JPH0395808A - Manufacture of oxide superconductor wire rod - Google Patents

Manufacture of oxide superconductor wire rod

Info

Publication number
JPH0395808A
JPH0395808A JP1230757A JP23075789A JPH0395808A JP H0395808 A JPH0395808 A JP H0395808A JP 1230757 A JP1230757 A JP 1230757A JP 23075789 A JP23075789 A JP 23075789A JP H0395808 A JPH0395808 A JP H0395808A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxygen
wire rod
oxide
sheath material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1230757A
Other languages
Japanese (ja)
Inventor
Kazuyuki Shibuya
和幸 渋谷
Seiji Hayashi
征治 林
Rikuro Ogawa
小川 陸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kobe Steel Ltd
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, Kobe Steel Ltd filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP1230757A priority Critical patent/JPH0395808A/en
Publication of JPH0395808A publication Critical patent/JPH0395808A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a superconductor wire rod having high superconductivity transition temperature and with small escape of oxygen by filling a sheath material with a specific raw material powder mixture and drawing and then having it subjected to hot hydrostatic pressing treatment to generate a specific oxide superconductor to be sintered. CONSTITUTION:After a sheath material is filled with a mixture of raw material powder for manufacturing oxide superconductor composed of R (one or more elements selected among a group including Y and lanthanide rare earth elements), Ca, Ba, Cu and O and drawn, this is subjected to hot hydrostatic pressing treatment under a mixed atmosphere of inactive gas and oxygen gas in a temperature range from 850 to 1100 deg.C so that an oxide superconductor containing oxide expressed as (R1-xCax)Ba2Cu4O8 where x refers to 0.001 to 0.5 is generated and then sintered. With manufacturing method of this constitution, a (R1-xCax)Ba2Cu4O8 type oxide superconductor wire rod having superconductivity transition temperature sufficiently higher than liquid nitrogen and with small escape of oxygen under high temperature environments can be obtained.

Description

【発明の詳細な説明】 [a業上の利用分野〕 本発明は新規な酸化物超電導体線材を製造する方法に関
し、詳細には超電導遷移温度(以下単にTcと記すこと
がある)が液体窒素温度を超え、また加工中に酸素を放
出して上記Tcが変動するといった問題の少ない酸化物
超電導体線材を製造する方法に関するものである。
[Detailed Description of the Invention] [Field of Application in Industry A] The present invention relates to a method for producing a novel oxide superconductor wire, and more specifically, the present invention relates to a method for producing a novel oxide superconductor wire, and in particular, the superconducting transition temperature (hereinafter simply referred to as Tc) is The present invention relates to a method for producing an oxide superconductor wire that is less likely to cause problems such as temperature fluctuations and variations in Tc due to release of oxygen during processing.

[従来の技術] 液体窒素温度を超えるTc(例えば90K)をもつ代表
的酸化物超電導体として、三層構造ベロブスカイトRB
a.Cu,07  (但しRはY若しくはランタニド系
列希土類元素よりなる群から選択される1種以上の元素
)が発見されている[^p9t. phys. Let
t. Vol.51 (1987)P57]。
[Prior art] As a typical oxide superconductor with Tc exceeding the liquid nitrogen temperature (for example, 90 K), three-layered berovskite RB
a. Cu,07 (where R is one or more elements selected from the group consisting of Y or lanthanide series rare earth elements) has been discovered [^p9t. phys. Let
t. Vol. 51 (1987) P57].

しかしながら上記酸化物超電導体は、構成員である酸素
原子が加工時の熱影響によって抜け出し易いという性質
を有しており、従って加工時の熱処理条件等で酸素含有
量が変化し、それに伴なって斜方晶一正方晶転移を起こ
し、この相転移によってTcもOKから90Kまでの範
囲で大きく変動することが知られている[Phys. 
Rev. 836(1987) P5719]。
However, the above-mentioned oxide superconductor has the property that the constituent oxygen atoms easily escape due to the thermal influence during processing, and therefore the oxygen content changes depending on the heat treatment conditions during processing, and accordingly, the oxygen content changes due to the heat treatment conditions during processing. It is known that orthorhombic monotetragonal transition occurs, and this phase transition causes Tc to vary greatly in the range from OK to 90K [Phys.
Rev. 836 (1987) P5719].

例えばRBa2 Cu3 0y粉末を銀バイブに充填し
、これを冷間線引加工によって線状にした後、粉末部の
焼結熱処理(aOO〜900℃)によって超電導線材と
する方法(銀シース線材法)を採用した場合、焼結熱処
理時に酸素原子が抜けてしまい、超電導特性が劣化して
しまうという欠点があった。
For example, a method of filling a silver vibrator with RBa2 Cu3 0y powder, making it into a wire by cold drawing, and then making it into a superconducting wire by sintering heat treatment (aOO~900°C) of the powder part (silver sheath wire method) When this method is adopted, there is a drawback that oxygen atoms are eliminated during the sintering heat treatment, resulting in deterioration of the superconducting properties.

これに対して、RBaz Cu4 0a型酸化物は、8
50℃付近まで加熱しても酸素の抜け出しが見られず、
しかもTcが80K付近にあって、液体窒素温度を上回
るので、実用上からも重要な物質であると注目されてい
る。
On the other hand, RBaz Cu4 0a type oxide has 8
Even when heated to around 50℃, no oxygen escape was observed.
Furthermore, since its Tc is around 80K, which exceeds the temperature of liquid nitrogen, it is attracting attention as an important substance from a practical standpoint.

[発明が解決しようとする課題] しかしながら、RBa2Cu40.型酸化物はTcが液
体窒素温度を上回るとはいうものの、その程度はわずか
であり、液体窒素温度マージンが小さすぎることから実
用化が困難であり、より高いTcを示すものを開発する
ことが期待されている。
[Problem to be solved by the invention] However, RBa2Cu40. Although the Tc of type oxides exceeds the liquid nitrogen temperature, the degree of Tc exceeds the liquid nitrogen temperature, but the extent is small and the liquid nitrogen temperature margin is too small, making it difficult to put it into practical use. It is expected.

本発明はこうした技術的課題を解決する為になされたも
のであって、その目的は、液体窒素温度よりも十分高い
Tcを有し、且つ加工時の高温下で酸素を放出して上記
Tcが変動するといった問題の生じない様な酸化物超電
導体線材を製造する方法をt是供することにある。
The present invention was made to solve these technical problems, and its purpose is to have a Tc that is sufficiently higher than the liquid nitrogen temperature, and to release oxygen at high temperatures during processing so that the Tc can be increased. It is an object of the present invention to provide a method for manufacturing an oxide superconductor wire that does not cause problems such as fluctuation.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、R(但しRはY及び
ランタニド系列希土類元素よりなる群から選択される1
種以上の元素).Ca,Ba,Cu,Oからなる酸化物
超電導体製造用原料粉末混合物を、シース材に充填して
伸線した後、不活性ガスと酸素ガスの混合雰囲気下、8
50〜1100℃の温度範囲で熱間静水圧加圧処理する
ことにより、 (R.,Ca.)Ba2Cu4oa (但し、Xは0.001 〜0.5、Rは前と同じ意味
)で示される酸化物を含む酸化物超電導体を生成し、次
いで焼結する点に要旨を有する酸化物超電導体線材の製
造方法である。
[Means for Solving the Problems] The present invention that achieves the above object is defined as R (where R is 1 selected from the group consisting of Y and lanthanide series rare earth elements).
elements more than species). After filling a sheath material with a raw material powder mixture for producing an oxide superconductor consisting of Ca, Ba, Cu, and O and drawing the wire, under a mixed atmosphere of inert gas and oxygen gas,
By hot isostatic pressure treatment in the temperature range of 50 to 1100℃, (R., Ca.) Ba2Cu4oa (where, X is 0.001 to 0.5, R has the same meaning as before) is obtained. This is a method for producing an oxide superconductor wire, the gist of which is to produce an oxide superconductor containing an oxide and then sinter it.

[作用コ 本発明者らは、液体窒素温度よりも十分高いTcを有し
、且つ製造時の高温においても酸素の抜けが生じない様
な安定な超電導体線材を実現すべく、様々な角度から検
討を加えた。
[Function] In order to realize a stable superconductor wire that has Tc sufficiently higher than the liquid nitrogen temperature and that does not allow oxygen to escape even at high temperatures during manufacturing, the present inventors investigated from various angles. Added consideration.

まず三層構造ベロブスカイトRBa2Cu30ア型結晶
構造における1重のC u O &Bが2重のCuO鎖
になったRBa,Cu.08型酸化物において、Rの0
.1〜50原子%をCaに置換した(R+−X Cax
 )Ba2 Cu406型酸化物はTcが液体窒素温度
より十分高くなり且つ850℃付近まで酸素の抜け出し
がなく安定に加工し得ることが分かった。
First, RBa, Cu. In 08 type oxide, R of 0
.. 1 to 50 atom% was substituted with Ca (R+-X Cax
) It was found that the Ba2 Cu406 type oxide can be stably processed with Tc sufficiently higher than the liquid nitrogen temperature and without oxygen escape up to around 850°C.

そしてこうした特性を生かすべく、その具体的製造手段
について更に検討した。その結果%RICa,Ba,C
u,O等からなる原料粉末をシース材に充填した後、不
活性ガスと酸素ガスの混合雰囲気下、850〜1100
℃の温度範囲で熱間静水圧加圧処理(以下HIP処理と
いうことがある)し、次いで焼結すれば、化学組成式が
(R+−x Cax )Ba2Cu40aである酸化物
超電導体線材が形成できることを見出し、本発明を完成
した。
In order to take advantage of these characteristics, we further investigated specific manufacturing methods. As a result %RICa,Ba,C
After filling the sheath material with raw material powder consisting of u, 0, etc., it was heated to 850 to 1100 in a mixed atmosphere of inert gas and oxygen gas.
An oxide superconductor wire having the chemical composition formula (R+-xCax)Ba2Cu40a can be formed by hot isostatic pressing (hereinafter sometimes referred to as HIP treatment) in the temperature range of ℃ and then sintering. They discovered this and completed the present invention.

本発明におけるHIP処理は、不活性ガスと酸素ガスの
混合雰囲気下の処理であるので、純酸素の場合と同じ圧
力(例えば200気圧)を酸素分圧で達成しようとすれ
ば混合雰囲気としての全圧を大幅に高めることができる
。例えば不活性ガスと酸素の混合そル比を1:1にした
ときは全圧を400気圧に、また4:1にしたときは全
圧を1 000気圧にすることも可能となり、これによ
ってCu原子の拡散が更に高められ、( R l −X
 C a g ) B a 2 C u 4 0 a型
酸化物超電導体を生成し易くなるものと考えられる。ま
たこのことは、純酸素によって全圧力を高くする場合と
比べ、操業上の安全性の見地からも大きな利点であると
言える。
The HIP process in the present invention is a process in a mixed atmosphere of inert gas and oxygen gas, so if you want to achieve the same pressure (for example, 200 atm) with oxygen partial pressure as in the case of pure oxygen, the total pressure can be increased significantly. For example, when the mixing ratio of inert gas and oxygen is 1:1, the total pressure can be 400 atm, and when it is 4:1, the total pressure can be 1000 atm. The diffusion of atoms is further enhanced, and ( R l −X
C a g ) B a 2 C u 4 O It is thought that it becomes easier to generate an a-type oxide superconductor. This can also be said to be a great advantage from the standpoint of operational safety, compared to the case where the total pressure is increased using pure oxygen.

HIP処理における温度は、RBa2Cu30,型酸化
物の生成を印制し、(Rl−XCax)Ba2 Cu4
06型酸化物の生成を促進するという観点から、少なく
とも850℃以上であることが必要であるが、1100
℃を超えると?.Ba4Cuy○■が生成して混相とな
りやすいので処理温度の上限は1100℃とする必要が
ある。
The temperature in the HIP process suppresses the formation of RBa2Cu30, type oxide, and (Rl-XCax)Ba2 Cu4
From the viewpoint of promoting the production of 06 type oxide, it is necessary that the temperature is at least 850°C or higher, but
What if it exceeds ℃? .. Since Ba4Cuy○■ is likely to be generated and a mixed phase is likely to occur, the upper limit of the treatment temperature needs to be 1100°C.

一方、本発明において(Rl−X Ca.)Ba2Cu
40.型酸化物におけるCai換量(即ちXの範囲)を
0.001〜0.5 とした理由は下記の通りである。
On the other hand, in the present invention, (Rl-X Ca.)Ba2Cu
40. The reason why the Cai conversion amount (ie, the range of X) in the type oxide is set to 0.001 to 0.5 is as follows.

即ちCa置換の効果が現われるのはXがQ.OO1以上
のときであり、また本発明の製造条件下においてはXが
0.5を超えて形成されることはほとんどないからであ
る。尚好ましい範囲は0.001 NO.2である。
That is, the effect of Ca substitution appears when X is Q. This is because when OO1 or more, and under the manufacturing conditions of the present invention, X is rarely formed with X exceeding 0.5. The preferred range is 0.001 NO. It is 2.

尚木発明のHIP!A埋前の原料粉末の組成は必ずしも
(R+Ca): Ba : Cu=1 : 2 : 4
にする必要はなく、これからはずれた組戒であってもH
IPfi埋によって実質的に(Rl−X C ax )
Ba2Cu40a相が生成されておればよい。しかしこ
の相を安定的に生成させるためにはやはり原料粉末の組
成を(R+Ca): Ba :Cu=1 :2:4にす
るのが好ましい。
HIP invented by Naoki! The composition of the raw material powder before A burial is not necessarily (R + Ca): Ba: Cu = 1: 2: 4
There is no need to do so, even if the group precepts deviate from this, H
Substantially (Rl-X C ax ) by IPfi filling
It is sufficient that the Ba2Cu40a phase is generated. However, in order to stably generate this phase, it is preferable that the composition of the raw material powder be (R+Ca):Ba:Cu=1:2:4.

但し、本発明におけるHIP処理は高温高圧雰囲気で行
なうものであるから、用いるシース材としては上記雰囲
気に耐え得るものを使用する必要がある。こうした観点
からすれば、銀シース材は溶融する可能性もあるので、
本発明で用いるシース材としてはより融点の高い例えば
銅シース材が最適である。
However, since the HIP process in the present invention is performed in a high temperature and high pressure atmosphere, it is necessary to use a sheath material that can withstand the above atmosphere. From this point of view, there is a possibility that the silver sheath material will melt, so
As the sheath material used in the present invention, for example, a copper sheath material having a higher melting point is most suitable.

尚シース材を用いて線材を製造するに当たって、焼結時
の雰囲気酸素のシース透適性を良好にする為、シース材
に螺旋状の溝を形成することも知られているが、本発明
に係る酸化物超電導体は高温処理によっても酸素の放出
がないことから線材加工時の焼結の際にもこの様な技術
をそのまま適用することができる.従って、熱的に不安
定なFLBa2Cus 07型酸化物と異なり、HIP
IA理による酸化物超電導体の生成及び線材の緻密化の
為の焼結の一連の手順を上記の様なシース材を用いて行
なうことができ、工程の簡略化も図れる。
It is known that when producing a wire rod using a sheath material, a spiral groove is formed in the sheath material in order to improve the permeability of the sheath to atmospheric oxygen during sintering. Oxide superconductors do not release oxygen even when treated at high temperatures, so this technology can be applied directly to sintering during wire processing. Therefore, unlike the thermally unstable FLBa2Cus 07 type oxide, HIP
A series of steps of generating an oxide superconductor by IA process and sintering for densification of the wire can be performed using the above-mentioned sheath material, and the process can be simplified.

以下本発明を実施例によって詳細に説明するが、下記実
施例は本発明を限定する性質のものではな〈、前・後記
の趣旨に徴して設計変更することはいずれも本発明の技
術的範囲に含まれるものである。
Hereinafter, the present invention will be explained in detail with reference to examples, but the following examples are not intended to limit the present invention.Any design changes for the purpose of the above and below are within the technical scope of the present invention. It is included in

[実施例] 実施例1 純度99.9%のY203,BaCO..Cub,Ca
CO3の各粉末を用い、化学組成式(Yo.e Cao
.+ )Baa Cu406となる様に混合し、空気中
で880℃にて16時間の仮焼処理を行なった。仮焼粉
を粉砕した後、外径4m+n,内径3 mm,長さ80
m+nの銅パイプ(シース材)に封入し、これをスエー
ジ加工によって外径0.75nuoφまで伸線した。こ
れを800℃で10時間仮焼した後、銅パイプ表面にア
クリル樹脂を螺旋状に(ピッチ15.5mm,幅121
)塗布した。次いで50℃の硫酸中に浸漬してアクリル
樹脂が塗布されていない部分を溶融して螺旋状溝を形成
し、その後アセトンでアクリル樹脂を除去した。
[Example] Example 1 Y203, BaCO. with a purity of 99.9%. .. Cub, Ca
Using each powder of CO3, the chemical composition formula (Yo.e Cao
.. + ) Baa Cu406, and calcined in air at 880° C. for 16 hours. After pulverizing the calcined powder, the outer diameter is 4 m + n, the inner diameter is 3 mm, and the length is 80 mm.
The wire was enclosed in a m+n copper pipe (sheath material) and drawn to an outer diameter of 0.75 nuoφ by swaging. After calcining this at 800℃ for 10 hours, acrylic resin was applied spirally on the surface of the copper pipe (pitch 15.5mm, width 121mm).
) was applied. Next, it was immersed in sulfuric acid at 50° C. to melt the portion on which the acrylic resin was not applied to form a spiral groove, and then the acrylic resin was removed with acetone.

このときの銅パイプの状態を第1図に示す。The state of the copper pipe at this time is shown in FIG.

第1図に示した銅パイプを15COllL位の試料とし
、これをAr−80%,o2−20%の混合ガス雰囲気
下、全圧1000atm(酸素分圧200)で830℃
,880℃,930℃.980℃の各温度で10時間の
HIP処理を行なった後、同圧同一雰囲気下で800℃
の温度で5時間のHIPIA理(焼結)を行なった。
The copper pipe shown in Fig. 1 was used as a sample of about 15 COllL, and it was heated at 830°C at a total pressure of 1000 atm (oxygen partial pressure 200) in a mixed gas atmosphere of Ar-80% and O2-20%.
, 880℃, 930℃. After HIPing for 10 hours at each temperature of 980°C, it was heated to 800°C under the same pressure and atmosphere.
HIPIA processing (sintering) was performed at a temperature of 5 hours.

得られた酸化物超電導体線材の超電導特性を調査したと
ころ、第1表に示す結果が得られた。尚第1表中Jcは
窒素温度(77K)での臨界電流密度である。
When the superconducting properties of the obtained oxide superconductor wire were investigated, the results shown in Table 1 were obtained. In Table 1, Jc is the critical current density at the nitrogen temperature (77K).

第   1   表 *Jcは、0.5 μV/cmで規定したときの10箇
のサンプルの平均値を示す。
Table 1 *Jc shows the average value of 10 samples when defined at 0.5 μV/cm.

次に、980℃で処理した銅パイプを溶かし内部の酸化
物超電導体粉末のX線回折を行なったところ、第2図に
示す結果が得られた。また超電導特性を振動試料型磁力
計を用いて測定したところ、第3図心示す結果が得られ
た。
Next, when the copper pipe treated at 980° C. was melted and the oxide superconductor powder inside was subjected to X-ray diffraction, the results shown in FIG. 2 were obtained. Furthermore, when the superconducting properties were measured using a vibrating sample magnetometer, results showing the third centroid were obtained.

これらの結果から明らかな様に、本発明によればY.,
.Ca.,,Ba2 Cu.06がほぼ単相化したもの
が得られており、Tcも90K程度と高い値を示してい
ることがわかる。
As is clear from these results, according to the present invention, Y. ,
.. Ca. ,,Ba2 Cu. It can be seen that almost single-phase 06 was obtained, and the Tc also showed a high value of about 90K.

次に、得られた酸化物超電導体の熱重量分析を行なった
ところ、第4図に示す結果が得られた。
Next, the obtained oxide superconductor was subjected to thermogravimetric analysis, and the results shown in FIG. 4 were obtained.

第4図から明らかな様に、本発明で得られた酸化物超電
導線材は850℃付近まで酸素の抜けがなく重量が変化
していないことが分かる。
As is clear from FIG. 4, it can be seen that the oxide superconducting wire obtained by the present invention does not lose oxygen and its weight does not change up to around 850°C.

[発明の効果] 以上述べた如く本発明方法によれば、液体窒素温度より
も十分高い超電導遷移温度を有し、且つ高温条件下で酸
素の抜け出しが少ない(Rl−X Cax)Ba2Cu
4o8型酸化物超電導体線材が得られた。
[Effects of the Invention] As described above, according to the method of the present invention, Ba2Cu has a superconducting transition temperature sufficiently higher than the liquid nitrogen temperature and less oxygen escapes under high temperature conditions (Rl-X Cax).
A 4o8 type oxide superconductor wire was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は螺旋状溝を形成した銅パイプの状態を示す説明
図、第2図は本発明によって得られた酸化物超電導体の
X線回折パターンを示すグラフ、第3図は本発明によっ
て得られた酸化物超電導体の超電導特性を示すグラフ、
第4図は本発明によって得られた酸化物超電導体の熱重
量分析結果を示すグラフである。
Figure 1 is an explanatory diagram showing the state of a copper pipe with spiral grooves formed therein, Figure 2 is a graph showing the X-ray diffraction pattern of the oxide superconductor obtained by the present invention, and Figure 3 is a graph showing the X-ray diffraction pattern of the oxide superconductor obtained by the present invention. Graph showing the superconducting properties of the oxide superconductor,
FIG. 4 is a graph showing the results of thermogravimetric analysis of the oxide superconductor obtained according to the present invention.

Claims (1)

【特許請求の範囲】 R(但しRはY及びランタニド系列希土類元素よりなる
群から選択される1種以上の元素),Ca,Ba,Cu
,Oからなる酸化物超電導体製造用原料粉末混合物を、
シース材に充填して伸線した後、不活性ガスと酸素ガス
の混合雰囲気下、850〜1100℃の温度範囲で熱間
静水圧加圧処理することにより、 (R_1_−_xCa_x)Ba_2Cu_4O_6(
但し、xは0.001〜0.5、Rは前と同じ意味)で
示される酸化物を含む酸化物超電導体を生成し、次いで
焼結することを特徴とする酸化物超電導体線材の製造方
法。
[Claims] R (where R is one or more elements selected from the group consisting of Y and lanthanide series rare earth elements), Ca, Ba, Cu
A raw material powder mixture for producing an oxide superconductor consisting of ,O,
After filling the sheath material and drawing the wire, (R_1_-_xCa_x)Ba_2Cu_4O_6(
However, production of an oxide superconductor wire characterized by producing an oxide superconductor containing an oxide represented by x = 0.001 to 0.5 and R having the same meaning as above), and then sintering it. Method.
JP1230757A 1989-09-06 1989-09-06 Manufacture of oxide superconductor wire rod Pending JPH0395808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230757A JPH0395808A (en) 1989-09-06 1989-09-06 Manufacture of oxide superconductor wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230757A JPH0395808A (en) 1989-09-06 1989-09-06 Manufacture of oxide superconductor wire rod

Publications (1)

Publication Number Publication Date
JPH0395808A true JPH0395808A (en) 1991-04-22

Family

ID=16912798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230757A Pending JPH0395808A (en) 1989-09-06 1989-09-06 Manufacture of oxide superconductor wire rod

Country Status (1)

Country Link
JP (1) JPH0395808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005022563A1 (en) * 2003-08-28 2006-10-26 住友電気工業株式会社 Method for producing oxide superconducting wire, method for modifying oxide superconducting wire, and oxide superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005022563A1 (en) * 2003-08-28 2006-10-26 住友電気工業株式会社 Method for producing oxide superconducting wire, method for modifying oxide superconducting wire, and oxide superconducting wire
JP4752505B2 (en) * 2003-08-28 2011-08-17 住友電気工業株式会社 Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire

Similar Documents

Publication Publication Date Title
US5468566A (en) Synthesis of highly phase pure BSCCO superconductors
JPH0395808A (en) Manufacture of oxide superconductor wire rod
Goto Fabrication of superconducting Hg-1212 filament by the solution spinning method
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH01167289A (en) Production of oxide superconductor
JP2677882B2 (en) Method for producing bismuth oxide superconductor
JP2727565B2 (en) Superconductor manufacturing method
JPS63291317A (en) Manufacture of oxide superconductive wire rod
JPH029744A (en) Production of dense oxide superconducting wire rod
JPH01251514A (en) Superconductive wire and manufacture thereof
JP2574173B2 (en) Superconducting wire manufacturing method
JPS63176353A (en) Superconductive raw material
KR0159487B1 (en) Oxide superconductor and method of producing the same
JP2821568B2 (en) Method for producing superconducting whisker composite
JP2590242B2 (en) Manufacturing method of oxide superconductor
JP2855128B2 (en) Oxide superconductor
JPH04167313A (en) Manufacture of oxide superconductor wire material
JPS63242960A (en) Superconductor and production thereof
JPH01176609A (en) Manufacture of oxide superconductive wire material
JPH01183450A (en) Production of formed oxide superconductor
JPH02229753A (en) Preparation of ductile composite containing superconductive ceramic oxide
JPH01119556A (en) Production of oxide-based superconductor
JPH02172823A (en) Production of bi-based oxide superconductor
JPH04164855A (en) Production of oxide superconductor
JPH01241717A (en) Manufacture of oxide superconductor wire