JPS63295471A - Production of oxide superconducting material - Google Patents

Production of oxide superconducting material

Info

Publication number
JPS63295471A
JPS63295471A JP62130376A JP13037687A JPS63295471A JP S63295471 A JPS63295471 A JP S63295471A JP 62130376 A JP62130376 A JP 62130376A JP 13037687 A JP13037687 A JP 13037687A JP S63295471 A JPS63295471 A JP S63295471A
Authority
JP
Japan
Prior art keywords
molded body
sintering
oxide
superconducting material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62130376A
Other languages
Japanese (ja)
Inventor
Kenichi Ono
小野 堅一
Tsunekazu Iwata
岩田 恒和
Takashi Inukai
犬飼 隆
Naoto Sugimoto
直登 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62130376A priority Critical patent/JPS63295471A/en
Publication of JPS63295471A publication Critical patent/JPS63295471A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce the title superconducting material having high density, uniform quality, and superior mechanical strength by molding a mixture of raw material oxides, sintering the molded product, then oxidizing the sintered product. CONSTITUTION:A molded body is obtd. by compacting a mixture of powder of raw material oxides with a press, etc. The molded body is calcined if necessary, and sintered at 950-1,100 deg.C, then oxidized at 800-920 deg.C to produce a laminar perovskite type oxide syperconducting material expressed by the formula: (A1-xBx)2CuO4 and (A1-yBy)6 Cu6O14 (wherein A is La, Y, Sc, or Yb; B is at least one kind selected from Ba, Sr, Ca, Pb, and Mg).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は送電線、マグネットワイヤー等に有用な高温超
伝導特性を示す酸化物超伝導材料の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing an oxide superconducting material exhibiting high-temperature superconducting properties useful for power transmission lines, magnet wires, and the like.

〔従来の技術〕[Conventional technology]

超伝導材料は各種の金属・合金・化合物および酸化物等
で得られており、超伝導磁石、リニアモーターカー、電
力貯蔵等に実用又は期待されている。しかしながら、こ
れらの従来の超伝導材料では電気抵抗が零となる臨界温
度Tcが低く、もっとも高いTcを示すことで知られて
いるNb3Geにおいテモ高々23K(ケルビン)であ
るため冷却媒体として高価な液体ヘリウムを使用し、又
極低温等の設備を必要とするなどの問題から、その応用
開発等は限定されていた。
Superconducting materials are obtained from various metals, alloys, compounds, oxides, etc., and are used or expected to be used in superconducting magnets, linear motor cars, power storage, etc. However, in these conventional superconducting materials, the critical temperature Tc at which electrical resistance becomes zero is low, and Nb3Ge, which is known to exhibit the highest Tc, has a temperature of only 23K (Kelvin), making it expensive to use liquid as a cooling medium. Due to problems such as the use of helium and the need for cryogenic equipment, development of its applications has been limited.

最近、約30に以上の高臨界温度を示す(La+−x 
5rx)、CuO4系や約90にの高臨界温度を示す(
Y+−yBaV)bcuaO+n系に代表される層状ペ
ロブスカイト型酸化物超伝導材料が発見され、その高臨
界温度超伝導現象の理論的解析、結晶学的構造解析及び
材料学的立場からその製造方法、応用法などの研究・開
発が活発になされつつある。
Recently, it has shown a high critical temperature of about 30 or higher (La+-x
5rx), which shows a high critical temperature of CuO4 system and about 90 (
A layered perovskite-type oxide superconducting material represented by the Y+-yBaV)bcuaO+n system was discovered, and theoretical analysis of its high critical temperature superconductivity phenomenon, crystallographic structural analysis, and its manufacturing method and application from a material standpoint. Research and development of laws and other fields is being actively carried out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ペロプスカイト型酸化物より成る高臨界温度を示す酸化
物超伝導材料において、高密度でかつ均一組成を有する
成形体を得るための製造方法において具体的な熱処理方
法についてはまだ詳しい検討がなされていない。本発明
の目的は上記問題点を解決した製造方法を提供すること
にある。
Regarding the oxide superconducting material, which is made of perovskite-type oxide and exhibits a high critical temperature, detailed studies have not yet been made on the specific heat treatment method used in the manufacturing method to obtain a compact with high density and uniform composition. . An object of the present invention is to provide a manufacturing method that solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述の酸化物超伝導成形体を950℃〜110
0°Cの高温度で焼結処理を行う工程とその後800℃
〜920°Cの温度で酸化処理を行う工程の2段熱処理
工程を経ることにより、高密度でかつ超伝導特性を得る
に必要な酸化物相を成形体の全体積において得ることを
特徴とする。
The present invention provides the above-mentioned oxide superconducting molded body at temperatures ranging from 950°C to 110°C.
Sintering process at high temperature of 0°C and then 800°C
A two-stage heat treatment process including oxidation treatment at a temperature of ~920°C is characterized in that the oxide phase necessary to obtain high density and superconducting properties is obtained in the entire volume of the molded body. .

本発明は高密度でかつ均一組成を有する前記の酸化物超
伝導材料を得るため、種々な熱処理法を検討した結果な
されたものである。すなわち、適当組成になるよう酸化
物原料粉末を調合しプレス等により圧粉した成形体を種
々な加熱温度と加熱雰囲気で熱処理を行い、超伝導特性
とX線回折等により成形体の相状態を調べた結果、超伝
導特性を示す一部ペロブスカイト((La10gSr6
.+)zcuo4で代表される〕および三層ペロブスカ
イト[(Ye、5sBao、1s)icuaot<で代
表される]構造の相は800℃〜920°Cの間の温度
範囲で得られることが明らかになった。
The present invention was achieved as a result of studies on various heat treatment methods in order to obtain the above-mentioned oxide superconducting material having high density and uniform composition. That is, the oxide raw material powder is prepared to have an appropriate composition, the molded body is compacted using a press, etc., and the molded body is heat-treated at various heating temperatures and heating atmospheres, and the phase state of the molded body is determined by superconducting properties and X-ray diffraction, etc. As a result of the investigation, some perovskites ((La10gSr6
.. +)zcuo4] and three-layer perovskite [represented by (Ye, 5sBao, 1s)icuaot] structures were found to be obtained in the temperature range between 800°C and 920°C. Ta.

さらに、この際、通常の大気中での熱処理では成形体の
ごく表面層のみが層状ペロブスカイト型酸化物となり、
成形体の内部まで均一な層状ペロブスカイト型酸化物相
とするためには数十時間の長時間熱処理が必要であった
のに対し、熱処理雰囲気を酸素中又は若干の水素を含有
させた酸素混合ガス中で酸化熱処理をすることにより、
数時間以内の短時間で成形体の内部まで層状ペロブスカ
イト型酸化物相とすることを可能にした。
Furthermore, in this case, only the very surface layer of the molded body becomes a layered perovskite type oxide during heat treatment in the normal atmosphere.
In order to form a layered perovskite oxide phase that is uniform throughout the inside of the molded product, long-term heat treatment of several tens of hours was required. By performing oxidation heat treatment inside
This made it possible to form a layered perovskite-type oxide phase to the inside of the molded body in a short period of time, within several hours.

ここで800°C以内の酸化処理は成形体の内部まで目
的の相を得るために長時間の処理が必要であり、また9
20℃以上の温度では目的とする相が得られないため、
超伝導特性が得られない。しかしながら、この800℃
〜920°Cの酸化熱処理では十分な焼結反応が起こら
ず成形体の密度は低く、このため機械的強度が十分でな
い、これに対し950°C以上の温度では原子の拡散が
促進し焼結反応が速やかに起こると同時に、1000 
’C付近から一部液相焼結も起こるため緻密な焼結体と
なり十分な強度が得られる。しかし前述のように、92
0°C以上の温度では超伝導特性を示す層状ペロブスカ
イト型酸化物相は得られない。
Here, the oxidation treatment at 800°C or less requires a long treatment time to obtain the desired phase inside the molded body, and
Because the desired phase cannot be obtained at temperatures above 20°C,
Superconducting properties cannot be obtained. However, this 800℃
With oxidation heat treatment at ~920°C, sufficient sintering reaction does not occur and the density of the compact is low, resulting in insufficient mechanical strength.On the other hand, at temperatures above 950°C, atomic diffusion is promoted and sintering While the reaction occurs quickly, 1000
Partial liquid phase sintering also occurs from around 'C, resulting in a dense sintered body with sufficient strength. However, as mentioned above, 92
At temperatures above 0°C, a layered perovskite oxide phase exhibiting superconducting properties cannot be obtained.

以上の検討結果から高密度でかつ均一な層状ペロブスカ
イト型酸化物超伝導材料を得る方法として圧粉成形体を
950℃〜1100℃の温度範囲で焼結し、その後80
0℃〜920°Cの温度範囲で酸化処理する熱処理方法
が適当であることを見出した。ここで第1段の焼結温度
範囲を950℃〜1100°Cと限定したのは、950
℃以下の温度では十分に焼結反応が進行せず、長時間の
処理が必要であること、また1100°C以上の温度で
は全面的に溶解が生じるため成形体の形状を損なうこと
の理由による。
Based on the above study results, the method for obtaining a high-density and uniform layered perovskite oxide superconducting material is to sinter the powder compact at a temperature range of 950°C to 1100°C, and then
It has been found that a heat treatment method in which oxidation treatment is performed in a temperature range of 0°C to 920°C is suitable. Here, the sintering temperature range of the first stage was limited to 950°C to 1100°C.
This is because the sintering reaction does not proceed sufficiently at temperatures below 1100°C, requiring a long treatment time, and at temperatures above 1100°C, complete melting occurs, damaging the shape of the compact. .

なお、本発明では成形体を得るための原料粉末を酸化物
としたが、必ずしも酸化物に限るものではなく炭酸化合
物、水産化化合物等であっても、なんらその効果は変わ
らない。
In the present invention, an oxide is used as the raw material powder for obtaining a molded body, but it is not necessarily limited to an oxide, and even if it is a carbonate compound, an aquatic compound, etc., the effect will not change in any way.

本発明の詳細を以下の実施例に基づき説明する〔実施例
1〕 原料として酸化イツトリウム101.6g、炭酸バリウ
ム356.3gおよび酸化第二銅215.3gの各粉末
を秤量し、ボールミルにそう人してミーリングを行い粉
砕混合した。この混合粉末を金型に入れプレスして圧粉
体とし、900°Cで5時間、空気中で熱処理し炭酸バ
リウムを分解させるための仮焼結を行った。
The details of the present invention will be explained based on the following examples [Example 1] Each powder of 101.6 g of yttrium oxide, 356.3 g of barium carbonate, and 215.3 g of cupric oxide as raw materials was weighed and placed in a ball mill. The mixture was milled, ground and mixed. This mixed powder was put into a mold and pressed to form a green compact, which was then heat treated in air at 900°C for 5 hours to undergo temporary sintering to decompose the barium carbonate.

次にこの仮焼結体を再度ボールミルで粉砕した後プレス
成形し、直径301m1φ、高さ10mmからなる成形
体を作製した。この成形体を600℃〜1150°Cの
温度で5時間、酸素雰囲気中で加熱処理を行い、室温ま
で窒素ガスを吹きつけて急冷し、電気抵抗の温度依存性
、密度およびX線回折測定を行った。この結果を第1表
に示す。
Next, this pre-sintered body was crushed again in a ball mill and then press-molded to produce a molded body having a diameter of 301 m1φ and a height of 10 mm. This molded body was heat-treated in an oxygen atmosphere at a temperature of 600°C to 1150°C for 5 hours, then rapidly cooled to room temperature by blowing nitrogen gas, and the temperature dependence of electrical resistance, density, and X-ray diffraction measurements were performed. went. The results are shown in Table 1.

第1表 表から知れるように電気抵抗がほぼ零となる臨界温度T
cは800℃〜920°C間の温度で酸化処理を行った
場合に観測され(参考例2,3,4゜5)それ以外の処
理温度では観測されない。Tcが観測された参考例2,
3,4.5では大部分三層ペロプスカイト構造であるこ
とがわかる。
As is known from Table 1, the critical temperature T at which the electrical resistance becomes almost zero
c is observed when the oxidation treatment is performed at a temperature between 800° C. and 920° C. (Reference Examples 2, 3, and 4° 5), and is not observed at other treatment temperatures. Reference example 2 where Tc was observed,
3 and 4.5, it can be seen that most of them have a three-layer peropskite structure.

しかし参考例1.2,3,4.5の成形体の密度は低く
、その値は成形状態の密度2.7とほぼ同じである。こ
れに対し950°C以上の温度で処理した参考例6.7
の場合、密度は高く焼結が十分に進んでいることがわか
る。
However, the density of the molded bodies of Reference Examples 1.2, 3, and 4.5 is low, and the value is almost the same as the density of the molded state, 2.7. On the other hand, Reference Example 6.7 treated at a temperature of 950°C or higher
In the case of , it can be seen that the density is high and sintering has progressed sufficiently.

実施例1は1000’Cで3時間の焼結熱処理した後、
さらに900℃で5時間の酸化熱処理を行った本発明の
例である。実施例1では91にのTcが観測されると同
時に高い密度5.5g/dも得られることがわかる。な
お実施例1は仮焼結後の成形体について本発明の2段処
理を行った例であるが、仮焼結前の圧粉体に対して実施
例と同様な2段処理を行った場合も、92にのTcと4
.9g / cdの高い密度を持つ酸化物超伝導成形体
が得られた。しかしより高い密度は仮焼結処理を行った
成形体で得られる。
In Example 1, after sintering heat treatment at 1000'C for 3 hours,
This is an example of the present invention in which oxidation heat treatment was further performed at 900° C. for 5 hours. It can be seen that in Example 1, a Tc of 91 was observed and at the same time a high density of 5.5 g/d was obtained. Note that Example 1 is an example in which the two-stage treatment of the present invention was performed on the compact after pre-sintering, but when the same two-stage treatment as in the example was performed on the green compact before pre-sintering. Also, Tc and 4 in 92
.. An oxide superconducting compact with a high density of 9 g/cd was obtained. However, higher densities can be obtained with compacts that have been pre-sintered.

又成形体内部まで均一に三層ペロブスカイト相が生成す
るか、否かを比較するため、仮焼結後の成形体を100
0°Cで5時間、酸素中で加熱し、その後常温まで2°
C/分の冷却速度で冷却した。
In addition, in order to compare whether or not the three-layer perovskite phase is uniformly formed inside the compact, the compact after pre-sintering was
Heated in oxygen for 5 hours at 0°C, then 2° to room temperature.
Cooling was performed at a cooling rate of C/min.

この参考例9の臨界温度は91に1密度は5.3g/c
dと実施例1と同様な特性を示したが、第1図のX線回
折図で明らかなように実施例の成形体は単相であるのに
対し、1000°Cから徐冷するのみの処理ではその成
形体に多くの異相が存在する。すなわち成形体の表面は
ほぼ三層ペロブスカイト相であるが、中心部になるに従
って異相が多くなり十分な酸化反応が進んでいないこと
がわかった・ 本発明による実施例1で示すように、焼結処理と酸化処
理の2段階熱処理は高い密度を有し、かつ成形体の内部
まで三層ペロブスカイト相を均一に得る方法として適し
ている。
The critical temperature of this reference example 9 is 91, and the density is 5.3 g/c.
d showed the same characteristics as Example 1, but as is clear from the X-ray diffraction diagram in Figure 1, the molded product of Example was a single phase, whereas the molded product of Example 1 was only slowly cooled from 1000°C. During processing, many different phases are present in the molded body. In other words, the surface of the compact is almost a three-layer perovskite phase, but the closer you get to the center, the more different phases there are, indicating that the oxidation reaction has not progressed sufficiently. The two-step heat treatment of treatment and oxidation treatment has high density and is suitable as a method for uniformly obtaining a three-layer perovskite phase to the inside of the molded body.

〔実施例2〕 ランタン(La) 、イツトリウム(Y)、スカンジュ
ム(Sc) 、イツトリウム(Yb) 、鉛(pb)、
銅(Cu)の各酸化物粉末およびバリウム(Ba)、ス
トロンチューム(Sr) 、カルシューム(Ca)、マ
グネシェーム(Mg)の各炭酸塩の粉末を使用しCLa
o、qzsSro、ots)tcuOa  (実施例2
)、(Lag、qsro、 oscao、 as) g
cuon (実施例3)、(Yo、3Sco、+Bao
、1)hc+Jio+4(実施例4)、(Yo、zYb
o、Jao、1)icLliO+4(実施例5)、(Y
o、Jao、nPbo、x)icukOz  (実施例
6)、(Yo、Jao、sMgo、+)hcuhO+4
(実施例7)の各組成となるよう混合し、実施例1と同
様な仮焼結処理を行い、この後粉砕、プレス成形を行っ
て成形体を得た0次にこの成形体を950℃で5時間、
空気中において焼結を行い、さらに900℃で5時間、
酸素中において酸化処理を行った。
[Example 2] Lanthanum (La), yttrium (Y), scandium (Sc), yttrium (Yb), lead (pb),
CLa was prepared using copper (Cu) oxide powder and barium (Ba), strontium (Sr), calcium (Ca), and magnesium (Mg) carbonate powder.
o, qzsSro, ots) tcuOa (Example 2
), (Lag, qsro, oscao, as) g
cuon (Example 3), (Yo, 3Sco, +Bao
, 1) hc+Jio+4 (Example 4), (Yo, zYb
o, Jao, 1) icLliO+4 (Example 5), (Y
o, Jao, nPbo, x) icukOz (Example 6), (Yo, Jao, sMgo, +) hcuhO+4
(Example 7) were mixed to have the respective compositions, pre-sintered in the same manner as in Example 1, and then pulverized and press-molded to obtain a molded body. 5 hours,
Sintering was performed in air, and then at 900°C for 5 hours.
Oxidation treatment was performed in oxygen.

第2表にこれらの成形体で得られた臨界温度。Table 2 shows the critical temperatures obtained for these molded bodies.

密度を示したいずれも十分な密度と高い臨界温度が成形
体の中心部においても得られた。
Sufficient density and high critical temperature were obtained even in the center of the compact.

第2表 〔発明の効果〕 以上説明したように、本発明は成形体を焼結す工程と酸
化処理を行う工程の2段熱処理工程を経ことから高密度
でかつ均一な超伝導酸化物相が得れるため機械的強度に
優れた高臨界温度酸化物超導材料の製造方法として適す
る。
Table 2 [Effects of the Invention] As explained above, the present invention has a two-step heat treatment process of sintering the molded body and oxidation treatment, thereby producing a high-density and uniform superconducting oxide phase. This method is suitable as a method for producing high critical temperature oxide superconducting materials with excellent mechanical strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1と参考例9で得られた成形体のX線回
折図である。
FIG. 1 is an X-ray diffraction diagram of the molded bodies obtained in Example 1 and Reference Example 9.

Claims (1)

【特許請求の範囲】[Claims] 一般式(A_1_−_xB_x)_2CuO_4および
(A_1_−_yB_y)_6Cu_6O_1_4(但
しAはLa、Y、Sc、Yb、およびBはBa、Sr、
Ca、Pb、Mgの中から選ばれた少なくとも一種)で
示される層状ペロブスカイト型の酸化物超伝導材料の製
造方法において、原料酸化物粉末を混合し、プレス成形
後、そのまま、あるいは仮焼後950℃〜1100℃の
高温度で焼結処理を行い、その後800℃〜920℃の
温度で酸化処理を行うことを特徴とする層状ペロブスカ
イト型酸化物超伝導材料の製造方法。
General formulas (A_1_-_xB_x)_2CuO_4 and (A_1_-_yB_y)_6Cu_6O_1_4 (where A is La, Y, Sc, Yb, and B is Ba, Sr,
In a method for manufacturing a layered perovskite-type oxide superconducting material represented by at least one selected from Ca, Pb, and Mg, raw material oxide powders are mixed, and after press molding, as it is, or after calcination, A method for producing a layered perovskite-type oxide superconducting material, which comprises performing a sintering treatment at a high temperature of 800 to 920°C, and then performing an oxidation treatment at a temperature of 800 to 920°C.
JP62130376A 1987-05-27 1987-05-27 Production of oxide superconducting material Pending JPS63295471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62130376A JPS63295471A (en) 1987-05-27 1987-05-27 Production of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130376A JPS63295471A (en) 1987-05-27 1987-05-27 Production of oxide superconducting material

Publications (1)

Publication Number Publication Date
JPS63295471A true JPS63295471A (en) 1988-12-01

Family

ID=15032870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130376A Pending JPS63295471A (en) 1987-05-27 1987-05-27 Production of oxide superconducting material

Country Status (1)

Country Link
JP (1) JPS63295471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416548A (en) * 1990-04-27 1992-01-21 Ind Technol Res Inst Manufacture of bulk y-ba-cu-o superconductor having rapid transit limiting current density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416548A (en) * 1990-04-27 1992-01-21 Ind Technol Res Inst Manufacture of bulk y-ba-cu-o superconductor having rapid transit limiting current density

Similar Documents

Publication Publication Date Title
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
US5100869A (en) Process for producing metal oxide-type superconductive material
JPS63295471A (en) Production of oxide superconducting material
JP2657653B2 (en) Manufacturing method of oxide superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
RU2091880C1 (en) Method for producing high-temperature superconducting parts
JPH0737442A (en) Oxide superconductor and preparation of superconductor thereof
JP2583575B2 (en) Manufacturing method of oxide superconducting wire
JP2828631B2 (en) Manufacturing method of superconducting material
JPH01242416A (en) Production of oxide-based superconducting material
JP2675998B2 (en) Manufacturing method of highly-oriented sintered compact with high grain orientation
JPS63256563A (en) Production of superconductive ceramic
JPS63277547A (en) Production of high-temperature superconductive porcelain
JPH01241717A (en) Manufacture of oxide superconductor wire
JPH01278467A (en) Production of superconductor
JPH01172259A (en) Production of ceramic superconducting molded body
JPH01278466A (en) Production of superconductor
JPH0395808A (en) Manufacture of oxide superconductor wire rod
MATSUDA et al. Densification of superconducting Ba2YCu4O8 ceramics by two-stage sintering
JPH01157455A (en) Production of oxide superconducting sintered body
JPH01183450A (en) Production of formed oxide superconductor
JPH01241716A (en) Manufacture of oxide superconductor wire
JPS63277575A (en) Production of formed article of oxide superconductor
JPH04170320A (en) Production of oxide superconducting material
JPH01308602A (en) Manufacture of oxide super conductor