超
電導体の製造方法に適用した例をあげて詳しく説明する
Hereinafter, the present invention will be explained in detail by giving an example in which the present invention is applied to a method for manufacturing a Y-B a-Cu-○-based oxide superconductor.

Y −B a−Cu−0系の酸化物超電導を製造するに
は、まず、Y + B atc u307−a?、i;
る組成の酸化物超電導粉末を用意する。
In order to manufacture Y-B a-Cu-0 based oxide superconductor, first, Y + B atc u307-a? ,i;
An oxide superconducting powder having a composition is prepared.

この酸化物超電導粉末を製造するには、従来知られてい
る粉末混合法あるいは共沈法などのいずれの方法を用い
ても良い。ここで粉末混合法を例にとって酸化物超電導
体粉末を製造する方法について説明すると、まず、酸化
物超電導体を構成する元素の化合物粉末を複数種類混合
して混合して混合粉末を作製する。ここでY −B a
−Cu−0系の場合、Yの化合物粉末(例えばY t 
O3粉末)とBaの化合物粉末(B aCO、粉末)と
Cuの化合物粉末(Cuo粉末)とを所定量ずつ配合し
てY +B atc 1130フイなる組成比となるよ
うに混合し、この混合粉末を大気中あるいは酸素ガス中
において600〜1000°Cで数時間〜数十時間仮焼
し、次いて仮焼粉末を圧密し、この圧密体に800〜9
50°Cで熱処理することてバルク状の酸化物超電導体
を作製し、この酸化物超電導体を粉砕をすることで酸化
物超電導粉末を得る。なお、仮焼粉末を圧密することな
く直接熱処理して酸化物超電導粉末を製造してもよい。
In order to manufacture this oxide superconducting powder, any conventionally known method such as a powder mixing method or a coprecipitation method may be used. Here, a method for producing an oxide superconductor powder will be described using a powder mixing method as an example. First, a plurality of types of compound powders of elements constituting the oxide superconductor are mixed and mixed to produce a mixed powder. Here Y −B a
-Cu-0 system, Y compound powder (e.g. Y t
O3 powder), Ba compound powder (BaCO, powder), and Cu compound powder (Cuo powder) are mixed in predetermined amounts so as to have a composition ratio of Y + B atc 1130, and this mixed powder is The calcined powder is calcined for several hours to several tens of hours at 600 to 1000°C in the air or oxygen gas, and then the calcined powder is consolidated to form a compacted body with a
A bulk oxide superconductor is produced by heat treatment at 50°C, and an oxide superconductor powder is obtained by pulverizing this oxide superconductor. Note that the oxide superconducting powder may be produced by directly heat-treating the calcined powder without compacting it.

また、以上のように製造された酸化物超電導粉末には不
純物粉末あるいは超電導特性の不良な粉末が含まれてい
るので、これらの粉末を除去して純度の高い粉末のみを
用いることが好ましい。不純物粉末の除去には酸化物超
電導粉末を液体窒素で冷却し、液体窒素中で粉末に磁力
を作用させてマイスナー効果により磁力に反発して移動
した粉末のみを選別すればよい。このようにして純度の
高い酸化物超電導粉末のみを選別して本発明に使用する
ことが好ましい。
Further, since the oxide superconducting powder produced as described above contains impurity powder or powder with poor superconducting properties, it is preferable to remove these powders and use only powder with high purity. To remove impurity powder, the oxide superconducting powder may be cooled with liquid nitrogen, a magnetic force may be applied to the powder in the liquid nitrogen, and only the powder that has moved due to the Meissner effect due to the repulsion of the magnetic force may be selected. It is preferable to select only highly pure oxide superconducting powder in this way and use it in the present invention.

次に、このようにして得られた酸化物超電導粉末の粒度
を調整する。超電導粉末の粒度としては、20〜100
μ肩程度とするのが圧縮性などに優れ好ましい。
Next, the particle size of the oxide superconducting powder thus obtained is adjusted. The particle size of the superconducting powder is 20 to 100
It is preferable to make it about μ shoulder because it has excellent compressibility.

次いで、粒度を調整した酸化物超電導粉末を成形ダイに
充填し、2 ton/ ax”以上7 ton/ cm
”未満の範囲の圧力で一軸方向に加圧して圧縮成形を行
い、圧粉体(酸化物超電導体)を得る。この場合に圧縮
成形圧力を2 ton/ cm”未満で行うと、得られ
た酸化物超電導体に十分な配向が認められず好ましくな
く、また7 ton/ cm″以上の圧力で加圧すると
、得られた酸化物超電導体に割れが生じる恐れがあって
好ましくない。加圧時間は1〜1o分程度が好適とされ
るが、良好な配向性を得るための実質的な加圧時間とし
ては1〜3分程度でも十分である。
Next, the oxide superconducting powder with adjusted particle size is filled into a molding die to form a powder of 2 ton/ax” or more and 7 ton/cm.
Compression molding is performed by applying pressure in the uniaxial direction at a pressure in the range of less than 2 ton/cm to obtain a compact (oxide superconductor).In this case, if the compression molding pressure is less than 2 ton/cm, This is not preferable because sufficient orientation is not observed in the oxide superconductor, and if pressure is applied at a pressure of 7 ton/cm" or more, cracks may occur in the obtained oxide superconductor, which is not preferable. Pressurizing time It is said that a time of about 1 to 10 minutes is suitable, but a time of about 1 to 3 minutes is sufficient as a substantial pressurizing time to obtain good orientation.

このようにして得られた圧粉体(酸化物超電導体)は、
酸化物超電導粉末に対し一軸方向に圧力を加えて加圧成
形したので、加圧方向に沿って酸化物超電導体の結晶が
C軸(酸化物超電導体を構成する腹合ペロブスカイト構
造のC軸)配向し、加圧方向に直角な方向に酸化物超電
導体の結晶のa軸あるいはb軸が配向したものとなる。
The green compact (oxide superconductor) obtained in this way is
Since pressure was applied to the oxide superconducting powder in a uniaxial direction during pressure molding, the crystals of the oxide superconductor were aligned along the C axis (the C axis of the diagonal perovskite structure that constitutes the oxide superconductor). The a-axis or b-axis of the crystal of the oxide superconductor is oriented in a direction perpendicular to the direction of pressurization.

なお、酸化物超電導粉末を加圧する手段としては、−軸
方向で加圧し得るものであれば成形ダイを用いて行う方
法に限ることなく、例えば金属基板上に酸化物超電導粉
末を載せて上下から加圧し、金属基板上に配向した層状
の酸化物超電導体を得るようにしてもよい。この場合、
金属基板上からの粉末のこぼれ落ちなどを防止するため
、酸化物超電導粉末に有機質のバインダを添加してもよ
い。
Note that the means for pressurizing the oxide superconducting powder is not limited to a method using a molding die as long as it can be pressurized in the -axial direction; Pressure may be applied to obtain a layered oxide superconductor oriented on a metal substrate. in this case,
An organic binder may be added to the oxide superconducting powder in order to prevent the powder from spilling off the metal substrate.

また、金属基村上に酸化物超電導粉末を載せ、これを圧
縮ダイを装着した圧縮応力付加装置で一定距離ごと少し
ずつ加圧し、金属基村上に層状の酸化物超電導体を形成
するようにしてもよい。さらに、上記の圧縮応力付加装
置の代わりに圧延ロールの中を通過させ、酸化物超電導
粉末を加圧し圧節成形するようにしてもよい。
Alternatively, a layered oxide superconductor may be formed on the metal substrate by placing oxide superconducting powder on the metal substrate and applying pressure little by little at regular intervals using a compressive stress applying device equipped with a compression die. good. Furthermore, instead of the compressive stress applying device described above, the oxide superconducting powder may be passed through a rolling roll to pressurize and compact the oxide superconducting powder.

また、加圧成形後の圧粉体(酸化物超電導体)にさらに
熱処理を施すのが、結晶構造が整い好ましい。ここで熱
処理としては、例えば600〜1000°C程度の温度
で数時間〜数十時間加熱し、除冷するといった方法が採
用される。
Further, it is preferable to further heat-treat the green compact (oxide superconductor) after pressure molding to improve the crystal structure. Here, as the heat treatment, a method of heating at a temperature of, for example, about 600 to 1000° C. for several hours to several tens of hours and then gradually cooling is adopted.

このような酸化物超電導体め製造方法にあっては、酸化
物超電導粉末2 ton/c1以上7 ton/cz’
未満の範囲の圧力で一軸方向に加圧したことから、結晶
を十分に配回せしめることがてき、よって良好な超電導
特性を有するものとなる。
In such a method for producing an oxide superconductor, the amount of oxide superconducting powder is 2 ton/c1 or more and 7 ton/cz'
Since the pressure was applied in the uniaxial direction at a pressure in the range below, the crystals can be sufficiently distributed, and thus have good superconducting properties.

なお、上記実施例においては、Y −B a−Cu−0
系の酸化物超電導体に本発明の方法を適用した例を示し
たが、本発明方法をB i−3r−Ca−Cu−0系、
T iB a−Ca−Cu−0系などの一般の酸化物超
電導体の製造方法に適用してもよい。
In addition, in the above example, Y-B a-Cu-0
An example was shown in which the method of the present invention was applied to a B i-3r-Ca-Cu-0 series oxide superconductor.
It may be applied to a manufacturing method of general oxide superconductors such as T iB a-Ca-Cu-0 type.

「作用」 本発明の超電導体の製造方法によれば、酸化物超電導粉
末を2 ton/ cm”以上7 ton/ ctn’
未満の範囲の圧力で一軸方向に加圧するので、結晶の軸
が加圧方向あるいはその直交する方向にそれぞれ配向し
た配向性の良好な酸化物超電導体が得られる。
"Operation" According to the method for producing a superconductor of the present invention, the oxide superconducting powder is used in an amount of 2 ton/cm" or more 7 ton/ctn'
Since the pressure is applied in a uniaxial direction at a pressure in a range of less than 100 mL, it is possible to obtain an oxide superconductor with good orientation in which the crystal axes are oriented in the direction of application or in a direction perpendicular thereto.

「実施例」 Y 、 B a2CLI307−aなる組成の酸化物超
電導粉末を用意し、その粒度を粒径か25〜75μmと
なるように調整した。
"Example" An oxide superconducting powder having a composition of Y, Ba2CLI307-a was prepared, and its particle size was adjusted to a particle size of 25 to 75 μm.

次いで、粒度調整後の酸化物超電導粉末を所定量ずつ成
形タイに入れ、1〜7 ton/ cx2の各圧力でそ
れぞれ3分間ずつ圧縮成形して?υ敗の酸化物超電導体
を得た。
Next, a predetermined amount of the oxide superconducting powder after particle size adjustment was put into a molding tie, and compression molded for 3 minutes at each pressure of 1 to 7 ton/cx2. A υ-defective oxide superconductor was obtained.

このようにして得られた酸化物超電導の表面にX線を照
射して結晶の配向度を調へ、その結果を第1図に示した
The surface of the oxide superconductor thus obtained was irradiated with X-rays to determine the degree of crystal orientation, and the results are shown in FIG.

第1図はX線回折によって得られた回折強度のピークを
示す図であり、第1図において上側に記載したピークは
2 、8 ton/ cm”で加圧して得られた本発明
による超電導体の回折強度を示し、下側に示したピーク
は加圧前の超電導粉末の回折強度を示すものである。
FIG. 1 is a diagram showing the peaks of diffraction intensity obtained by X-ray diffraction, and the peaks shown on the upper side of FIG. The peak shown at the bottom shows the diffraction intensity of the superconducting powder before pressurization.

第1図の結果より、本発明による超電導体は高い回折強
度を示し、よって良好に配向していることが確認された
From the results shown in FIG. 1, it was confirmed that the superconductor according to the present invention exhibited high diffraction intensity and was therefore well oriented.

また第2図に、加えた圧力と配向の度合いとの関係を示
す。
Further, FIG. 2 shows the relationship between applied pressure and degree of orientation.

第2図より、2〜6 ton/ cx”の範囲の圧力で
加圧したものにあっては良好に配向していることが確認
された。また2 ton/ ax″未満で加圧したもの
については、十分な配向が得られないことが判明した。
From Fig. 2, it was confirmed that the materials pressurized at a pressure in the range of 2 to 6 ton/cx'' were well oriented.Also, the materials pressurized at less than 2 ton/ax'' were oriented well. It was found that sufficient orientation could not be obtained.

また7 ton/ ax”以上で加圧したものについて
は、得られた酸化物超電導体に割れが発生した。
Furthermore, when the pressure was applied to 7 ton/ax" or higher, cracks occurred in the obtained oxide superconductor.

「発明の効果」 以上説明したように本発明の酸化物超電導体の製造方法
は、酸化物超電導粉末を2 ton/ cm”以上7 
ton/ am”未満の範囲の圧力で一軸方向に加圧す
るものであるから、加圧により結晶が十分に配向したも
のとなり、したがって良好な超電導特性を有する酸化物
超電導体を作製することできる。
"Effects of the Invention" As explained above, the method for producing an oxide superconductor of the present invention is characterized in that the oxide superconducting powder is
Since the pressure is applied in a uniaxial direction at a pressure in the range of less than 100 ton/am, the crystals become sufficiently oriented by the pressurization, and therefore an oxide superconductor having good superconducting properties can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によって得られた酸化物超電導体のX線
回折ピークを示すグラフ、第2図は加えた圧力と酸化物
超電導体の配向の度合を示すグラフである。
FIG. 1 is a graph showing the X-ray diffraction peak of the oxide superconductor obtained by the present invention, and FIG. 2 is a graph showing the applied pressure and the degree of orientation of the oxide superconductor.

Claims (1)

【特許請求の範囲】[Claims]  酸化物超電導粉末を、2ton/cm^2以上7to
n/cm^2未満の範囲の圧力で一軸方向に加圧するこ
とを特徴とする酸化物超電導体の製造方法。
Oxide superconducting powder, 2ton/cm^2 or more 7ton
A method for producing an oxide superconductor, characterized by applying pressure in a uniaxial direction at a pressure in a range of less than n/cm^2.
JP1272434A 1989-10-19 1989-10-19 Manufacture of oxide superconductor Pending JPH03137050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272434A JPH03137050A (en) 1989-10-19 1989-10-19 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272434A JPH03137050A (en) 1989-10-19 1989-10-19 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03137050A true JPH03137050A (en) 1991-06-11

Family

ID=17513860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272434A Pending JPH03137050A (en) 1989-10-19 1989-10-19 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03137050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646097A (en) * 1994-12-27 1997-07-08 General Electric Company Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor
JP2014240521A (en) * 2013-05-14 2014-12-25 独立行政法人物質・材料研究機構 Method of producing iron-based superconductive wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646097A (en) * 1994-12-27 1997-07-08 General Electric Company Method of fabricating a (1223) Tl-Ba-Ca-Cu-O superconductor
JP2014240521A (en) * 2013-05-14 2014-12-25 独立行政法人物質・材料研究機構 Method of producing iron-based superconductive wire

Similar Documents

Publication Publication Date Title
JPH02133367A (en) Oriented polycrystalline superconductor
KR100524466B1 (en) Method of joining oxide superconductor and oxide superconductor joiner
US5231076A (en) Process for manufacturing a YBa2 Cu3 Ox superconductor using infiltration-reaction technique
JPH05270827A (en) Oxide superconductor and its production
JPH03137050A (en) Manufacture of oxide superconductor
JPH06219736A (en) Superconductor
DE3932423C2 (en)
JPH03159954A (en) Manufacture of product having improved physical characteristics and superconductivity
JPH03137052A (en) Manufacture of oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
EP1411154B1 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JPH03137051A (en) Manufacture of oxide superconductor
JP3073229B2 (en) Manufacturing method of oxide superconducting material
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JP2821568B2 (en) Method for producing superconducting whisker composite
JPH07187670A (en) Oxide superconductor and its production
JP2004161504A (en) Re-barium-copper-oxygen-based superconductive material precursor, re-barium-copper-oxygen-based superconductive material and method of manufacturing the same
JPH0551215A (en) Calcined powder composition for bi-containing oxide superconductor
JPH01160825A (en) Production of oxide superconductor
JPS63242921A (en) Superconductor
JPH0238311A (en) Oxide superconductor and production thereof
JPH04300269A (en) Superconducting structure material
JPH02229715A (en) Oxide high-temperature superconductor and its production
JPH01164772A (en) Bonding of oxide superconductor
JPH02258665A (en) Production of superconductive material