JPS63270318A - Production of superconductive material of oxide type - Google Patents

Production of superconductive material of oxide type

Info

Publication number
JPS63270318A
JPS63270318A JP62105569A JP10556987A JPS63270318A JP S63270318 A JPS63270318 A JP S63270318A JP 62105569 A JP62105569 A JP 62105569A JP 10556987 A JP10556987 A JP 10556987A JP S63270318 A JPS63270318 A JP S63270318A
Authority
JP
Japan
Prior art keywords
powder
raw material
heat
heat treatment
superconductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62105569A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sadakata
伸行 定方
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Masaru Sugimoto
優 杉本
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62105569A priority Critical patent/JPS63270318A/en
Priority to DE3887910T priority patent/DE3887910T2/en
Priority to EP88302417A priority patent/EP0283313B1/en
Priority to CN88101444.3A priority patent/CN1027937C/en
Priority to CA000561971A priority patent/CA1338753C/en
Publication of JPS63270318A publication Critical patent/JPS63270318A/en
Priority to US07/831,663 priority patent/US5168127A/en
Priority to US07/932,933 priority patent/US5283232A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Processes peculiar to the manufacture or treatment of filaments or composite wires

Abstract

PURPOSE:To enable easy production of a superconductive material having a uniform composition, by applying hydrostatic pressure to raw material powder to give a molded article, directly heat-treating or grinding and heat-treating. CONSTITUTION:Raw material powder for a superconductive material of oxide type is packed into a rubber mold of a desired shape. Further hydrostatic pressure is applied to the raw material powder to form a molded article of a desired shape such as cylindrical or disc shape. Then the molded article or powder prepared by coarsely grinding the molded article is heat-treated to give a superconductive material having superconductivity. The superconductive material is ground into powder, molded into a desired shape such as wire form or thin film form and used. Since each raw material powder is in a densely aggregated state by this method, calcination process is eliminated, reaction between elements is sufficiently carried out and the superconductive material having uniform composition is obtained by heat treatment for a reduced heating time.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は磁気浮上輸送機器用マグネット、磁気共鳴分析
装置用マグネット、粒子加速器用マグネット、核融合炉
装置用マグネット等の超電導応用機器、電気配線、電磁
気シールド等を有する電気機器などに利用される超電導
材料に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention is applicable to superconducting applied equipment such as magnets for magnetic levitation transportation equipment, magnets for magnetic resonance analyzers, magnets for particle accelerators, and magnets for nuclear fusion reactor equipment, and electrical wiring. , relates to superconducting materials used in electrical equipment with electromagnetic shielding and the like.

「従来の技術」 近来、常電導状態から超電導状態へ遷移する臨界温度(
T c)が液体窒素温度以上の高い値を示す酸化物系の
超電導材料が種々発見されつつある。
"Conventional technology" Recently, the critical temperature (
Various oxide-based superconducting materials are being discovered that exhibit a high value of Tc) higher than the liquid nitrogen temperature.

そして、従来、この種の超電導材料の中でもA −B 
−Cu−0系(ただし、AはLa、Y、Yb、Sc等の
lI[a族金属元素を示し、BはSr、Ba等のアルカ
リ土類金属元素を示す)の超電導材料を製造するには、
超電導材料の原料粉末、例えば、L a−S r−Cu
−0系超電導材料を作成する場合にはLat、sと、5
rCOsと、CLIOの各粉末を所定の配合比となるよ
うに秤量採取し、これらの各粉末を混合器で均一に混合
する。次いでこの混合粉末を耐火物製の容器に入れ、大
気中、真空中、減圧大気中、酸素ガス中、塩素ガス中、
フッ素ガス中、金属蒸気中などの雰回気ガス中で加熱す
る、いわゆる仮焼工程を行なう。次いで仮焼を終えた粉
末を更に粉砕処理して微粒子とし、この後圧粉成形して
線状など所望の形状の成形体とする。次いでこの成形体
に熱処理を施して、原料粉末中の各元素間に反応を起こ
させて超電導性を有する超電導体を得ている。
Conventionally, among this type of superconducting materials, A-B
-Cu-0 system (where A indicates an lI group metal element such as La, Y, Yb, or Sc, and B indicates an alkaline earth metal element such as Sr or Ba) superconducting material. teeth,
Raw material powder of superconducting material, for example, L a-S r-Cu
When creating a −0-based superconducting material, Lat, s, and 5
Each powder of rCOs and CLIO is weighed and collected so as to have a predetermined mixing ratio, and these powders are uniformly mixed in a mixer. Next, this mixed powder is placed in a refractory container and exposed to air, vacuum, reduced pressure atmosphere, oxygen gas, chlorine gas,
A so-called calcination step is performed in which the material is heated in an atmospheric gas such as fluorine gas or metal vapor. Next, the calcined powder is further pulverized into fine particles, which are then compacted into a molded body of a desired shape, such as a linear shape. Next, this molded body is subjected to heat treatment to cause a reaction between each element in the raw material powder, thereby obtaining a superconductor having superconductivity.

「発明が解決しようとする問題点」 しかし、こうした製造方法では、仮焼時に、昆合粉末の
粒子間の接合が弱いために、各原料粉末の固相間の拡散
反応の速度が遅く、仮焼時間を多くしても各元素間の反
応率が低い欠点がある。このため2回目の加熱、すなわ
ち成形後の熱処理を行なっても各元素間の反応が不充分
な場合が生じ、超電導体の組成が不均一になりやすい問
題があった。
``Problems to be Solved by the Invention'' However, in this manufacturing method, during calcination, the bonding between the particles of the kombu powder is weak, so the rate of diffusion reaction between the solid phases of each raw material powder is slow, and the calcination Even if the baking time is increased, the reaction rate between each element is low. For this reason, even if the second heating, that is, the heat treatment after molding, is performed, the reaction between each element may be insufficient, resulting in the problem that the composition of the superconductor tends to be non-uniform.

一方、均一な組成の超電導材料を得るために長時間ある
いは調温で熱処理を行なうと、得られる(材料の超電導
特性が劣化してしまう問題があった。
On the other hand, if a heat treatment is performed for a long time or at a controlled temperature in order to obtain a superconducting material with a uniform composition, there is a problem in that the superconducting properties of the obtained material deteriorate.

この発明はこうした問題を解消し、均一な組成ニア)J
i3電導材料を容易に製造する方法の提供を目的として
いる。
This invention solves these problems and achieves a uniform composition near) J
The purpose of the present invention is to provide a method for easily manufacturing i3 conductive material.

「問題点を解決するための手段」 この発明は、酸化物系超電導材料の原料粉末に静水圧加
圧を施して成形体とし、次いでこの成形体あるいはこの
成形体を破砕した破砕物に熱処理を施すことを問題解決
の手段とした。
"Means for Solving the Problems" This invention applies isostatic pressure to a raw material powder of an oxide-based superconducting material to form a molded body, and then heat-treats this molded body or a crushed product obtained by crushing this molded body. The solution to the problem was to apply

「作用」 酸化物系超電導材料の原料粉末を静水圧加圧して成形体
とし、この成形体あるいはこの成形体の破砕物に熱処理
を施すので、最初の熱処理時に各原料粉末が密に凝集し
た状態で熱処理が行なわれ、これによって各元素間の反
応速度が向上する。
"Operation" Raw material powders of oxide-based superconducting materials are pressurized with isostatic pressure to form compacts, and heat treatment is applied to this compact or the crushed product of this compact, so that each raw material powder is tightly agglomerated during the initial heat treatment. A heat treatment is performed to improve the reaction rate between each element.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明により製造される超電導材料としてはA −B
 −Cu−0系(ただし、AはY 、 L a、 P 
r、 N d。
The superconducting material produced by this invention is A-B.
-Cu-0 system (A is Y, La, P
r, Nd.

Pm、Eu、Gd、Tb、Sm、Dy、l−1o、Er
、Tm、Yb、Lu。
Pm, Eu, Gd, Tb, Sm, Dy, l-1o, Er
, Tm, Yb, Lu.

Sc等のIIIa族金属元素を示し、BはBa、Sr、
Mg。
Represents a group IIIa metal element such as Sc, B represents Ba, Sr,
Mg.

Ca、Ra、Be等のアルカリ土類金属元素を示す)な
どの酸化物系超電導材料である。こうした超電導材料の
原料は、例えば、上記A −B −Cu−0系超電導材
料を製造する場合にはY、La、Yb、Sc等の1!1
a族金属元素化合物と、Ba、Sr等のアルカリ土類金
属これら金属元素の化合物としては、各金属元素の酸化
物、塩化物、フソ化物、炭酸化物、硫化物、臭化物など
が使用できるが、各金属元素の酸化物が特に好適に使用
される。
It is an oxide-based superconducting material such as alkaline earth metal elements such as Ca, Ra, and Be. For example, when manufacturing the above A-B-Cu-0 based superconducting material, raw materials for such superconducting materials include Y, La, Yb, Sc, etc.
Group A metal element compounds and alkaline earth metals such as Ba and Sr. Compounds of these metal elements include oxides, chlorides, fusodides, carbonates, sulfides, bromides, etc. of each metal element. Oxides of each metal element are particularly preferably used.

これら原料を用いて超電導材料を製造するには、まず、
粉末状の各原料を所定の配合比となるように秤量採取し
、混合器を用いてこれらの各原料を均一に混合する。
To manufacture superconducting materials using these raw materials, first,
Powdered raw materials are weighed and collected so as to have a predetermined mixing ratio, and these raw materials are uniformly mixed using a mixer.

次に、この混合粉末を所望形状の空隙を存するゴム型内
に充填し、更に静水圧加圧を施して、円桂状、円盤状な
ど所望形状の成形体を作成する。
Next, this mixed powder is filled into a rubber mold having a void of a desired shape, and further hydrostatic pressure is applied to produce a molded body of a desired shape such as a conic shape or a disk shape.

このゴム型は生ゴム、合成ゴム等の可撓性材料で作られ
たものが好適に使用される。また、静水圧加圧の装置と
しては、冷間静水圧プレス機など周知の静水圧加圧装置
を用いることができる。また、成形圧力は成形体の密度
や使用する原料粉末の種類などによって適宜設定される
が、例えば原料として、Y,03、BaO、CuOを用
い、熱処理性の良い成形体を得ようとする場合には、1
500〜3 5 0 0 Kg/cm”程度の成形圧力
が好適である。
This rubber mold is preferably made of a flexible material such as raw rubber or synthetic rubber. Furthermore, as the hydrostatic pressurizing apparatus, a known hydrostatic pressurizing apparatus such as a cold isostatic press machine can be used. In addition, the compacting pressure is appropriately set depending on the density of the compact and the type of raw material powder used, but for example, when using Y,03, BaO, CuO as the raw material and trying to obtain a compact with good heat treatability. For, 1
A molding pressure of about 500 to 3500 Kg/cm" is suitable.

次に、この成形体あるいはこの成形体を粗く破砕した破
砕物に熱処理を施す。破砕処理を施す場合、破砕物の粒
径は5mm以下とするのが望ましく、0、5mm〜3m
m程度が特に好適である。また、破砕処理により生じた
微粉末は、再び混合粉末中に混合することができる。こ
の破砕物あるいは圧粉成形体を熱処理する条件は、酸化
物系超電導材料の種類によって適宜に設定されるが、例
えば上記Y −B a−C u−0系超電導材料を作成
する場合には、800〜1100℃、1〜200時間の
熱処理が望ましい。また熱処理時の雰囲気は、大気雰囲
気中で良いが、真空中、減圧大気中、酸素ガス中、塩素
ガス中、フッ素ガス中、原料金属元素の蒸気中などの各
雰囲気中で行なっても良い。
Next, this molded body or a crushed product obtained by roughly crushing this molded body is subjected to heat treatment. When performing crushing treatment, the particle size of the crushed material is preferably 5 mm or less, and is 0.5 mm to 3 m.
A value of about m is particularly suitable. Moreover, the fine powder produced by the crushing process can be mixed into the mixed powder again. The conditions for heat-treating this crushed material or compacted product are appropriately set depending on the type of oxide-based superconducting material. Heat treatment at 800-1100°C for 1-200 hours is desirable. The atmosphere during the heat treatment may be air, but it may also be carried out in vacuum, reduced pressure atmosphere, oxygen gas, chlorine gas, fluorine gas, vapor of raw metal element, or the like.

以上の操作により、超電導性を有する超電導材料が得ら
れる。この超電導材料は、粉砕処理を施して粉末とし、
線材状、薄膜状など所望の形状に成形し、超電導マグネ
ットなどの超電導機器に利用される。
Through the above operations, a superconducting material having superconductivity can be obtained. This superconducting material is pulverized into powder,
It is formed into a desired shape, such as a wire or a thin film, and used in superconducting devices such as superconducting magnets.

この発明による超電導材料の製造方法では、最初の熱処
理のとき、各原料粉末が密に凝集された状態になってい
るので、各元素間の反応速度を高めることができ、熱処
理時間が短くてら各元素間の反応が充分に行なわれた均
一な組成の超電導材料を得ることができる。
In the method for producing superconducting materials according to the present invention, each raw material powder is in a densely aggregated state during the first heat treatment, so the reaction rate between each element can be increased, and the heat treatment time is short and each It is possible to obtain a superconducting material with a uniform composition in which reactions between elements are sufficiently carried out.

また、仮焼工程を省き、加熱時間を短縮できるので、長
い時間あるいは高温で熱処理を行なうことにより生じる
超電導特性の劣化を防止することができる。
Furthermore, since the calcination step can be omitted and the heating time can be shortened, it is possible to prevent deterioration of superconducting properties caused by heat treatment for a long time or at high temperatures.

また、熱処理が1回であっても高品質の超電導材料を製
造することができるので、仮焼や熱処理時に生じ易い不
純物の混入による汚染(コンタミネーション)を低レベ
ルに抑えることができる。
Furthermore, since a high-quality superconducting material can be produced even with one heat treatment, contamination due to impurities that are likely to occur during calcination and heat treatment can be suppressed to a low level.

また、成形体を破砕した破砕物に熱処理を施すものでは
、表面積が大きくなるので、熱処理時に雰囲気ガス、例
えば酸素ガスやフッ素ガスなどと原料粉末の界面との間
の反応を伴う場合、各元素間の反応速度を高めることが
できる。また、熱処理を終えた超電導材料を粉砕して使
用する場合、予め破砕された状態なので粉砕が容易とな
る。
In addition, when heat-treating a crushed compact, the surface area becomes large, so if heat treatment involves a reaction between an atmospheric gas, such as oxygen gas or fluorine gas, and the interface of the raw material powder, each element The reaction rate between can be increased. Furthermore, when the heat-treated superconducting material is crushed and used, the crushing becomes easy because it is in a previously crushed state.

また、本発明方法は、従来方法に比べ、仮焼工程を省け
るなど製造工程を簡略化することができ、高品質の超電
導材料を低コストで製造することができる。
Furthermore, compared to conventional methods, the method of the present invention can simplify the manufacturing process by omitting the calcination step, and can manufacture high-quality superconducting materials at low cost.

なお、上記熱処理は1回に限定されず、例えば、1回目
の熱処理を終えた超電導材料(熱処理により完全に超電
導化していない成形体等も含む)を粉砕処理し、この粉
末に再び静水圧加圧を施して成形体とし、この成形体あ
るいはこれを破砕した破砕物に熱処理を施す工程を複数
回繰り返し行なっても良い。
Note that the above heat treatment is not limited to one time; for example, the superconducting material that has undergone the first heat treatment (including compacts that have not been completely made superconducting by heat treatment) is pulverized, and this powder is subjected to isostatic pressure again. The process of applying pressure to form a molded body and heat-treating this molded body or a crushed product obtained by crushing the molded body may be repeated multiple times.

以下に実施例を記す。Examples are described below.

「実施例 l」 本発明方法に基づいて、L a−S r−Cu−0系超
電導材料を作成した。
"Example 1" A La-S r-Cu-0 based superconducting material was created based on the method of the present invention.

まず、L ass r:c u= 1.8:0.2+1
.0 (モル比)となるように、L’atO3と、Sr
Oと、CuOの各粉末を均一に混合した混合粉末を、ゴ
ム型に充填し、これを2500  Kg/cm”の圧力
で静水圧加圧して直径15 mm、長さ2001111
11の円柱状の成形体を作成した。次いでこの成形体を
大気中、900℃で24時間熱処理し、超電導材料を得
た。
First, L ass r: cu = 1.8:0.2+1
.. 0 (molar ratio), L'atO3 and Sr
A rubber mold was filled with a mixed powder made by uniformly mixing O and CuO powders, and this was hydrostatically pressurized at a pressure of 2500 Kg/cm to form a mold with a diameter of 15 mm and a length of 2001111.
Eleven cylindrical molded bodies were created. Next, this molded body was heat-treated at 900° C. for 24 hours in the air to obtain a superconducting material.

この超電導材料はX線解析の結果、K tN tFA型
構造の単−相であることが確認できた。また、この超電
導材料は、33にで電気堺抗がゼロになった。
As a result of X-ray analysis, it was confirmed that this superconducting material had a single-phase K tN tFA type structure. Moreover, this superconducting material had zero electrical resistance at 33 days.

「実施例 2」 本発明方法に基づいてY −B a−Cu−0系の超電
導材料を作成した。
"Example 2" A Y-Ba-Cu-0 based superconducting material was created based on the method of the present invention.

まず、Y :B arc u= 0.3:0.7:1.
0 (モル比)となるように、Y、03と、BaOと、
CuOの各粉末を均一に混合した混合粉末を、ゴム型に
充填し、これを2500  Kg/am2の圧力で静水
圧加圧して直径15mm、長さ200mII+の円柱状
の成形体を作成した。次いでこの成形体をクラッシャー
で破砕し、更にこれを篩別して粒径が1mm〜5mmの
破砕物を得た。次いでこの破砕物を大気中、900℃で
24時間熱処理して超電導材料を得た。
First, Y:B arc u=0.3:0.7:1.
0 (molar ratio), Y, 03, BaO,
A mixed powder obtained by uniformly mixing CuO powders was filled into a rubber mold, and this was hydrostatically pressed at a pressure of 2500 Kg/am2 to create a cylindrical molded body with a diameter of 15 mm and a length of 200 mII+. Next, this molded body was crushed with a crusher and further sieved to obtain a crushed product having a particle size of 1 mm to 5 mm. Next, this crushed material was heat-treated at 900° C. for 24 hours in the air to obtain a superconducting material.

この超電導材料は、液体窒素温度以上である90にで電
気抵抗がゼロになった。
The electrical resistance of this superconducting material became zero at 90°C, which is above the liquid nitrogen temperature.

「実施例 3」 本発明方法に基づいて、Y −B a−Cu−0系超電
導材料を作成した。
"Example 3" A Y-Ba-Cu-0 based superconducting material was created based on the method of the present invention.

まず、Y :B a:Cu= 0.3:0.7:1.0
 (モル比)となるように、Y、03と、BaOと、C
uOの各粉末を均一に混合した混合粉末を、ゴム型に充
填し、これを2500  Kg/cm”の圧力で静水圧
加圧して、直径15mm、長さ200mmの円柱状の成
形体を作成した。次いでこの成形体をクラッシャーで破
砕し、更にこれを篩別して粒径がllllIn〜5m+
nの破砕物を得た。次いでこの粗粒を酸素ガス雰囲気中
、90O℃で24時間熱処理して超電導材料を得た。
First, Y:B a:Cu=0.3:0.7:1.0
(molar ratio) of Y, 03, BaO, and C.
A mixed powder obtained by uniformly mixing various uO powders was filled into a rubber mold, and this was hydrostatically pressed at a pressure of 2500 Kg/cm'' to create a cylindrical molded body with a diameter of 15 mm and a length of 200 mm. Next, this molded body is crushed with a crusher, and it is further sieved to have a particle size of llllIn~5m+.
A crushed product of n was obtained. Next, the coarse particles were heat-treated at 900° C. for 24 hours in an oxygen gas atmosphere to obtain a superconducting material.

この超電導材料は、液体窒素温度以上である92にで電
気抵抗がゼロになった。
The electrical resistance of this superconducting material became zero at 92°C, which is above the liquid nitrogen temperature.

「発明の効果」 以上説明したように、この発明による酸化物系超電導材
料の製造方法は、酸化物系超電導材料の原料粉末に静水
圧加圧を施して成形体とし、次いでこの成形体あるいは
この成形体を破砕した破砕物に熱処理を施すので、最初
の熱処理のとき、各原料粉末が密に凝集された状態にな
っているので、各元素間の反応速度を高めることができ
、熱処理時間が短くても各元素間の反応が充分に行なわ
れた均一な組成の超電導材料を得ることができる。
"Effects of the Invention" As explained above, the method for producing an oxide superconducting material according to the present invention is to apply hydrostatic pressure to the raw material powder of the oxide superconducting material to form a molded body, and then to form a molded body or this molded body. Since heat treatment is applied to the crushed material obtained by crushing the compact, each raw material powder is in a densely aggregated state during the first heat treatment, so the reaction rate between each element can be increased, and the heat treatment time is shortened. Even if the time is short, it is possible to obtain a superconducting material with a uniform composition in which reactions between each element are sufficiently carried out.

また、仮焼工程を省き、加熱時間を短縮できるので、長
い時間あるいは高温で熱処理を行なうことにより生じる
超電導特性の劣化を防止することができる。
Furthermore, since the calcination step can be omitted and the heating time can be shortened, it is possible to prevent deterioration of superconducting properties caused by heat treatment for a long time or at high temperatures.

また、熱処理が1回であって高品質の超電導材料を製造
することができるので、仮焼や熱処理時に生じ易い不純
物の混入による汚染(コンタミネーション)を低レベル
に抑えることができる。
Furthermore, since a high-quality superconducting material can be produced with only one heat treatment, contamination caused by impurities that are likely to occur during calcination and heat treatment can be suppressed to a low level.

また、成形体を破砕した破砕物に熱処理を施すものでは
、表面積が大きくなるので、熱処理時に雰囲気ガス、例
えば酸素ガスやフッ素ガスなどと原料粉末の界面との間
の反応を伴う場合、各元素間の反応速度を高めることが
できる。また、熱処理を終えた超電導材料を粉砕して使
用する場合、予め破砕された状態なので粉砕が容易とな
る。
In addition, when heat-treating a crushed compact, the surface area becomes large, so if heat treatment involves a reaction between an atmospheric gas, such as oxygen gas or fluorine gas, and the interface of the raw material powder, each element The reaction rate between can be increased. Furthermore, when the heat-treated superconducting material is crushed and used, the crushing becomes easy because it is in a previously crushed state.

また、本発明方法は、従来法に比べ、仮焼工程を省ける
など製造工程を簡略化することができ、高品質の超電導
材料を低コストで製造することができる。
Furthermore, compared to conventional methods, the method of the present invention can simplify the manufacturing process by omitting the calcination step, and can manufacture high-quality superconducting materials at low cost.

Claims (1)

【特許請求の範囲】[Claims] 酸化物系超電導材料の原料粉末に静水圧加圧を施して成
形体とし、次いでこの成形体あるいはこの成形体を破砕
した破砕物に熱処理を施すことを特徴とする酸化物系超
電導材料の製造方法。
A method for producing an oxide-based superconducting material, which comprises applying hydrostatic pressure to a raw material powder of the oxide-based superconducting material to form a compact, and then heat-treating the compact or a crushed product obtained by crushing the compact. .
JP62105569A 1987-03-20 1987-04-28 Production of superconductive material of oxide type Pending JPS63270318A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62105569A JPS63270318A (en) 1987-04-28 1987-04-28 Production of superconductive material of oxide type
DE3887910T DE3887910T2 (en) 1987-03-20 1988-03-18 Method for producing a wire made of superconducting oxide and wire produced therewith.
EP88302417A EP0283313B1 (en) 1987-03-20 1988-03-18 Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
CN88101444.3A CN1027937C (en) 1987-03-20 1988-03-19 Method of producting oxide superconducting wire and oxide superconducting wire produced by this method
CA000561971A CA1338753C (en) 1987-03-20 1988-03-21 Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
US07/831,663 US5168127A (en) 1987-03-20 1992-02-06 Oxide superconducting wire
US07/932,933 US5283232A (en) 1987-03-20 1992-08-20 Method for producing oxide superconducting composite wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62105569A JPS63270318A (en) 1987-04-28 1987-04-28 Production of superconductive material of oxide type

Publications (1)

Publication Number Publication Date
JPS63270318A true JPS63270318A (en) 1988-11-08

Family

ID=14411158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62105569A Pending JPS63270318A (en) 1987-03-20 1987-04-28 Production of superconductive material of oxide type

Country Status (1)

Country Link
JP (1) JPS63270318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270347A (en) * 1987-04-30 1988-11-08 Matsushita Electric Ind Co Ltd Production of oxide superconductor
US5415828A (en) * 1989-04-14 1995-05-16 Ngk Insulators, Ltd. Jig and method for isostatically pressing ceramic powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270347A (en) * 1987-04-30 1988-11-08 Matsushita Electric Ind Co Ltd Production of oxide superconductor
US5415828A (en) * 1989-04-14 1995-05-16 Ngk Insulators, Ltd. Jig and method for isostatically pressing ceramic powder

Similar Documents

Publication Publication Date Title
US4975411A (en) Superconductors and methods of making same
JPS63270318A (en) Production of superconductive material of oxide type
EP0659704B1 (en) Method of manufacturing oxide superconductor
JPH03159954A (en) Manufacture of product having improved physical characteristics and superconductivity
EP0530370B1 (en) Process for producing oxide superconductor
JP2966442B2 (en) Bi-based oxide superconductor and method for producing wire thereof
JPH01160876A (en) Production of superconductor parts
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
JPH01153565A (en) Production of oxide superconductor
JPH01241713A (en) Manufacture of oxide superconductor wire
JPH01138167A (en) Production of oxide superconductor
JP3314102B2 (en) Manufacturing method of oxide superconductor
JPH01226703A (en) Production of oxide superconductor
JPH02258665A (en) Production of superconductive material
JPH01160861A (en) Anisotropic growth of superconducting ceramic
JPH01138131A (en) Production of oxide superconductor
JPH03137050A (en) Manufacture of oxide superconductor
JPH07232960A (en) Production of oxide superconductor
JPH04243917A (en) Preparation of oxide superconducting sintered compact
JPS63242958A (en) Production of superconducting material
JPS63302967A (en) Sorting of oxide superconducting material
JPH01119556A (en) Production of oxide-based superconductor
JPH03137051A (en) Manufacture of oxide superconductor
JPH01239017A (en) Production of oxide-based superconducting material
JPH06263520A (en) Production of oxide superconductor