JPH03137051A - Manufacture of oxide superconductor - Google Patents

Manufacture of oxide superconductor

Info

Publication number
JPH03137051A
JPH03137051A JP1272435A JP27243589A JPH03137051A JP H03137051 A JPH03137051 A JP H03137051A JP 1272435 A JP1272435 A JP 1272435A JP 27243589 A JP27243589 A JP 27243589A JP H03137051 A JPH03137051 A JP H03137051A
Authority
JP
Japan
Prior art keywords
powder
oxide
oxide superconducting
oxide superconductor
superconducting powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1272435A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sadakata
伸行 定方
Tsukasa Kono
河野 宰
Toshio Usui
俊雄 臼井
Shinya Aoki
青木 伸哉
Toshio Koide
小出 年男
Kenji Goto
謙次 後藤
Atsushi Kume
篤 久米
Kazutomi Kakimoto
一臣 柿本
Masaki Tange
丹下 雅喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP1272435A priority Critical patent/JPH03137051A/en
Publication of JPH03137051A publication Critical patent/JPH03137051A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the oxide superconductor having good crystalline orientational properties by subjecting oxide superconducting powder having specified grain size to pressure compacting. CONSTITUTION:In a method for manufacturing an oxide superconductor by subjecting oxide superconducting powder to pressure compacting, the pressure compacting is executed by using oxide superconducting powder having 20 to 100 mum grain size. The oxide superconducting powder is sieved by using a sieve, e.g., made of stainless to collect only the ones having 20 to 100 mum grain size. The pressure compacting is executed, e.g., by inserting the oxide superconducting powder having 20 to 100 mum grain size into a compacting die and applying about 2 to 7 ton/cm<2> pressure thereto for about several min.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導発電機、超電導送電、磁気浮上輸送
、磁気シールド、電気エネルギー貯蔵、超電導磁石、粒
子加速器などの用途として応用開発が進められている酸
化物超電導体の製造方法に関する。
[Detailed Description of the Invention] "Industrial Application Fields" This invention is being developed for applications such as superconducting generators, superconducting power transmission, magnetic levitation transport, magnetic shielding, electrical energy storage, superconducting magnets, and particle accelerators. The present invention relates to a method for producing an oxide superconductor.

「従来の技術」 高温超電導粉末を用いて電流を輸送するための超電導体
を作成する場合、この材料固有の特質である結晶構造の
異方性が原因となって通電電流密度の値が著しく低下し
てしまう問題がある。即ち、酸化物超電導体は結晶構造
の特定の方向にのみ電流を流し易い性質があり、特定の
方向には電流を流しにくい異方性を持っていることが知
られている。
"Conventional technology" When creating a superconductor for transporting current using high-temperature superconducting powder, the value of the current density decreases significantly due to the anisotropy of the crystal structure, which is an inherent characteristic of this material. There is a problem with this. That is, it is known that oxide superconductors have a property of making it easy to pass current only in a specific direction of their crystal structure, and have anisotropy that makes it difficult to pass a current in a specific direction.

従って酸化物超電導粉末を用いて酸化物超電導導体を製
造する場合、高臨界電流密度を実現するためには、電流
の流れ易い方向に結晶の特定の向きを揃えること、即ち
、結晶を配向させることが必要である。
Therefore, when manufacturing an oxide superconducting conductor using oxide superconducting powder, in order to achieve a high critical current density, it is necessary to align the crystals in a specific direction in the direction where the current flows easily, that is, to orient the crystals. is necessary.

この結晶配向を実現させるために、酸化物超電導粉末に
圧力を加えて圧粉成形体を作製すると、少なくとも圧粉
成形体の表面部分の結晶が電流を流し易い方向に配向す
ることが知られている。
In order to achieve this crystal orientation, it is known that when pressure is applied to oxide superconducting powder to produce a compact, the crystals at least on the surface of the compact become oriented in a direction that facilitates the flow of current. There is.

「発明が解決しようとする課題」 しかしながら、従来、同じような圧力付加条件や温度で
成形を行った場合であってし、配向性の良好な圧粉成形
体を得ることが難しく、超電導特性の安定した圧粉成形
体を得ることができない問題があった。この理由は、用
いる粉体の粒度により配向の度合に差が生じるので、こ
の粒度の差異が、安定した結晶配向を得ることができな
い理由であるものと思われる。
``Problem to be solved by the invention'' However, conventionally, when molding is performed under similar pressure application conditions and temperatures, it is difficult to obtain a compacted compact with good orientation, and the superconducting properties are There was a problem that a stable powder compact could not be obtained. The reason for this is that the degree of orientation varies depending on the particle size of the powder used, and this difference in particle size is thought to be the reason why stable crystal orientation cannot be obtained.

本発明は前記課題を解決するためになされたしので、結
晶配向に好適な粒度の粉体を用いて圧粉成形体を形成す
ることで結晶配向性の良好な酸化物超電導体を製造でき
る方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and is therefore a method for producing an oxide superconductor with good crystal orientation by forming a green compact using powder with a particle size suitable for crystal orientation. The purpose is to provide

「課題を解決するための手段」 本発明は前記問題を解決するために、酸化物超電導粉末
を加圧成形して酸化物超電導体を製造する方法において
、20〜100μmの粒径の酸化物超電導粉末を用いて
加圧成形するものである。
"Means for Solving the Problems" In order to solve the above problems, the present invention provides a method for producing an oxide superconductor by press-molding oxide superconducting powder. It is press-molded using powder.

以下に本発明をY −B a−Cu−0系の酸化物超電
導体の製造方法に適用した例をあげて詳細に説明する。
The present invention will be described in detail below by giving an example in which the present invention is applied to a method for producing a Y-B a-Cu-0 based oxide superconductor.

Y −B a−1,u−0系の酸化物超電導体を製造す
るには、まず、Y + B ay Cu30 ?−5な
る組成の酸化物超電導粉末を用意する。
To produce a Y-B a-1,u-0-based oxide superconductor, first, Y + B ay Cu30? An oxide superconducting powder having a composition of -5 is prepared.

この酸化物超電導粉末を製造するには、従来知られてい
る粉末混合法あるいは共沈法などのいずれの方法を用い
ても良い。ここで粉末混合法を例にとって酸化物超電導
粉末を製造する方法について説明すると、まず、酸化物
超電導体を構成する元素の化合物粉末を複数種類混合し
て混合粉末を作製する。ここでY −B a−Cu−0
系の場合、Yの化合物粉末(例えばY、03粉末)とB
aの化合物粉末(B aCOs粉末)とCuの化合物粉
末(Cuo )を所定量合計してY IBatc us
o 7−5なる組成比になるように混合し、この混合粉
末を大気中あるいは酸素ガス中において600〜100
0℃で数時間〜数十時間仮焼し、次いで仮焼粉末を圧密
し、この圧密体に800〜950℃で熱処理することで
バルク状の酸化物超電導体を作製し、この酸化物超電導
体を粉砕することで酸化物超電導粉末を得ることができ
る。なお、仮焼粉末を圧密することなく直接熱処、理し
て酸化物超電導粉末を製造しても良い。なお、以上のよ
うに製造された酸化物超電導粉末には不純物粉末あるい
は超電導特性の不良な粉末が含まれているので、これら
の粉末を除去して純度の高い粉末のみを用いることが好
ましい。不純物粉末の除去には酸化物超電導粉末を液体
窒素で冷却し、液体窒素中で粉末に磁力を作用させてマ
イスナー効果により磁力に反発して移動した粉末のみを
選別すれば良い。このようにして純度の高い酸化物超電
導粉末のみを選別して本発明方法に使用することが好ま
しい。
In order to manufacture this oxide superconducting powder, any conventionally known method such as a powder mixing method or a coprecipitation method may be used. Here, a method for producing an oxide superconducting powder will be described using a powder mixing method as an example. First, a mixed powder is produced by mixing a plurality of types of compound powders of elements constituting an oxide superconductor. Here, Y-B a-Cu-0
In the case of a system, Y compound powder (e.g. Y, 03 powder) and B
Add a specified amount of the compound powder of a (BaCOs powder) and the compound powder of Cu (Cuo) to Y IBatcus.
o Mixed to a composition ratio of 7-5, this mixed powder was heated to a composition ratio of 600 to 100 in the atmosphere or oxygen gas.
A bulk oxide superconductor is produced by calcining at 0°C for several hours to several tens of hours, then compacting the calcined powder, and heat-treating the compacted body at 800 to 950°C. Oxide superconducting powder can be obtained by grinding. Note that the oxide superconducting powder may be produced by directly heat-treating the calcined powder without compacting it. Note that since the oxide superconducting powder produced as described above contains impurity powder or powder with poor superconducting properties, it is preferable to remove these powders and use only powder with high purity. To remove impurity powder, it is sufficient to cool the oxide superconducting powder with liquid nitrogen, apply a magnetic force to the powder in the liquid nitrogen, and select only the powder that has moved by repelling the magnetic force due to the Meissner effect. It is preferable to select only highly pure oxide superconducting powder in this way and use it in the method of the present invention.

次にこのように得られた酸化物超電導粉末をステンレス
製のふるいなどを用いてふるい分けし、20〜100μ
mの粒径の酸化物超電導粉末のみを集める。なお、粒径
20〜100μmの粉末を更に細かい粒度範囲で選別し
、その粒度範囲の粉末を収集してら良い。
Next, the oxide superconducting powder obtained in this way is sieved using a stainless steel sieve to obtain a 20-100μ
Only oxide superconducting powder with a particle size of m is collected. Incidentally, the powder having a particle size of 20 to 100 μm may be sorted into a finer particle size range, and the powder within that particle size range may be collected.

次に粒径20〜100μmの酸化物超電導粉末を成形ダ
イに挿入し、2〜7L/cm’程度の圧力を数分程度加
えて圧縮加圧成形し、酸化物超電導体を得ることが・で
きる。なお、酸化物超電導粉末を加圧成形する手段は、
成形ダイを用いて行う方法に限るしのではなく、金属基
板上に酸化物超電導粉末を乗せて上下から加圧し、金属
基板上に配向させた層状の酸化物超電導体を得る方法で
も良い。
Next, oxide superconducting powder with a particle size of 20 to 100 μm is inserted into a molding die, and compression molding is performed by applying a pressure of about 2 to 7 L/cm' for several minutes to obtain an oxide superconductor. . Note that the means for pressure molding the oxide superconducting powder is as follows:
The method is not limited to the method using a molding die, but may also be a method in which oxide superconducting powder is placed on a metal substrate and pressure is applied from above and below to obtain a layered oxide superconductor oriented on the metal substrate.

この場合、粉末のこぼれ落ちを防止する目的で酸化物超
電導粉末に有機物のバインダを混合することもできる。
In this case, an organic binder may be mixed with the oxide superconducting powder in order to prevent the powder from spilling.

更に、金属基材上に酸化物超電導粉末を設け、これを圧
縮ダイを装着した圧縮応力付加装置で一定距離ごと少し
ずつ加圧して金属基材上に層状の酸化物超電導体を形成
する方法を採用してもよい。さらにまた、同上の圧縮応
力付加装置のかわりに圧延ロールの中を通過させて酸化
物超電導粉末を加圧成形することもできる。
Furthermore, we have developed a method in which oxide superconducting powder is provided on a metal base material, and this is pressurized little by little at fixed distances using a compressive stress applying device equipped with a compression die to form a layered oxide superconductor on the metal base material. May be adopted. Furthermore, the oxide superconducting powder can be pressure-molded by passing it through a rolling roll instead of using the same compressive stress applying device.

以上のようにして得られた酸化物超電導体は、2(1−
100!1mO粒径の酸化物超電導粉末を圧密して得ら
れているので、結晶が配向した酸化物超電導体が得られ
る。また、結晶配向性の良好な酸化物超電導体となって
いるので、良好な臨界温度と臨界電流密度を発揮する。
The oxide superconductor obtained as described above is 2(1-
Since it is obtained by consolidating oxide superconducting powder with a particle size of 100!1 mO, an oxide superconductor with oriented crystals can be obtained. Furthermore, since it is an oxide superconductor with good crystal orientation, it exhibits good critical temperature and critical current density.

なお、酸化物超電導粉末に対し、−軸方向に圧力を加え
て加圧成形しているので、加圧方向に沿って酸化物超電
導体の結晶がC軸(酸化物超電導体を構成する複合ペロ
ブスカイト構造のC軸)配向し、加圧方向に直角な方向
に酸化物超電導体の結晶のa輔あるいはb軸が配向する
。よって、得られた酸化物超電導体は、加圧方向に直f
iな方向に電流を流し易いように結晶配向している。
In addition, since the oxide superconducting powder is press-molded by applying pressure in the -axis direction, the crystals of the oxide superconductor are aligned along the C-axis (composite perovskite constituting the oxide superconductor) along the pressurizing direction. The C-axis of the structure is oriented, and the a- or b-axis of the crystal of the oxide superconductor is oriented in a direction perpendicular to the direction of pressure. Therefore, the obtained oxide superconductor is straight in the direction of pressure.
The crystals are oriented so that current can easily flow in the i direction.

なお、加圧成形後の酸化物超電導体に熱処理を施して結
晶構造を整えることが好ましい。この熱処理は、600
〜1000℃程度の温度で数時間〜数十時間加熱後、徐
冷するなどの条件で行うことができる。
Note that it is preferable to heat-treat the oxide superconductor after pressure molding to adjust the crystal structure. This heat treatment
This can be carried out under conditions such as heating at a temperature of about 1,000° C. for several hours to several tens of hours and then slowly cooling.

ところで前記実施例においては、Y −B a−CuO
系の酸化物超電導体に本発明方法を適用した例について
説明したが、本発明方法をB i−3r−CaCu−0
系、T IB a−Ca−Cu−0系などの一般の酸化
物超電導体の製造方法に適用しても良いのは勿論である
By the way, in the above example, Y-B a-CuO
An example in which the method of the present invention is applied to the oxide superconductor of B i-3r-CaCu-0 has been described.
It goes without saying that the present invention may be applied to methods for producing general oxide superconductors such as TIB a-Ca-Cu-0 and the like.

「作用 」 結晶配向ζζ好適な20〜100μmの粒度の酸化物超
電導粉末を圧密するので、酸化物超電導体の結晶軸の特
定の方向が加圧方向に配向し、配向性の良好な酸化物超
電導体が得られる。
"Effect" Since the oxide superconducting powder with a particle size of 20 to 100 μm, which is suitable for crystal orientation ζζ, is consolidated, the specific direction of the crystal axis of the oxide superconductor is oriented in the direction of application, resulting in an oxide superconductor with good orientation. You get a body.

「実施例」 Y +U3 atc U30、−δなる組成の酸化物超
電導粉末をステンレス製の複数のふるいによりふるい分
けを行って種々の粒度(粒径10−120μm)の各種
酸化物超電導粉末を得た。
"Example" Oxide superconducting powder having the composition Y + U3 atc U30, -δ was sieved through a plurality of stainless steel sieves to obtain various oxide superconducting powders having various particle sizes (particle size 10-120 μm).

そして、それぞれの粒度の酸化物超電導粉末をそれぞれ
粒度別に複数の成形ダイに入れ、2.8t/cm”の圧
力で3分間圧縮成形して酸化物超電導体を得た。
Then, the oxide superconducting powder of each particle size was put into a plurality of molding dies according to the particle size, and compression molded for 3 minutes at a pressure of 2.8 t/cm'' to obtain an oxide superconductor.

得られた酸化物超電導体の表面にX線をあてて結晶の配
向度を調査した。
The surface of the obtained oxide superconductor was irradiated with X-rays to examine the degree of crystal orientation.

第1図にX線回折により得られた回折強度のピークを示
す。第1図の下側に記載した各ピークは酸化物超電導体
の無配向粉末のピークであるが、第1図の上側に記載し
たピークは加圧後に得られた配向性の強い成形体のピー
クを示している。そして、各粒度、別の成形体について
、以上のように得られたピークの強さを配向性の度合と
して把握した。
FIG. 1 shows the peaks of diffraction intensity obtained by X-ray diffraction. The peaks shown in the lower part of Figure 1 are the peaks of non-oriented powder of oxide superconductor, but the peaks shown in the upper part of Figure 1 are the peaks of the highly oriented compact obtained after pressurization. It shows. Then, for each particle size and different molded object, the intensity of the peak obtained as above was determined as the degree of orientation.

この結果、第2図に示すような特性が得られた。As a result, characteristics as shown in FIG. 2 were obtained.

第2図から、圧粉成形に用いろ酸化物超電導粉末の粒径
が20〜100μmの間の粉末を用いた場合において、
圧粉成形体の結晶が高い配向性を示すことを確認できた
From Fig. 2, when the particle size of the oxide superconducting powder used for compaction is between 20 and 100 μm,
It was confirmed that the crystals of the compact were highly oriented.

「発明の効果」 以上説明したように本発明は、20〜100μmの粒径
の酸化物超電導粉末を圧粉成形して酸化物超電導導体を
製造するので、結晶配向性の良好な酸化物超電導体を得
ることができる。従って臨界電流密度などの超電導特性
の優れた良好な酸化物超電導体を製造できる効果がある
"Effects of the Invention" As explained above, the present invention produces an oxide superconductor conductor by compacting oxide superconducting powder with a particle size of 20 to 100 μm, so the oxide superconductor has good crystal orientation. can be obtained. Therefore, it is possible to produce a good oxide superconductor with excellent superconducting properties such as critical current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られた圧粉体のX線回折ピーク
を示すグラフ、第2図は本発明により得られた圧粉成形
体における使用粉体粒度と圧粉成形体結晶の配向の度合
を示すグラフである。 第1図 第2図
Figure 1 is a graph showing the X-ray diffraction peaks of the compact obtained according to the present invention, and Figure 2 is a graph showing the particle size of the powder used and the orientation of the compact crystals in the compact obtained according to the present invention. It is a graph showing the degree. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  酸化物超電導粉末を加圧成形して酸化物超電導体を製
造する方法において、20〜100μmの粒径の酸化物
超電導粉末を用いて加圧成形することを特徴とする酸化
物超電導体の製造方法。
A method for producing an oxide superconductor by pressure molding oxide superconductor powder, the method comprising pressure molding using oxide superconductor powder having a particle size of 20 to 100 μm. .
JP1272435A 1989-10-19 1989-10-19 Manufacture of oxide superconductor Pending JPH03137051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272435A JPH03137051A (en) 1989-10-19 1989-10-19 Manufacture of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272435A JPH03137051A (en) 1989-10-19 1989-10-19 Manufacture of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03137051A true JPH03137051A (en) 1991-06-11

Family

ID=17513874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272435A Pending JPH03137051A (en) 1989-10-19 1989-10-19 Manufacture of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03137051A (en)

Similar Documents

Publication Publication Date Title
EP1394112B1 (en) Mgb2 based superconductor having high critical current density and method for preparation thereof
JPH0259465A (en) Production of oxide high temperature superconductor
US5334578A (en) Method of manufacturing superconductor
JPH03137051A (en) Manufacture of oxide superconductor
DE3852971T2 (en) Superconducting material and process for its manufacture.
EP0825969B1 (en) Method of producing shaped superconductor bodies
JP2609460B2 (en) Method for manufacturing molded body of ceramic oxide superconducting material
JPH06219736A (en) Superconductor
DE3932423C2 (en)
JPH03137050A (en) Manufacture of oxide superconductor
JPH03159954A (en) Manufacture of product having improved physical characteristics and superconductivity
JPH03137052A (en) Manufacture of oxide superconductor
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2969220B2 (en) Manufacturing method of oxide superconductor
JP2821568B2 (en) Method for producing superconducting whisker composite
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPS63270318A (en) Production of superconductive material of oxide type
JPH07232960A (en) Production of oxide superconductor
KR0174385B1 (en) Process for preparing the higg temperature superconductor having anisotropy
EP0500966A1 (en) Oxide superconductor and method of manufacturing said superconductor
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JPH0238358A (en) Production of oxide superconductor
JPH02124758A (en) Production of oxide superconductor
JPH04175260A (en) Oxide superconducting material and its production
JPH04175225A (en) Production of oxide superconducting material