JPH0238358A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH0238358A
JPH0238358A JP63187858A JP18785888A JPH0238358A JP H0238358 A JPH0238358 A JP H0238358A JP 63187858 A JP63187858 A JP 63187858A JP 18785888 A JP18785888 A JP 18785888A JP H0238358 A JPH0238358 A JP H0238358A
Authority
JP
Japan
Prior art keywords
oxide superconductor
magnetic field
heating furnace
furnace
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63187858A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Yoshimitsu Ikeno
池野 義光
Tsukasa Kono
河野 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63187858A priority Critical patent/JPH0238358A/en
Publication of JPH0238358A publication Critical patent/JPH0238358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having high critical current density by placing a molded article of mixed powder of a specific element, Ba and Cu in a furnace and burning the molded article while introducing oxygen into the furnace and applying a magnetic field. CONSTITUTION:In a method of producing an oxide superconductor of R-Ba-Cu-O (R element such as Eu, Gd, Tb, By, Ho, Er or Tm having high magnetic susceptibility among group IIIa elements of the periodic table). Namely, mixed powder containing the element R, Ba and Cu in a given ratio is prepared and the mixed powder is subjected to pressure molding to prepare a molded article. The molded article is placed in a furnace capable of preparing an oxygen existing atmosphere in the interior and a magnetic field generator is used. Then oxygen is sent to the furnace and the molded article is sintered while applying a magnetic field to the interior of the furnace by the magnetic field generator to give the aimed superconductor.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は磁力を利用して臨界電流密度の高い酸化物超電
導体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing an oxide superconductor with a high critical current density using magnetic force.

「従来の技術」 近年、従来の金属間化合物系超電導材料あるいは合金系
超電導材料とは別種の新規な超電導材料として、酸化物
系のセラミック超電導材料が開発されている。この種の
酸化物系超電導材料は、常電導状態から超電導状態に遷
移する臨界温度が極めて高く、一部のらのは液体窒素に
よる冷却によって超電導状態を維持することが可能な材
料であるために、その応用面で様々な研究と開発が進め
られている。
"Prior Art" In recent years, oxide-based ceramic superconducting materials have been developed as new superconducting materials different from conventional intermetallic compound-based superconducting materials or alloy-based superconducting materials. This type of oxide-based superconducting material has an extremely high critical temperature at which it transitions from a normal conductive state to a superconducting state, and some materials can maintain their superconducting state by cooling with liquid nitrogen. , various research and development efforts are underway in terms of its application.

ところで従来、この種の酸化物超電導体を製造するには
、酸化物超電導体を構成する各元素の化合物粉末(例え
ばY −B a−Cu−0系の酸化物超電導体を製造す
る場合、Y、03粉末とBaCO3粉末とCuO粉末)
を所定の比率で混合し、次いで仮焼処理を施して不要成
分を除去し、更に熱処理を施して酸化物超電導体を得て
いた。
Conventionally, in order to manufacture this type of oxide superconductor, compound powder of each element constituting the oxide superconductor (for example, when manufacturing a Y-B a-Cu-0 based oxide superconductor, Y , 03 powder, BaCO3 powder and CuO powder)
were mixed in a predetermined ratio, then calcined to remove unnecessary components, and further heat treated to obtain an oxide superconductor.

[発明が解決しようとする課題] ところがこの種の酸化物超電導体においては、臨界電流
密度が実用的な面から要求される値よりもはるかに低い
問題があった。
[Problems to be Solved by the Invention] However, this type of oxide superconductor has a problem in that the critical current density is much lower than the value required from a practical standpoint.

この理由の1つは、酸化物超電導体が粉末を圧密して得
られた成形体を焼結して作成されるので、焼結体の密度
が理論密度に対して低い値になり、内部に無数の気孔が
存在するために、超電導体の結晶粒どうしの接合が満足
ではなく、焼結体の内部に超電導体の結晶粒の接合点が
多数存在する関係から、電流パスが少なくなるためであ
ると想定されている。
One of the reasons for this is that oxide superconductors are created by compacting powder and sintering compacts, so the density of the sintered compact is lower than the theoretical density, and the internal Due to the presence of countless pores, the bonding between the superconductor crystal grains is not satisfactory, and the presence of many bonding points between the superconductor crystal grains inside the sintered body reduces the number of current paths. It is assumed that there is.

また、もう1つの理由は、酸化物超電導体が、ペロブス
カイトを基本とした層状構造をなし、基本格子内のCu
−0面が超電導性を担っている関係から、結晶の特定の
方向に容易に電流を流す異方性を示すために、前述のよ
うに焼結体を製造した場合、焼結体の内部で結晶の配向
性が無秩序になり、電流パスが少なくなって臨界電流密
度が向上しないものと想定されている。
Another reason is that the oxide superconductor has a layered structure based on perovskite, and Cu in the basic lattice
Since the −0 plane is responsible for superconductivity, in order to exhibit anisotropy that allows current to flow easily in a specific direction of the crystal, when a sintered body is manufactured as described above, the inside of the sintered body It is assumed that the crystal orientation becomes disordered, the number of current paths decreases, and the critical current density does not improve.

本発明は、従来の焼結体の結晶の配向性が無秩序である
ことに着目して前記課題を解決するためになされたもの
で、臨界電流密度の高い酸化物超電導体を製造する方法
を提供することを目的とする。
The present invention was made in order to solve the above problem by focusing on the disordered crystal orientation of conventional sintered bodies, and provides a method for manufacturing an oxide superconductor with a high critical current density. The purpose is to

「課題を解決するための手段」 本発明は、前記課題を解決するために、R−BaCu−
0(ただしRは、周期律表IIIa族元素のうち、Eu
、Gd、Tb、Dy、Ho、Er、Tmなどの磁化率の
高い元素の1種以上の元素を示す。)系の酸化物超電導
体を製造する方法において、前記A元素とB元素とCu
とOを所定の割合で含有する混合粉末を作成し、この混
合粉末を加圧成形して成形体を作成するとともに、内部
を酸素存在雰囲気に調整可能な加熱炉と、この加熱炉の
外方に設けられた磁場発生装置を用い、前記加熱炉の内
部に成形体を設置し、加熱炉内に酸素を送り、磁場発生
装置で加熱炉の内部に磁場をかけながら成形体を焼結す
るものである。
"Means for Solving the Problems" In order to solve the problems, the present invention provides R-BaCu-
0 (However, R is Eu of Group IIIa elements of the periodic table.
, Gd, Tb, Dy, Ho, Er, Tm, and other elements with high magnetic susceptibility. ) system oxide superconductor, in which the A element, B element and Cu
A mixed powder containing O and O in a predetermined ratio is created, and this mixed powder is press-molded to create a molded body. At the same time, a heating furnace whose interior can be adjusted to an oxygen-rich atmosphere, and an outside of this heating furnace are used. A method in which a molded body is placed inside the heating furnace using a magnetic field generator installed in the heating furnace, oxygen is sent into the heating furnace, and the molded body is sintered while applying a magnetic field inside the heating furnace with the magnetic field generator. It is.

「作用 」 磁場発生装置が加熱炉内に発生させた磁場により、焼結
体の内部に含有された磁化率の高い元素が配向し、この
元素に合わせて固相反応がなされて配向性の良好な酸化
物超電導体が生成する。
"Effect" The magnetic field generated in the heating furnace by the magnetic field generator orients the elements with high magnetic susceptibility contained inside the sintered body, and a solid phase reaction occurs in conjunction with this element, resulting in good orientation. oxide superconductor is produced.

「実施例」 第1図は、本発明方法を行う場合に用いて好適な処理装
置の一例を示すもので、この処理装置1は筒型の加熱炉
2と磁場発生装置3を主体として構成されている。加熱
炉2は周壁部に加熱ヒータが埋設されてなり、内部を所
要の温度に加熱できるようになっている。また、加熱炉
2の端部には着脱自在に蓋体4が設けられ、各蓋体4に
は吸排気用の通気管5が挿通され、各通気管5は流路6
を介して酸素ガス供給源7に接続されていて、この酸素
ガス供給源7と流路6と加熱炉2を介して酸素ガスを循
環させ、加熱炉2の内部に酸素ガス気流を生じさせるこ
とができるようになっている。
"Example" FIG. 1 shows an example of a processing apparatus suitable for carrying out the method of the present invention, and this processing apparatus 1 mainly consists of a cylindrical heating furnace 2 and a magnetic field generator 3. ing. The heating furnace 2 has a heater embedded in its peripheral wall so that the inside can be heated to a desired temperature. Further, a lid body 4 is detachably provided at the end of the heating furnace 2, and a ventilation pipe 5 for intake and exhaust is inserted through each lid body 4, and each ventilation pipe 5 has a flow path 6.
is connected to the oxygen gas supply source 7 via the oxygen gas supply source 7, circulates oxygen gas through the oxygen gas supply source 7, the flow path 6, and the heating furnace 2, and generates an oxygen gas flow inside the heating furnace 2. is now possible.

この発明を実施して酸化物超電導体を製造するには、ま
ず、出発物を調製する。この出発物としては、酸化物超
電導体、酸化物超電導体を構成する元素を含む材料、あ
るいはこれらの混合物を用いる。
To practice this invention and produce an oxide superconductor, starting materials are first prepared. As this starting material, an oxide superconductor, a material containing an element constituting the oxide superconductor, or a mixture thereof is used.

ii?前記酸化物超電導体としては、R−B a−Cu
−0(ただしAは、百u、Gd、Tb、Dy、I−(o
、Er、Tmなどの磁性元素の1種以上を示す。)系の
ものが用いられる。酸化物超電導体を構成する元素を含
む材料としては、前記元素RとBaとCuを含む粉末、
あるいはこれらの仮焼粉末などを用いる。ここで用いる
粉末としては、前記各元素の酸化物粉末、塩化物粉末、
炭酸塩粉末、硫化物粉末、フッ化物粉末などの化合物粉
末あるいは合金粉末である。例えば酸化銅粉末としては
、Cuo 、 CUt O、C1130tCuiOtな
どを用いることができる。
ii? As the oxide superconductor, R-Ba-Cu
-0 (However, A is 100u, Gd, Tb, Dy, I-(o
, Er, and Tm. ) series are used. Examples of materials containing elements constituting the oxide superconductor include powders containing the elements R, Ba, and Cu;
Alternatively, these calcined powders can be used. The powders used here include oxide powders, chloride powders,
These are compound powders or alloy powders such as carbonate powders, sulfide powders, and fluoride powders. For example, as the copper oxide powder, Cuo, CUtO, C1130tCuiOt, etc. can be used.

これらの各粉末を各元素が所定の割合になるように混合
すると混合粉末を得ることができる。なお、前記混合粉
末を調製するには、通常、前述の粉末法を用いるが、こ
の方法に限定されるものではなく、各元素をシュウ酸塩
として共沈させ、その沈澱物を乾燥させて粉末状の混合
粉末とする共沈法を適用することらできる。また、前記
必要な元素のアルコキシド化合物、オキシケトン化合物
、シクロペンタジェニル化合物などを所定の比率で゛混
合して混合液とし、この混合液に水を加えて加水分解し
てゾル状にするとともに、このゾル状の物質を加熱して
ゲル化し、このゲルを加熱して固相とした上で粉砕して
混合粉末を得るゾルゲル法を適用しても良い。
A mixed powder can be obtained by mixing these powders so that each element is in a predetermined ratio. In addition, to prepare the mixed powder, the above-mentioned powder method is usually used, but the method is not limited to this method. Each element is coprecipitated as an oxalate, and the precipitate is dried to form a powder. It is also possible to apply a coprecipitation method to form a mixed powder. In addition, alkoxide compounds, oxyketone compounds, cyclopentadienyl compounds, etc. of the above-mentioned necessary elements are mixed in a predetermined ratio to form a liquid mixture, and water is added to this liquid mixture to hydrolyze it to form a sol, A sol-gel method may be applied in which this sol-like substance is heated to gel, and the gel is heated to form a solid phase and then ground to obtain a mixed powder.

ここで前記混合粉末に炭素などの不要成分が含まれてい
る場合には、混合粉末を仮焼する。この仮焼処理は、酸
素ガス雰囲気あるいは大気中において混合粉末を700
〜1000°Cに1−100時間程度加熱することで行
う。
Here, if the mixed powder contains unnecessary components such as carbon, the mixed powder is calcined. This calcining process involves heating the mixed powder to 700% in an oxygen gas atmosphere or air.
This is done by heating to ~1000°C for about 1-100 hours.

次に前記混合粉末または仮焼粉末をプレス加工あるいは
静水圧押出などの圧密加工により所望の形状に圧密成形
して成形体を得る。なお、この成形体を形成した段階で
仮焼処理を行っても良い。
Next, the mixed powder or calcined powder is compacted into a desired shape by compaction processing such as press working or isostatic extrusion to obtain a compact. Note that calcination treatment may be performed at the stage of forming this molded body.

次にこの成形体を第1図に示す加熱炉2の内部に設置し
、蓋体4を閉じて酸素ガス供給源7から酸素ガスを加熱
炉2に送り、加熱炉2と流路6と酸素ガス供給源7を介
して酸素ガスを循環させる。
Next, this molded body is placed inside the heating furnace 2 shown in FIG. Oxygen gas is circulated via a gas supply source 7.

また、加熱炉2の加熱ヒータに通電して加熱炉2の内部
を850〜950℃に加熱するとともに、磁場発生装置
3を作動させて加熱炉2の内部に、0.1〜散T(テス
ラ)の磁場をかける。この際に加える磁場の強さは、0
.5〜5Tが好ましい。
In addition, the heater of the heating furnace 2 is energized to heat the inside of the heating furnace 2 to 850 to 950°C, and the magnetic field generator 3 is operated to apply 0.1 to ) is applied. The strength of the magnetic field applied at this time is 0
.. 5-5T is preferred.

以上の処理を1〜100時間程度行ったならば、加熱炉
2の加熱ヒータへの通電を停止して成形体を徐冷する。
After the above treatment has been carried out for about 1 to 100 hours, the supply of electricity to the heater of the heating furnace 2 is stopped and the molded body is gradually cooled.

以上の操作によって成形体の内部では固相反応が進み、
n −B a−Cu−0系の酸化物超電導体が生成する
。また、加熱炉2の内部には酸素ガスが供給されるので
、酸化物超電導体の焼結時に十分な墳の酸素を供給する
ことができ、酸素不足のない酸化物超電導体を製造する
ことができる。更に、成形体に含まれている元素Rは磁
化率の高い元素であるので、加熱炉2の内部に発生され
た磁場により焼結中に配向される。従って固相反応が進
む中で元素が配向され、酸化物超電導体か生成されるの
で、結果的に配向性の良好な酸化物超電導体が得られる
。従って結晶構造の整った臨界電流密度の高い酸化物超
電導体が得られる。
Through the above operations, a solid phase reaction progresses inside the molded body, and
An n-Ba-Cu-0 based oxide superconductor is produced. In addition, since oxygen gas is supplied to the inside of the heating furnace 2, sufficient oxygen can be supplied during sintering of the oxide superconductor, making it possible to manufacture an oxide superconductor without oxygen deficiency. can. Furthermore, since the element R contained in the compact is an element with high magnetic susceptibility, it is oriented during sintering by the magnetic field generated inside the heating furnace 2. Therefore, as the solid phase reaction progresses, the elements are oriented and an oxide superconductor is produced, resulting in an oxide superconductor with good orientation. Therefore, an oxide superconductor with a well-organized crystal structure and a high critical current density can be obtained.

「製造例」 Y +B atc 11307−6なる組成の酸化物超
電導体とE u、B atc u307−5なる組成の
酸化物超電導体とHo+B atc t++07−5な
る組成の酸化物超電導体とE r、B atc Ll!
107−5なる組成の酸化物超電導体を製造した。
"Manufacturing Example" An oxide superconductor with a composition of Y + B atc 11307-6 and Eu, an oxide superconductor with a composition of B atc u307-5, an oxide superconductor with a composition of Ho + B atc t++07-5, and E r, B atc Ll!
An oxide superconductor having a composition of 107-5 was manufactured.

出発物として、B a CO3粉末とCuO扮末に、Y
、0.粉末あるいはE uto 3粉末あるいはHoe
’3扮末あるいはErzO3扮末を前記組成になるよう
に混合して各混合粉末を調製し、これらの混合粉末をプ
レス成形により、幅3 mm、長さ20mm、厚さ2m
mの板状に成形した後に、大気中において900℃で2
4時間加熱する仮焼処理を施した。続いて仮焼物を第1
図に示す装置を用いて酸素ガス気流中において、950
℃で24時間加熱して焼結した。なお、この焼結時にお
いて、成形体に加える磁場の強さを増減して種々の試料
を製造した。
As starting materials, B a CO3 powder and CuO powder, Y
, 0. Powder or E auto 3 powder or Hoe
'3 powder or ErzO3 powder was mixed to have the above composition to prepare each mixed powder, and these mixed powders were press-molded to a width of 3 mm, a length of 20 mm, and a thickness of 2 m.
After forming into a plate shape of m, it was heated at 900℃ in the atmosphere for 2
A calcining treatment was performed by heating for 4 hours. Next, the first calcined item
In an oxygen gas stream using the apparatus shown in the figure, 950
It was sintered by heating at ℃ for 24 hours. Note that during this sintering, various samples were manufactured by increasing or decreasing the strength of the magnetic field applied to the compact.

各試料について臨界温度と臨界電流密度を測定した結果
を第1表に示す。
Table 1 shows the results of measuring the critical temperature and critical current density for each sample.

第1表 第1表に示す結果から、焼結時に磁場を加えることによ
り臨界温度と臨界電流密度が向上することが明らかにな
った。即ち、焼結時に磁場を加えることにより酸化物超
電導体の結晶の配向性を整えることか可能であり、その
場合、臨界温度と臨界電流密度を向上できることが判明
した。
From the results shown in Table 1, it was revealed that the critical temperature and critical current density were improved by applying a magnetic field during sintering. That is, it has been found that it is possible to adjust the crystal orientation of the oxide superconductor by applying a magnetic field during sintering, and in that case, the critical temperature and critical current density can be improved.

また、第1表に示す結果から、この系の酸化物超電導体
を焼結する際の磁場の強さは、0.5T以上が好ましい
Furthermore, from the results shown in Table 1, the strength of the magnetic field when sintering this type of oxide superconductor is preferably 0.5 T or more.

「発明の効果」 以上説明したように本発明は、磁化率の高い元素を含む
酸化物超電導体の原料を圧密成形した成形体を焼結する
場合に、磁場を加えるために、磁性元素を磁場により配
向させ、配向させた元素に応じて結晶生成させることか
できるので、結晶の配向性が整った酸化物超電導体を製
造できる効果がある。また、焼結中に加熱炉内に酸素を
送るので、酸素不足を生じることなく酸化物超電導体を
生成することができる。従って本発明を実施することに
より、臨界温度と臨界電流密度の高い特性の優れた酸化
物超電導体を得ることができる効果がある。
"Effects of the Invention" As explained above, the present invention provides a method for applying a magnetic element to a magnetic field in order to apply a magnetic field when sintering a compact formed by compacting a raw material for an oxide superconductor containing an element with high magnetic susceptibility. Since crystals can be generated according to the oriented elements, an oxide superconductor with uniform crystal orientation can be produced. Furthermore, since oxygen is sent into the heating furnace during sintering, an oxide superconductor can be produced without oxygen shortage. Therefore, by carrying out the present invention, it is possible to obtain an oxide superconductor having excellent properties such as high critical temperature and high critical current density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施する場合に用いて好適な処理装
置の一例を示す断面図である。 ・・・処理装置、2・・・加熱炉、3・・・磁場発生装
置、4・・・蓋体、5・・・通気管、6・・・流路、7
・・・酸素ガス供給装置。
FIG. 1 is a sectional view showing an example of a processing apparatus suitable for use in carrying out the present invention. ... Processing device, 2... Heating furnace, 3... Magnetic field generator, 4... Lid, 5... Ventilation pipe, 6... Channel, 7
...Oxygen gas supply device.

Claims (1)

【特許請求の範囲】[Claims]  R−Ba−Cu−O(ただしRは、周期律表IIIa族
元素のうち、Eu,Gd,Tb,Dy,Ho,Er,T
mなどの磁化率の高い元素の1種以上の元素を示す。)
系の酸化物超電導体を製造する方法において、前記元素
RとBaとCuを所定の割合で含有する混合粉末を作成
し、この混合粉末を加圧成形して成形体を作成するとと
もに、内部を酸素存在雰囲気に調整可能な加熱炉と、こ
の加熱炉の外方に設けられた磁場発生装置を用い、前記
加熱炉の内部に成形体を設置し、加熱炉内に酸素を送り
、磁場発生装置で加熱炉の内部に磁場をかけながら成形
体を焼結することを特徴とする酸化物超電導体の製造方
法。
R-Ba-Cu-O (where R is Eu, Gd, Tb, Dy, Ho, Er, T among the IIIa group elements of the periodic table)
Indicates one or more elements with high magnetic susceptibility, such as m. )
In the method for producing a oxide superconductor of the oxide superconductor, a mixed powder containing the above-mentioned elements R, Ba, and Cu in a predetermined ratio is created, and this mixed powder is pressure-molded to create a molded body, and the inside is Using a heating furnace that can be adjusted to an oxygen-rich atmosphere and a magnetic field generator installed outside the heating furnace, a molded body is installed inside the heating furnace, oxygen is sent into the heating furnace, and the magnetic field generator is installed. A method for producing an oxide superconductor, comprising sintering a compact while applying a magnetic field inside a heating furnace.
JP63187858A 1988-07-27 1988-07-27 Production of oxide superconductor Pending JPH0238358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63187858A JPH0238358A (en) 1988-07-27 1988-07-27 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63187858A JPH0238358A (en) 1988-07-27 1988-07-27 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0238358A true JPH0238358A (en) 1990-02-07

Family

ID=16213445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63187858A Pending JPH0238358A (en) 1988-07-27 1988-07-27 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0238358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341413B1 (en) 1995-07-18 2002-01-29 Omron Corporation Method of making electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341413B1 (en) 1995-07-18 2002-01-29 Omron Corporation Method of making electronic equipment

Similar Documents

Publication Publication Date Title
US4990493A (en) Process of making an oriented polycrystal superconductor
Shan et al. Rapid consolidation of Bi Pb Sr Ca Cu O powders by a plasma activated sintering process
JPH0238358A (en) Production of oxide superconductor
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JPH02137762A (en) Oriented polycrystalline superconductor
JP2969220B2 (en) Manufacturing method of oxide superconductor
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
JPH07242424A (en) Oxide superconducting structure and production thereof
JPH02120227A (en) Production of bi-based oxide superconductor
Branković et al. Dielectric and piezoelectric properties of the mechanochemically prepared PZT ceramics
JPH01320202A (en) High density oxide superconductor and its production
JPH02258665A (en) Production of superconductive material
JPH01246719A (en) Manufacture of oxide superconductor
JPH01219057A (en) Oxide superconductor and its production
JPH0248475A (en) Production of superconducting porous material
Lanagan et al. SUPERCONDUCTING MATERIALS
Lanagan et al. Production of wires and coils from high-temperature superconducting materials
JPH01119555A (en) Production of ceramic superconducting material
JPH01226703A (en) Production of oxide superconductor
JPH01278467A (en) Production of superconductor
JPH03137051A (en) Manufacture of oxide superconductor
JPH01160875A (en) Setter for calcining oxide superconductor
JPS63256563A (en) Production of superconductive ceramic